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Cumulative Prospect Theory and the Representative Investor 

Jonathan E. Ingersoll, Jr. 

Abstract 

Cumulative Prospect Theory has been proposed as an alternative to expected utility theory to 
explain irregular behavior by economic agents.  In particular in Finance it has used to clarify 
anomalies like the equity premium puzzle.  There are certainly hopes and hints that CPT can 
explain the anomalies, but less attention has been paid to more basic questions. This paper answers 
some of those.  A complete market is not sufficient to guarantee that the market portfolio is 
efficient so prices may not be determined at the margin by a representative investor.  “Over-
completion” of the market (the introduction of apparently extraneous derivative assets) can restore 
efficiency and result in a Pareto efficient allocation of risk.  Mutual fund results also obtain only 
under very restrictive conditions for CPT investors.  But mean variance analysis and the resulting 
CAPM does hold with only minor additional assumptions.



I  Introduction 

In the 1970s and 1980s, expected utility theory came under increasing question for failing 
to explain certain irregularities in behavior, and many modifications to the axioms or suggestions 
for alternate theories were proposed. Prospect theory and its successor, cumulative prospect theory 
(CPT), are two of the responses that have attracted a good deal of attention. As originally construc-
ted by Kahneman and Tversky (1979) and extended by Tversky and Kahneman (1992), both 
theories have two component parts, loss-averse utility and a probability weighting function. Toget-
her these two features attempt a concise explanation of the major violations of expected utility 
theory.  

CPT has been tested in the laboratory (e.g., List, 2003). The applied literature on CPT has 
also “tested” it by addressing anomalies to see if loss aversion or probability weighting can explain 
observed phenomenon. For example Benartzi and Thaler (1995) look at the equity premium 
puzzle; Giorgi et al. (2005) examine the size and value premium puzzle; Barberis and Xiong, 
(2006) consider the disposition effect. 

This paper takes a much more fundamental approach. It asks the questions: What kinds of 
portfolios would be formed by investors who are loss adverse or use probability weighting? How 
do these portfolios differ from those held by risk-averse investors or those who use objective 
probabilities?  Do mutual fund theorems continue to hold?  Is the market portfolio efficient in the 
sense that a representative investor exists?  

Section II provides a brief review of CPT and its two component parts.  Section III intro-
duces the portfolio maximization problem under CPT.  Sections IV and V examine the separate 
effects of loss aversion and probability weighting.  Sections VI and VII scrutinize mutual fund 
theorems and mean variance analysis under CPT.  Section VIII briefly addresses the difficulties in 
extending CPT to a multiperiod model.  Section IX concludes. 

II  Cumulative Prospect Theory: A Review 

For the standard expected utility problem, utility is strictly increasing and concave in 
wealth or consumption. With loss aversion, utility is still strictly increasing but is reframed to be 
defined over changes in wealth. It is concave for gains and convex for losses. The resulting S-
shaped utility function predicts choices that are risk-averse concerning gains and risk-seeking 
about losses. Assuming utility is twice differentiable, except possibly at 0, v′(x) > 0 for all x, and 
xv″(x) < 0, x ≠ 0.  

Though choices are risk-seeking over losses, symmetric fair bets are always declined, and 
the larger the symmetric bet the worse it is. Normalizing the loss-averse function v by setting v(0) 
= 0, this increasing symmetric bet aversion requires that for all positive x, v(x) > v(x) and v′(x) 
> v′(x).1 

                                                 
1 The risk premium of a simple symmetric bet is 1

2( ) [ ( ) ( )].Q x v x v x    If all symmetric bets are declined, then Q(x) 
> 0 for all x > 0 which gives   If  larger bets are worse, then ( ) ( ) 0.v x v x x     1

20 ( ) [ ( ) (Q x v x v x   )]      
which gives v′(x) > v(x) x > 0. 
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Tversky and Kahneman (1992, henceforth TK) proposed and estimated a specific loss-
averse utility function of the form  

 

 
0

( )
( ) 0
x x

v x
x x





  
.  
 (1) 

Their estimated parameters are  =  = 0.88 and  = 2.25. Other estimates include  = 0.52 and  
= 0.37 by Wu and Gonzalez (1996) using their own and Camerer and Ho’s (1994) data.2 Note that 
these values of  would seem to indicate only very mild aversion to risk since the relative risk 
aversion for gains for this function is 1  , and of course there is risk seeking for losses. However, 
the parameter  also strongly affects the aversion to risk. For example, using TK’s parameter 
values, a fifty-fifty gamble winning $1 or $2 has a certainty equivalent of $1.49 — one cent below 
the expected value, but an even chance at winning or losing a dollar has a certainty equivalent of 
23¢. So while risk aversion over gains is mild, there is a much larger risk premium when both 
gains and losses are involved. 

Instead of using the various outcomes’ probabilities directly, CPT uses decision weights, , 
derived from a probability-weighting function. Decision-weighted “expected” utility is computed 
as  
 [ ( )] ( , ) ( ) .iv x v x  i π xE   (2) 

Decision weights were originally introduced in Prospect Theory to capture two behavioral effects: 
(i) the subjective overweighting of rare events which seemed evident in behaviors such as the 
purchase of lottery tickets and (ii) violations of the independence axiom accounting for the Allais 
paradox. 

As originally proposed, decisions weights could not readily be extended to gambles with 
more than two outcomes as violations of first-order stochastic dominance might be introduced. 
Tversky and Kahneman (1992) developed CPT to surmount this problem. They accomplished this 
by applying weighting functions to the cumulative probability of losses and complementary cumu-
lative probability of gains.  

Under CPT, outcomes are first ordered from lowest to highest 

 1 1 0 10n n m .x x x x x          x

i

j

 (3) 

Then the cumulative and complementary cumulative probabilities are determined separately for the 
losses and gains 

  (4) 
0

.
i m

i j i m
j n j

 
 


 

     

i  are the cumulative probabilities for the loss outcomes, and i

   are the cumulative comple-

mentary probabilities for the gains. Finally, weighting functions, , are applied separately to the 

                                                 
2Ho (1994) and Wu and Gonzalez (1996) consider only gains so the parameters  and  were not estimated. 
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cumulative and complementary cumulative probabilities, and the decision weights are determined 
by differencing 

  (5) 1 1( ) ( ) ( ) ( ) for 0i i i i i i i       
                 .

For a continuous distribution, the decision-weight density functions are  

 
( ) ( )

( ) ( ) ( ) ( )
d d d d

s s s
ds d ds d

   
      

         
 

s

s

 (6) 

where is the probability density function over the states.( ) ( ) /s d s d   3 

The overweighting property obtains if the cumulative weighting functions, , have an 
inverted-S shape. The specific weighting functions proposed by Tversky and Kahneman are4  

 
1/

( ) ,
[ (1 ) ]



 




 


  

   
 (7) 

and they estimated the parameters to be  = 0.69, + = 0.61. Other estimates for + reported in 
Camerer and Ho (1994) range from 0.28 to 1.87.5 Prelec (1998) proposed the two-parameter 
weighting function () = exp[(ℓn )] based on an axiomatic derivation.  

The TK weighting function is illustrated in Figure 1 (for the value  = 0.65). For contin-
uous distributions, the decision weight density for an objective probability density function of (s) 
is 

 
 

1( ) 1 [(1 ) / ]
( ) ( ) ( ) 1 ( ) .

1 [(1 ) / ]
s s





             
      

s

                                                

 (8) 

For TK’s parameters,  = 0.69 and + = 0.61, the cumulative probability of losses is 
overweighted for probabilities less than 37.76% and the density is underweighted between the 
12.41 and 82.19 percentiles; the gain complementary probability is overweighted for probabilities 
less than 33.88% and the density is underweighted between the 10.88 and 82.82 complementary 

 
3 The probability weighting function, , must be strictly increasing. If it is not, it can assign zero or negative decision 
weight to possible outcomes. If  is not continuous it can assign a decision weight atom to an atomless probability 
distribution. Finally  must also be differentiable if a smooth decision weight density function is to be achieved. 
4 It should be noted that the TK weighting function given in (7) is not monotone for all parameter values; therefore, it 
can assign negative decision weights. For example, for  = 0.25, () is decreasing over the range of cumulative 
probabilities 1.56% <  < 23.62%. Negative decision weights would be a severe problem for the interpretation of CPT 
leading to inconsistencies such as the choice of first-order dominated payoffs. Fortunately, the TK weighting function is 
monotone for all values of  greater than the root of the equation (1  )2 = 12. The critical root is   0.279, so the 
function is monotone in the empirically relevant range. See Ingersoll (2008). 
5 Only gains were considered so only that parameter could be estimated. There was only one instance reported with an 
estimated  > 1. That was for Gigliotti and Sopher  (1993). The next largest estimate was 0.97. For values of  greater 
than 1, the decision weights are smaller than the true probabilities for the rare extreme outcomes. 
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percentiles. 

 

Note that the decision weight, 0, for no gain or loss, x0 = 0, is unassigned by equation (5), 
and the

me 

or CPT, the decision weight applied to a gain of zero might appear to be irrelevant since 
v(0) = 0

hts do 

                                                

 

 assignments of  and + cannot both be extended to x0 as they would, in general, give 
different values. The obvious completion is to set 0 = 1  (1)  +(1) which makes the 
weights sum to one. Unfortunately, this will not always be practical. First there may be no outco
of zero, and second, this assignment is not necessarily a positive value.6 Furthermore, for 
continuous distributions, a positive or negative atom of probability is often required in an 
otherwise atomless distribution to match the decision weight densities at x = 0.  

 
F
 so the weight does not affect the computed expected utility. However, when developing 

pricing results, it is the marginal that matters so the numerical value of 0 is important in an 
equilibrium setting even within CPT.  For this reasons, we will require that the decision weig
sum to exactly one for all gambles considered. The only way to assure this property is to use a 
single weighting function (with (1) = 1) for the entire cumulative distribution ignoring any 

 
6 For example, using TK’s weighting function in (7) with  = 0.9 and + = 0.6, a gamble with a 10% chance of a loss, 
an 85% chance of a gain, and a 5% chance of no change has probability weights of 18.80% and 82.25% for the loss and 
gain which would require 0 = 1.05%. More commonly, however, the CPT decision weights sum to less than one 
when there is no zero gain outcome. This phenomenon is referred to as subcertainty. 



distinction between gains and losses.7 From Figure 1, the marginal effects are qualitatively sim
in both tails so using a single weighting function will only alter the numerical results and not affect 
their qualitative properties.  

 

ilar 

 related advantage of using a single weighting function is that the resulting distribution 
can be 

 not 

III  The Cumulative Prospect Theory Portfolio Problem 

CPT was developed in the context of fixed gambles; that is, it was used to evaluate prede-
termine

eads 

-

We will work in a standard single-period market setup. State s occurs with probability s 
and has

A
treated just like a subjective probability distribution. Standard methods and intuitions like 

stochastic dominance and Rothschild Stiglitz riskiness can be applied directly to the decision 
weights. The one caveat is that these subjective distributions belong to the risky prospects and
to any state space in which they are embedded. Two prospects with different orderings for their 
outcomes can have different subjective distributions even if they are defined on the same state 
space. 

d sets of outcome-probability pairs. However, to analyze portfolio problems we must 
compare risky prospects whose outcomes are under some control of the decision maker. This l
to two distinct problems. First, in the standard portfolio problem unlimited buying and selling is 
allowed, and a convex valuation of losses may induce the investor to take unbounded positions. 
Second, the portfolio is chosen from amongst a set of assets with a known joint probability distri
bution, but the decision weights used in place of the probabilities cannot be determined until the 
ordering of the portfolio outcomes across states is known. So as an investor evaluates different 
portfolios whose returns are not perfectly aligned, a changing set of decision weights must be 
employed in place of fixed state probabilities.  

 a strictly positive state price of ps.
8 Final wealth in state s is Ws = 0 ˆ(1 )sW x x  where ˆ,x is 

the reference rate of return assigned zero utility under loss aversion.9 Mos e 

                                                

t commonly th

 
7 Quiggin (1982) who first proposed the use of a cumulative weighting function applied it to the entire distribution. To 
see that a single weighting function is required, note that we must have for all z if the decision 

 risk-
, these “probabilities” are not subject to weighting like the actual probabilities since they are 

(1 ) 1 ( )z z    
weights are to sum to one regardless of where in the distribution a zero net gain appears. But when this property holds, 
the single weighting function (z)  +(z) results in the same mapping of the cumulative distribution as the two 
separate functions. 
8 The assumption ps > 0 assures there are no arbitrage opportunities. Although state prices can also be represented
neutral probabilities
constrained by prices and possibilities not likelihoods. In particular, in a complete market, the risk-neutral probabilities, 
like the state prices, are uniquely determined by the absence of arbitrage. In an incomplete market, the absence of 
arbitrage also limits the feasible risk-neutral probabilities. These restrictions are identical across investors regardless of 
how they might weight probabilities. 
9 There is no loss of generality in defining utility in terms of rates of return rather than dollar gains and losses. The zero-
utility reference level for dollar gains is 0

ˆ ˆ(1 ),X W x  and the dollar gain in excess of the reference level is Xs = 

0 0
ˆˆ(1 ) .s sW x x X W x     The utility for dollar gains is then V(X) = v(X/W0). In particular, for TK loss aversion, utility 

for dollar gains is ( )V X X  and for losses is ( ) ( ) .V X X      This can be written equivalently as ( )v x x  and 
( )x   for gain es, respectively, where 0Ws and loss    after dividing out the arbitrary constant 0 .W    It is only 

when going to a m d setting, in which wealth can change, that using rates of return rather than dollar gains and 
losses makes a difference due to reframing. 

ulti-perio
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reference level is set to either 0 or the interest rate, but any other value could be used. We will refer 
to xs as the excess return and to positive (negative) excess returns as gains (losses) though neither 
corresponds to the usual usage. The investor’s budget constraint is 0ˆ(1 )s s 0p x x W W     or, 
when a risk-free asset with interest rate rf is available, s sp x = B where B  ˆ( )/(1 ).f fr x r 

1d .s sx x  

 

In performing the maximization, it must be recognized that decision weights, s, are used 
in place of objective probabilities, and they are affected by the ordering of the portfolio returns 
across states. For a fixed ordering of returns, the weights can be considered constant and treated 
just like the state probabilities in the standard problem. So, with no loss of generality, assuming the 
ordering of outcomes across states is xs  xs+1,

10 the investor’s partial portfolio problem is 

  (9) Max ( ) subject to ans sv x p  s sx B

Of course, to completely solve the problem, all of the possible outcome orderings would have to be 
considered and the best portfolio for each compared. 

This portfolio problem with no constraints apart from the budget and ordering constraints is 
a complete markets analysis. An incomplete-market portfolio problem can be analyzed by using 
additional constraints restricting the feasible set of portfolio returns; i.e., x = Yy where Y is the S  
N matrix of excess returns on each of the N assets in the S states, and y is a vector of the allocation 
to each of the N assets. Short sales restrictions or limited liability can be handled similarly by 
imposing y  0 or ˆ(1 ) ,x  x 1 respectively. 

1
1 1( )SThe Lagrangian for (9) is ( ) [ )]s s s  for a fixed set 

of . The first-order Kuhn-Tucker conditions are 
s s s s sx x

    v x x  L B p

1 01, , ( 0)S  

 1 1

0 ( )

0 0 ( ) 1, , 1

0 .

s s s s s
s

s s s s s
s

s s

v x p
x

x x x x s S

B p x



 

        



       



  
 

L

L

L



s  

 (10) 

When using the objective probabilities, the  constraints can safely be ignored as the ordering of 
states is immaterial.  

Due to the convexity of the utility function over losses, a maximal loss, x, is sometimes 
assumed to keep the optimal portfolio bounded. This might, but need not, be ˆ(1 );x   i.e., total 
loss of wealth. Of course, a maximum acceptable loss can be imposed as a practical consideration 

                                                 
10 CPT requires that xs be strictly less than xs+1. If the two are equal, then a decision weight is assigned to the combined 
state {s, s+1}. However, since states s and s + 1 are adjacent in the cumulative probabilities, the decision weight for the 
merged state will equal the sum of the two original decision weights; i.e., {s,s+1} = s + s+1. So when xs = xs+1 = x, the 
contribution of these two states to expected (decision-weighted) utility can be expressed as either sv(x) + s+1v(x) or 
{s, s+1}v(x). Consequently, the weak inequality, which is usual for standard optimization, may be assumed. 
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even when the optimal solution would otherwise still be bounded. Assuming loss-averse utility 
with a maximum acceptable loss is somewhat similar to adopting a Friedman-Savage utility 
function that becomes infinitely risk-averse over losses larger in magnitude than x.11 We will 
impose a maximum acceptable loss of x and allow x =  to cover situations when no explici
maximum loss is to be imposed. If there is a maximal loss, the xs partial derivatives all are zero
when xs > x

t 
 

 and are nonpositive when xs is at its lower bound.12 Of course, the second order 
conditions for a maximum may not be satisfied.  

To achieve an unconstrained optimum for the portfolio problem, some additional structure 
must be imposed. One assumption that ensures this even with risk preference over losses is that the 
utility function satisfies  

 
( )

lim 0 0
v x

k
( )x v kx

    (11)


 

Because portfoli
trade-offs between outcomes, asymptotic risk avoidance ensures that any “extreme” portfolio will 

on is 

ction in (1) has asymptotic risk avoidance if  <  since 
 On the other hand, the utility function  

 

which we shall call asymptotic risk avoidance. o formation allows only linear 

be rejected as sub-optimal. In particular, a very large gain in some state must be financed by 
proportionally large losses in other states, but asymptotic risk avoidance ensures that when this 
leverage is sufficiently large, the utility losses will more than offset the utility gains. This noti
made precise in Proposition I below. 

The TK loss-averse utility fun
( ) / ( ) / .v x v kx k x    

 ( )
1 0xv x

e x

1 0xe x     
 (12) 

does not have asymptotic risk avoidance for any parameters since .  

 Risk Avoidance. If a
investor has asymptotic risk avoidance and a zero-utility reference return less than or equal to the 
interest

 in terms of the best 

                                                

lim ( ) / ( ) 1/x v x v kx    

Proposition I: Bounded Optimal Portfolios with Asymptotic n 

 rate, then the optimal portfolio has bounded positions in every asset. 

Proof: The budget constraint puts an upper bound on the worst return

 

.

11 Friedman-Savage utility has lower and upper concave portions straddling a convex portion. It need not have its 
higher inflection point at a gain of zero. In a multi-period problem, the resetting of the anchor point is an added 
difference between loss-averse and Friedman-Savage utility that must be modeled. The maximum loss can also be 
made state dependent, and all our results continue to hold, but there is little gain from this generalization and a large 
cost in complexity.  
12 Formally, the first-order conditions must hold at an optimum even in the convex region. Consider any optimal port-
folio and the same portfolio with two returns altered to xi  xi + pj and xj  xj  pi. This alteration is affordable and 
the change in expected utility for small  is [ ]v E 2[ ( ) ( ) ] ( )i i j j j iv x p v x p O        If the first-order conditions 
hold, no small alteration can increase utility. But if the term in brackets is positive (negative), then an increase 
(decrease) in xi will increase expected utility and the original portfolio could not have been optimal. We will see, 
however, there can be at most one state with a realized loss at which the first-order condition is relevant. 
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return. By definition the smallest and largest excess returns occur in states 1 and S, so 1x   
( )S SP B p x where 1 1

1
S
s sP p 
  with the equality holding only when all states but S ha th

tility is increasing and the portfolio outcomes are weakly orde
the expected utility of this portfolio is  

ve is 
red, 

 
2

S

same small excess return. Since u

 1 1 1
1 2

[ ( )] ( ) ( ) ( ) ( ) ( ) .
S S

s s S s S S S
s s

v x v x v x v x v P B p x v x
 

           E s
s
  (13) 

By the mean-value theorem, ( ( )) ( ) ( )S S S S S Xv P B p x v Pp x PBv aPB Pp x    
creasing so as xS gets large, ( ( )) (S Sv P B p x v

for some a 
 [0,1]. For negative outcomes v′ is in ).S SPp x �

iently large xS, ( )Sv x
 If 

the utility function has asymptotic risk avoidance, then for all suffic
negligible in size relative to ( )S Sv Pp x and, therefore, ( ( )),S Sv P B p x

will be 
 and the right-hand side of 

(13) will be negative. 

Thus for any investor with asymptotic risk avoidance, portfolios with sufficiently large 
returns ted 

al 

If asymptotic risk avoidance is severely violated and the limit in (11) is infinite, then 
similar  loss 

 

 
 

   (14) 

For extremely large positions, expected utility is

must have negative expected utility. Such a portfolio cannot be optimal if positive expec
utility portfolios are possible. This must be true if the zero-utility reference return is less than or 
equal to the interest rate, since the risk-free portfolio has nonnegative utility. Therefore, all optim
portfolios must have bounded positions.  

reasoning shows that unbounded portfolios are always optimal. This is true for the KT
aversion function if  > . If the limit in (11) is finite, then the boundedness of optimal portfolios is
indeterminate. Consider an investor with the TK loss averse utility with  =  and a reference level 
of ˆ 0x  in a two-asset, two-state economy. If the risky asset’s expected rate of return exceeds the 
interest rate, then we know that all risk-averse investors will optimally invest a positive amount in
it. This must also be true for a loss-averse investor since for a sufficiently small position, the excess
returns in both states will exceed 0, and only the risk-averse portion of the utility function will be 
applicable. Label the states so that p1/1 < p2/2 and suppose the investor holds a sufficiently large 
position so that x2 < 0 < x1, then expected utility is13  

1 1 2 2 1 1 2 1 1 2[ ( )] ( ) [ ] .v x x x x x p B p            E

1 1 2 1 2[ ( )] [ ( / ) ]v x x p p    E .
ty is positive so infinite leverag

 It is a simple 

Given that loss aversion does not automatically lead investors to desire extreme leverage, 
we can  

                                                

matter to construct examples in which this quanti e is desired or 
negative so a bounded position is optimal. Note in particular that this example shows that KT’s 
increasing symmetric bet aversion criterion is insufficient to guarantee bounded portfolios. 

address the problem of characterizing optimal portfolios and answer the related question of
how prices are set in equilibrium under CPT. The next section examines optimal portfolios when 
markets are complete. 

 
13 The state price to probability ratios cannot be equal or the risky asset would have an expected rate of return equal to 
the interest rate, and the return realized in the state with the smaller ratio must be positive to hold a portfolio with an 
expected rate of return in excess of the interest rate.  
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IV  The Loss-Averse Portfolio Problem  

To focus on loss aversion, we ignore probability weighting in this section. The objective 
ering conditions are not binding so the Lagrange 

multipliers, 14 y 
probabilities are used, and the outcome-ord

s, may all be set to zero.  If there is a maximum acceptable loss, that constraint ma
be binding so the first-order conditions are 

 0 ( ) .s s s
s

v x p
x

    

L

 (15) 

T s = xhis condition holds as an equality except possibly when x . 

From (15) we see that many of the properties of optimal portfolios are determined by the 
price-probability ratio, s = / ,s sp  just as under global risk aversion.15 We will refer to states with 
low price-probability ratios as good or better states. Since v″(x) < 0 for a risk-averse investor and 

( )s sv x   at the optimum, optimal portfolios for risk-avers investors will have higher returns in
better states. For loss-averse investors, states where positive and negative excess rates of return are
realized must be considered separately. In addition states where the maximum loss is earned and 
the first-order condition does not hold must also be considered.  

Proposition II: In a complete market, the rates of return realized on all optimal loss-avers
portfolios can be characterized by:  

   
 

e 

(i) Gain

(ii) If there is no maximum loss (x

s are larger in better states; i.e., for xi, xj > 0, xi> xj if and only if pi/i < pj/j.  

 = ), then a loss is realized in at most one state. If x > , then 
n size.  

an 

(iv) Ris  
stes. 

verified  

A
r a standard investor since the first order conditions hold and mar

                                                

multiple states can have portfolio losses, but at most one loss is not maximal i

(iii) Losses can be earned in better states (lower s) than some of those in which gains are realized, 
but a state with a loss cannot have both a smaller state price and a higher probability th
any state with a gain. 

k sharing need not be Pareto efficient when markets are complete even if all investors have
identical beliefs and ta

Proof: All results follow from the first-order conditions. The separate characterizations are 
 and discussed below.  

mongst states where just gains are earned, the portfolio return will be higher the lower the 
price-probability ratio just as fo gi-

 
14 The analysis here remains valid under probability weighting with the decision weights replacing the objective 
probabilities provided only one ordering of portfolio outcomes is considered, and the ordering constraints are not 
binding. See section VI for analysis of the ordering constraints. 
15 With a finite or countable number of states the price-probability ratio is proportional to the ratio of the risk-neutral 
probabilities,  and true probabilities *, s  (1 ) / .f s sr    When there is a continuum of states, the price-probability 
ratio is a state price density.  
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nal ut

k-

ility is decreasing over gains. This verifies property (i). In some settings an investor’s optimal 
portfolio may have gains in all states. This will occur, for example, if the investor is very risk 
averse over gains and the market provides little reward for bearing risk (i.e., there is little variation 
in the price-probability ratio). In such cases, the investor’s optimal portfolio will be close to ris
free, xs  rf  + x̂ in all states. However, portfolios with only gains can be optimal in other cases as 
well.16 

To verify the second property, suppose there are two states, i and j, with losses in the opti-
mal portfolio. The same portfolio with just these two returns altered to xi  xi  pj and xj  xj + 
pi is affordable for any . A second-order Taylor expansion for the change in expected utility for 
this alteration is 

 2 2 21
2

2[ ( ) ( )] [ ( ) ( ) ] ( ) .j i j i j i i i j j j ip v x p v x v x p v x p o                (16) 

The second term is positive since v″ > 0 in each state by assumption. The fir
made nonnegative by choosing  to have the same sign as the term in brackets. Therefore, expected 
utility c

[ ( )]v xE

st term can be 

an be increased by this alteration, and the original allocation could not have been optimal. 
So a loss that is less than maximal can be realized in at most one state.17 Of course, if there is no 
maximum loss (x = ), then it follows immediately that at most one state can have a loss 
verifying (ii). 

The intuition for this result is that the loss-averse investor will always benefit by increasing 
a larger loss and reducing a smaller loss if it is possible to do so. Realizing larger losses in one state 
allows, 

y 

through the budget constraint, the realization of higher returns in another state. With an 
ordinary risk-averse utility function, this is not beneficial as the increased loss has a bigger impact 
on utility. But in the convex portion of a loss-averse utility function, it is better to concentrate an
losses in a single state since the marginal utility decreases rather than increases as larger losses are 
realized. This does not mean, however, that the single loss will be of maximum size, x, as the 
example in the next paragraph illustrates. In addition, if there is a maximum loss, then the optimal 
portfolio may realize losses in two or more states because a single state may not have a large 
enough state price to finance the gains desired in all the other states.  

When an optimal portfolio has a loss, then it need not have its returns inversely related to 
the price-probability ratio. For example, in the economy  = {0.75, 0.25}, p = {0.8, 0.2}, the 
optimal

her 

can only be earned in the worst state(s) at or below a given probability. That is, if i  j and pj  pi 
with at 
                                                

 portfolio for the TK loss-averse utility function with  = 0.4,  = 0.6 and  = 2 is x* = 
1 1

64 16{ / , / }.  Since the price-probability ratios are  = 16 4
15 5{ / , / }, the optimal portfolio has its hig

return in the worse state. This verifies the first part of property (iii). 

Although a loss need not be realized in the worst (highest price-probability ratio) state, it 

least one equality holding strictly, then j < i, and the better state j cannot be the only one 
 

16 For example, consider a two-state economy characterized by 1 = 2 = ½,  p1 = 0.6, p2 = 0.2. An investor with the TK 
loss averse function with  =  = ½ and  = 2 with ˆ 0x  optimally holds the portfolio x1 = 1 and x2 = ¾.  12/
 
17 If x > , it is possible to have a maximum loss in one state and a less than maximum loss in another. The proof 
given is not valid in this case as we cannot choose  to create a loss of more than the maximum size. 
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with the negative return. To verify this, note that if some portfolio with xj =   < 0 < h = xi is 
affordable, then the portfolio with the rates of return xj = ( )( )/i j jh p p h p      h, xi = , and 
identical returns in all other states is also affordable and has higher expected utility since it first 
order stochastically dominates the former giving the high ith at least s hig
a probability.

er of the two returns w  a h 

, but that is not the case. When the returns 
on all optimal portfolios are not monotonically related, the set of efficient portfolios need not be 
convex  

 market is not the risk-sharing remedy it is 
under risk-aversion — it does not guarantee a Pareto optimal allocation of risk. Even if Arrow-
Debreu

ious example. Suppose a derivative 
security is created that partitions the second state into two sub-states using exogenous random-
ization 

 
oth 

 
o 

arket economies with 
multiple states. In addition to showing that complete markets are insufficient to guarantee Pareto 
optimal

, a 

18 Therefore, the portfolio with the loss in the better state could not have been 
optimal. This verifies the second part of property (iii). 

This property might seem to be only a curiosity

, and when the efficient set is not convex, the market portfolio need not be efficient.19 This
in turn means that there may be no representative investor who optimally holds the market 
portfolio and whose marginal utility can be used to determine prices — and that is the basis for 
virtually all partial equilibrium models of asset pricing.  

More importantly, with loss aversion, a complete

 securities are available for each state, loss-averse investors can increase their welfare by 
trading new financial securities they create in zero net supply. 

To illustrate consider the two-state economy in the prev

like a coin flip. The sub-states are equally probable and since the randomization is 
exogenous the risk will be unpriced.20 The economy will have  = {0.75, 0.125, 0.125} and p =
{0.8, 0.1, 0.1}. Two TK loss-averse investors with the same utility function as before can b
increase their expected utility from 0.0474 to 0.0913 by swapping 3

32/ of state securities for states
2a and 2b bringing their holdings to 1 5 1

64 32 32{ / , / , / } and 1 1 5
64 32 32{ / , / , / }.  Further dividing state tw

or state one will also increase utility. This example verifies stateme iv). 

This example is quite simple and can easily be extended to many m

nt (

ity under loss aversion, it also further highlights the problem of a representative investor 
equilibrium. In virtually all such models, the representative investor is the “average” investor and 
holds the market portfolio. This example shows that even if all investors are ex ante identical and
fortiori, representative, none of them may be average and hold the market portfolio.21 Therefore, 

                                                 
18 First-order stochastic dominance is, of course, a valid comparison for lose-averse utility since the function is increas-
ing in the return realized. 

ically related. 

eir welfare by agreeing to trade at that price so the original allocation of risk 
de 

sing 

19 See Dybvig and Ross (1982) and Ingersoll (1987) for examples of the nonconvexity of the efficient set when optimal 
portfolios are not monoton
20 Whether or not the risk should remain unpriced in the new equilibrium is irrelevant. Any two investors with the 
assumed utility function could increase th
clearly is not Pareto efficient. This welfare improvement may not be possible if the investors frame the sub-state tra
separately from the portfolio decision so that losses are separately accounted for and not combined. Note also that 
probability weighting will reduce the advantage of such a trade as each investor would tend to overweight the 
probability of his own loss, but the advantage need not be eliminated. 
21 See Barberis and Huang (2008) for a more worked-out example with identical CPT investors optimally choo
different portfolios in an incomplete market. 
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pricing that relies on the marginal properties of the market portfolio, which is assumed to be 
optimal, may not be valid. 

The possibility of using derivative contracts to partition existing states into sub-states leads 
to furth

e 

To illustrate, consider an economy in which some sub-state is partitioned into two sub-
states w as 

er complications as well. In particular even asymptotic risk avoidance is insufficient to 
guarantee the existence of bounded optimal portfolios so the existence of an equilibrium may b
precluded altogether.  

ith probabilities f  and (1  f ) and state prices fp and (1  f)p. Suppose the investor h
TK utility with  > . In a sequence of such economies characterized by f, the investor sells 

bf  additional pure f sub-state securities at price fp and purchases 1 /(1 )bf f  additional pure
state securities at price (1  f)p. For any f, this alteration is affo  the change in 

expected utility from the original unpartitioned economy is 

 1  f 

  (17) 

or any positive value of b < 1/ the first term vanishes as f goes to zero; while for any b >1 the 
a 

Proposition III: If each investor has a (possibly different) finite maximum acceptable loss 
and actu

Proof: Suppose some optimal portfolio has a higher excess return in a state i which is 
worse t  

er 

ptimal 

Now suppose the excess return in some state is a non-maximal loss, x. Partition the state 
into two

sub- rdable, and

1[ ( )] [( ) ( ) ] (1 )([ /(1 )] ]) .b bv x f f x x f x f f x                 E
 
F
second term becomes unbounded. Therefore, expected utility can be increased without bound by 
sufficiently fine partition of the state.22 This leads to a fifth portfolio property. 

arially fair state partitioning is permitted, all optimal loss-averse portfolios will be weakly 
ordered inversely to the price-probability ratio and all losses will be maximal in size. Further, in 
many cases, there will be no small gains below some threshold.  

han state j. Partition the states so that some sub-state of i has the same sub-state price as
some sub-state of j. Since state j is better, the sub-state of the better state j must now have a high
sub-state probability than the sub-state of i. Swapping the returns in these two sub-states is 
affordable and will create a portfolio that first-order stochastically dominates the assumed o
portfolio. Therefore, when partitioning is possible, all optimal portfolio returns must be weakly 
ordered inversely to the price-probability ratio just as they are under universal risk aversion.  

 parts with relative sizes f and 1  f where f = x/x. Creat an otherwise identical portfolio 
with excess returns x and 0 in sub-states f and 1  f. This new portfolio is affordable and because
utility is convex over losses, this state now has a large contribution to expected utility than before 
[fv(x

 

) + (1  f)v(0)] > v(x). So again the original portfolio could not have been optimal. 

The final part this proposition is best illustrated in Figure 2 below. Partitioning the states by 
randomizing essentially convexifies the utility function over its lower domain. Define x+ as the 
excess return where a line through v(x) at x is tangent to the utility function at a positive return. The 
investor would always prefer a fair gamble with payoffs x and x+ to any single payoff in the rang
                                                

e 
 

22 This example does not contradict Proposition I. There the states and their probabilities were fixed. Here we are 
considering creating a sequence of economies where one state’s probability is decreasing to vanish in the limit. 
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(x, x+). T
 

 
 2.25, the minimum positive return is 0.04%. However, for  =  = 0.75, x  = 1.21

and for  =  = 0.5, x+ = 4.5%.23 

 

ions placed on the types of assets permitted. Generally assuming 
markets are incomplete will not be sufficient. For example loss-averse investors would tend to sell 
large qu

 

 this section, to concentrate on the effects of probability weighting, we first consider 
some examples using standard risk-averse utility functions. For a strictly concave utility function, 

                                                

herefore, no rates of return, except the maximum acceptable loss, will be realized below 
the return x+. 

The magnitude of x+ is very sensitive to the exact utility function assumed, but it can be 
significantly positive in an economic sense. For example, for the TK loss-averse utility with  = 
= 0.88 and  = + % 

It is clear that loss aversion can lead to optimal portfolios that are quite different from those
held by risk-averse investors. Indeed, there may be no optimal portfolio at all for loss averse inves-
tors unless there are strong restrict

antities of deep out-of-the-money puts. Before looking at models with restrictions on the 
types of assets, we examine in the next sections the second aspect of CPT — probability weighting.

 

 

VI  The Portfolio Problem under Probability Weighting 

In

 
23 The minimal positive gain is the solution to ( ) ( ) ( ) ( ).v x v x x x v x       
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marginal utility is monotonic and invertible so the optimal portfolio given in equation (10) satisfies 

  1
1( ) .s s s s sx u p


         

If

(18) 

sx  is not equal to either of its neighbors, then s = s1 = 0, and the optimal return is the inverse 
m ps/s. The only difference 
b t rather than the probability is used in 

arginal utility of some multiple of the price-decision-weight ratio 
etween this and the standard result is that the decision weigh

this ratio. If some consecutive states s′, s′ + 1, …, s″ all have the same excess return in the optimal 
portfolio but different excess returns from those in the other states, then s′ through s″1 can be 
positive. In this case,  

 
 

 

1 1

1 1

( ) ( / )

( ) ( / ) .

s s s s s sx u p u p

x u p u p

 
     

 





        

        
 

1s s s s s s     

(19) 

The inequalities follow because the multipliers are nonnegative and marginal utility is decreasing. 
he first-order conditions can therefore be summarized as  


) 

The conditions in the second line of (20) permit the optimal portfolio to allow ties in its outcome 
nkings across states provided the assumed weak ordering is preserved.  

This proposed solution, however, guarantees only an order-constrained optimum. A 

ined from (10) and 
their maximized decision-weighted utilities,

T

 1 1

1 1( / ) * ( / ) for *.

s s s s s s

s s s s su p x u p x x x x

 

 
    

            
 (20

1

1

( / ) for

s s

x u p x x x

 

      

ra

different ordering of xs across states might have higher decision-weighted utility. To solve the 
problem completely, the optimal portfolio for each ordering must be determ

( ) ,u xs s
  can then be compared. The optimal 

portfoli

ies of 20% , 0.3 
ability, and state c is the least 

expensive so the optimal portfolio for a risk-averse expected utility maximizer has its returns 
ordered

 

                                                

o is the constrained portfolio that gives the highest utility.24  

As an example, consider the simple three-state problem presented in Table I. The interest 
rate is zero. States a, b, and c have probabilit , 30% and 50% and state prices of 0.3
and 0.4, respectively. State a is the most expensive state per unit prob

 xa < xb < xc.
25 Suppose, instead, the investor has a TK probability-weighting function as 

given in (7) with a parameter  = 0.7. If we assume his portfolio returns are also ordered xa  xb  
xc, then the decision weights are 25.6%, 20.13% and 54.26%. The optimal order-unconstrained 
portfolio (as determined by (18) with  = 0) is given in the columns labeled “Assumed” in the
middle panel of Table I.  

 
24 As a practical matter the constrained optimal portfolio need not be determined for all orderings. The constraint(s) that 
are binding in any one of the optimization problems will often indicate which orderings to try.  
25 See, for example, chapter 8 of Ingersoll (1987) for a proof that all risk-averse investors with state-independent utility 
and homogeneous beliefs hold portfolios whose returns are identically ordered (and inversely ordered to the price-
probability ratio ps/s) in a complete market. 
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Unfortunately, we see that the order-unconstrained optimal returns are not ordered as 
assumed, but rather xb < xa < xc, and the true decision-weighted utility for this ordering is not 1.
but only 1.037 as comput

065, 
ed with the correct decision weights based on the actual ordering of 

outcomes as shown in the columns labeled “Corrected.” This occurs because under the first 
ordering e 

ted 

ordering x   x   x  be considered. The second panel of Table I shows the calculated optimum 
under th  

lity 

tening of the left tail and the skewing of the right tail is a generic trait of the optimal 
portfolios for investors who employs probability weighting of the type proposed in CPT. Even 
when th

ing in 
at 

e 

portfolio’s return is constant over a range of the low-return states. This is particularly true for 
portfoli

ion 

                                                

, the decision weights overemphasize state a and underemphasize state b relative to th
actual probabilities so the decision-weight ratio, ps/s, does not align with probability ratio, ps/s. 

But the problem does not end with correcting the computation of the decision-weigh
utility. This “optimal” solution was determined using a faulty assumption about the ordering of 
outcomes, but the result indicated that the xa  xb constraint was binding. This suggests that the 

b a c

is assumed ordering. Again the order-unconstrained optimal portfolio does not match the
assumed order — rather it insists on the originally assumed order of xa < xb < xc. Further explor-
ation of all orderings shows that whenever, xa < xb, increasing xa and decreasing xb increases 
decision-weighted utility and vice versa. Consequently, the optimal portfolio under this probabi
weighting must have xa = xb as shown in the final columns in Table I. In addition we see that the 
highest return in state c is larger under probability weighting than under expected utility maximi-
zation. 

While this example was obviously created, it was not chosen to achieve unusual results; 
nor do the results depend on the small number of states or on the existence of a complete market. 
The flat

e conversion of probabilities to decision weights is approximately symmetric in the two 
tails, the effects in the two tails are quire different. The decision weights exceed the true proba-
bilities for both extremes as shown in Figure 1. Since the optimal portfolio’s return is decreas
the ratio ps/s, the portfolio of an investor using probability weighting has higher returns than th
of an expected utility maximizer in both tails where s tends to be greater than s;

26 that is, the 
right tail is longer and the left tail is shorter leading to a right skewing of the optimal portfolio.  

In the right tail, this stretching is the only effect. In the left tail, however, the increased 
return can also alter the outcome ordering which affects the probability weighting as shown in th
example in Table I. As in the example, the left tail will often be completely flattened so that the 

os with many outcomes whose probabilities are similar in magnitude.  

Flattening need not occur only in the left tail as the example in Table II shows. In this 
example, the states are ordered a to d from high to low by their ratios ps/s. However, the decis

 
26 It is possible to construct scenarios where the probability weight for either extreme outcome is less than the associ-
ated probability, and, therefore, the probability-weighted optimal portfolio would have a smaller return than the 
expected-utility maximizing portfolio for the extreme outcome. For example, this would occur in the lower tail for the 
TK weighting function shown in Figure 1 with  = 0.65 if the worst state had a probability in excess of 35.87%. Since 
the best and worst states are likely to be very rare in most applications, right skewing of the optimal portfolio should be 
a generic result. Right skewing will not occur for an inverted-S shaped weighting function only if an extreme outcome 
is very common. And the effect must always be present in at least one of the tails if the cumulative weighting function 
has an inverted S shape with only a single crossing of the 45 line. 
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weights flip the ordering of the middle two states b and c for the ratio ps/s. This alteration would 
require the optimal portfolio to hold x  > x , but this switch in order also alters the decision weights 
and the

 maximizer. It is also possible to 
construct examples in which the optimal decision-weighted portfolio’s returns are not monotonic in 
the ratio

 

 remain higher than the probability. 

 the left 
tail than state c is into the right tail. The decision-weighting function, therefore, emphasizes state b 
relative  state b 

s 

d. 
That is, if there are n states, then n factorial standard portfolio problems would need to be solved 
— one ny 

ler state price. 

                                                

b c

 ratio — changing them back to the order under the true probabilities.27 Therefore, the 
decision-weighted optimal portfolio will hold xa < xb = xc < xd, and the portfolio outcomes have 
been flattened in the middle of the distribution not the left tail.  

In the two examples in Tables I and II, we have seen that the portfolio outcomes are 
monotone decreasing in the price-probability ratio, ps/s; however, they need not be strictly 
decreasing as they are for any strictly risk-averse expected utility

, ps/s, even for a strictly risk-averse investor. 

The inverted S shaped probability weighting function, , increases the importance of both
tails of the distribution; therefore, if the ordering of the portfolio’s returns moves one state’s return 
from the left to the right tail, the decision weight could

In the example illustrated in Table III, state c has a lower ratio, ps/s, than state b. 
Therefore, any risk averse expected utility maximizer would hold a portfolio earning a higher 
return in state c than in state b. However, state b is less likely than state c and is further into

 to state c, and the decision-weight maximizer might wish to increases the return in
to more than in state c. This alters the ordering and affects the decision weights assigned. In thi
case, however, state c has a large probability and state b is transferred just as far into the right tail 
as it was in the left tail so its decision-weight ratio, pb/b, remains high relative to pc/c. Therefore, 
the optimal decision-weighted portfolio has its returns ordered xa < xc < xb < xd which is not 
monotonic in the price-probability ratio, ps/s.

28 This will be true for any risk-averse investor; for 
example, a log utility investor would hold the portfolio x′ = (0.5, 1.0, 1.33, 2.0) using the proba-
bilities, but would hold the portfolio x′ = (0.75, 0.95, 0.87, 2.51) using the decision weights. 

The previous three examples illustrate some of the complications of finding an optimal 
decision-weighted portfolio even for concave utility. In any practical problem the difficulty is 
multiplied immensely as each possible ordering of the state returns might need to be examine

for each of the possible orderings. Proposition IV below shows that we can eliminate ma
of these ordering from consideration. 

Proposition IV: Portfolio Ordering. For any two states that are equally probable, the 
optimal portfolio of a risk-averse or loss-averse investor using decision weights realizes at least as 
high a return in the state with the smal

 
27 Any probability weighting function satisfying  (0.3) = 0.32, (0.5) = 0.51, (0.7) = 0.68 (1) = 1, will create this 
example. These conditions are consistent with the inverted-S shape as shown in Figure 1. Note that states b and c have 
the same probability so the ordering of their outcomes alone determines which decision weight is assigned to which 
state.  
28 We must also check the other permutations to verify that this ordering leads to the highest utility. Using proposition 
IV below, we know that xa  xb  xd so only two additional permutations need be considered. 
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Proof: Consider two states, i and j, with i = j. With no loss of generality take pi > pj. N
assume that the proposition is false and .i j

ow 
x h x     The otherwise identical portfolio 

with ix    and jx h  is affordable since pi > pj. Swappi
, since i = j and t

decision-weight

ng these two returns will change the order 
of the outcomes across states. However he weighting function depends only on 

ortfolio 

 
 

the cum

and we must

ulative probabilities, only the decision weights for states i and j will be affected and they 
will simply be swapped. Therefore, the ed expected utility for the altered p
will be equal to that for the originally assumed optimal portfolio. The altered portfolio costs less by 
( )( ),i jp p h   and this extra can be invested in the risk-free asset increasing the return realized in
every state. Since this will not alter the ordering of the outcomes, the decision weights will remain
the same and this final portfolio will have a higher decision-weighted expected utility than the 
originally assumed optimal portfolio. Therefore, the original portfolio cannot have been optimal, 

e .i j hav x x    

If we add the assumption that all states are equally likely, this result can be strengthened. 
Recall that in a complete market, the returns on the optimal portfolios for all risk-averse expected 
utility maximizers re

 

are orde d identically being strictly decreasing in the price-probability ratio. 
Amongst risk-averse decision-weight maximizers, the optimal portfolios are weakly decreasing in 
a comp

s-averse investor using decision weights will be monotone decreasing in the objective 
price-probability ratio, p/. For risk-averse investors, the returns will be strictly decreasing over 

-averse 

at 

lete market with equally probable states or a complete market with a continuous, atomless 
state space. 

Proposition V: Weak Monotonicity of Decision-Weighted Portfolio Returns. Assume a 
complete market with equally likely states. Then the returns on the optimal portfolio of a risk-
averse or los

ranges where p/ is strictly decreasing and constant over ranges where p/ is increasing or 
constant. 

Proof: Weak monotonicity of the returns follows directly from Proposition IV since all 
states are equally probable. We need only ascertain when the ordering is strict or not for risk
investors. 

Consider a range where p/ is increasing or constant and, contrary to the proposition, th

1.s sx x 
   From the first order conditions in (10), the multiplier s must be zero when the portfolio 

returns differ so using (18)  
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The inequalities follow because the remaining two multipliers are nonnegative and u′1 is a 
ecreasing function. But the monotonicity of u′1 also implies that  

 

d

   1 1
1 1s s s s s su p u p x    x        (22) 

which is a contradiction so 1s sx x  when p/ is increasing or const ant. 
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Now consider a range where p/ is decreasing and, contrary to the proposition, that 

1.s sx x 
 

1. This 
 Suppose the portfolio is altered by earning  less in state s and ps/ps+1 more in state s + 

ghted 
utility by 

) 

/p is increasing. Again this is a contradiction so we must ha

altered portfolio has the same cost as the original, and changes expected decision-wei
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which is positive since ve 1s sx x 
   

when p/ is decreasing. And since the excess returns are ordered, the returns mu
 

be extended to such markets, 
howeve When 

on 

rescaled

/ arger than the actual 
probabi

                                                

st be as well as 
they differ by the zero-utility reference return which is constant.  

We have already seen in Table III that this monotonicity result need not obtain in a 
complete market with states having different probabilities. It can 

r, provided investors can create financial contracts that are fair-value sub-state bets. 
such financial contracts can be created, any state with probability, , and state price, p, can be 
partitioned into two or more sub-states with proportional probabilities and sub-state prices; i.e., 
p′/′ = p/ for all sub-states of the original state. Propositions IV and V can be applied to these 
equally probable sub-states and then extended back to the original states by aggregation.29  

Another case of no little interest is a state space with a continuous probability distributi
with no atoms. For such a distribution, the state index is somewhat arbitrary and can always be 

 so that the density function` is constant.30 Therefore, for continuous-state models, the 
optimal portfolio for any risk-averse investor using decision weights must have returns that are 
weakly decreasing in the price-probability ratio p/ with constant or strictly decreasing returns 
depending on whether p/ is decreasing or weakly increasing. 

Figure 3 below shows a typical example of the three ratios. The ratio p/ is falling (by 
construction). The ratio   is U-shaped because the decision weights are l

lities for the outcomes in both tails. The ratio p/ is the quotient of the two and has an 
inverted U shape. It must be decreasing in the range where / is rising, but is increasing when 
/ is sufficiently steeply declining. The typical case is illustrated with p/ increasing for the 
smallest values of the market’s return. In such an economy the optimal portfolio of a risk-averse 
decision-weight maximizer will have the same return in all low outcome states and will have 
returns increasing with the state, like that of an expected utility maximizer, for higher outcomes. 

 
29 In some cases no equally-probable subdivision of states is possible with a finite number of sub-states; for example 
when any state has an irrational probability. The equally-probable state partitioning must divide any state into m sub-
states each with probability /m and must create in total n sub-states each with probability 1/n. But /m cannot be equal 
to 1/n when  is irrational. Of course, it will always be possible to construct states that are equally likely to any desired 
accuracy. 
30 Let  be any index of the state space, e.g., the return on the market, and let () be its cumulative probability 
distribution. Then define the new state index s  (). This index runs from 0 to 1 and its density is clearly constant 
(s) = 1. In the analysis that follows, the index itself is irrelevant as the portfolio properties only depend on / and 
p/, which are invariant to the choice of the index.  
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Another important implication of Proposition V is that, with complete markets and homo-
geneous objective beliefs, the market portfolio itself will be objectively efficient.31 This means that 
a representative investor exists, and all the strong intuitions that follow from this representation 
will remain available. 

Proposition VI: Objective Efficiency of Market Portfolio under Probability 
Weighting. Assume homogeneous objective beliefs, a complete market with equally likely states 
(or an atomless continuum of states), all investors are risk-averse or loss averse and use strictly 
increasing probability weighting functions over the entire objective distribution, and there is at 
least one risk-averse investor who uses objective probabilities. Then, in equilibrium, the market 
portfolio’s returns will be strictly decreasing in the price-probability ratio and the market portfolio 
will be objectively risk-averse efficient. 

Proof: From proposition V we know that the returns on each investor’s optimal portfolio 
will be weakly ordered inversely to the objective price-probability ratio. Since the market portfolio 

                                                 
31 A portfolio is efficient if it is optimal for some increasing concave utility function. When markets are complete, u′(xs) 
= ps/s so marginal utility is proportional to the price-probability ratio.  Any portfolio with xs decreasing in the state 
price density defines a negative second derivative (or first difference) in the utility function. An increasing, concave 
utility function can then be constructed up to two constants of integration (which represent the arbitrary level and scale 
of the cardinal utility function). See Dybvig and Ross (1982) or Ingersoll (1987) for more detail. 
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is a convex combination of these optimal portfolios, its returns must also be weakly decreasing in 
the ratio. Assume this monotonicity is not strict; that is, assume there are two states with different 
price-probability ratios but equal market returns. The risk-averse investor using objective probabil-
ities does hold a strictly monotone portfolio with a higher return in the better state; therefore, if 
markets are to clear with an equal market return in the two states, some other investor must hold a 
portfolio with a smaller return in the better state. But this contradicts Proposition V. So in equili-
brium, the market portfolio’s returns must be strictly decreasing in the objective price-probability 
ratio and therefore optimal for some strictly risk-averse utility function.32  

Proposition VI remains valid even if the market is apparently incomplete provided inves-
tors are unconstrained in the types of financial contracts they can introduce. If the introduction of 
financial assets is unrestricted but the market remains apparently incomplete, the shadow price of 
any financial asset that have not been created must be the same for all investors. In particular, they 
must agree on the state prices for all states even if all pure state securities cannot be constructed 
from the exiting assets. If pure state financial securities were introduced at these prices, the gross 
demand for them would be zero, and the equilibrium would remain unchanged.33 

Of course even though the market portfolio is objectively efficient, it is not necessarily true 
that the resulting equilibrium will be the same that would arise if all investors used objective 
probabilities. In general the state prices, and therefore the prices of the various assets, will differ. In 
other words, although the market is objectively efficient in both equilibriums, the representative 
investor is different.  

When the market is not complete, then the inverse ordering between optimal portfolios and 
the ratio, p/, need not hold. Of course, that property need not hold amongst investors using the 
true probabilities either. The portfolio problem in an incomplete market can be analyzed as above 
by adding constraints, but little can be said in general.  

VII  Cumulative Prospect Theory and Mutual Fund Separation 

Outside of complete markets, the most commonly analyzed market structure is one in 
which mutual-fund separation holds — in particular the mean-variance model of two-fund separ-
ation. Two-fund separation is of considerable interest in finance because it yields strong predictions 
with sound intuition in a tractable setting. Under two-fund separation,34 the set of optimal portfo-
lios is spanned by the risk-free asset and a single risky portfolio which is perforce the market 
portfolio of risky assets. Two-fund separation ensures that there is a representative investor who 

                                                 
32 Note that the inverse relation need not be strict as it is under homogeneous objective beliefs. It is possible to 
construct examples with loss-averse investors in which states with the same market return have different price-
probability ratios because reducing the return on the portfolio in either state and increasing it in the other will 
unfavorably alter states’ decision weights and decrease expected utility. 
33 The assumption of homogeneous objective beliefs is continued, so we must assume that the introduction of the pure 
state securities does not change some investors’ beliefs. 
34 In the absence of a risk-free asset, two-risky-fund separation can still hold for certain restrictions on utility or 
probability distributions or both; see Cass and Stiglitz (1970) and Ross (1978). Throughout this paper we shall only 
consider two-fund money separation when one of the two mutual funds is the risk-free asset. 
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holds the market portfolio and enables the pricing of all assets based on the first-order conditions 
of the representative investor applied to the market portfolio. Two-fund separation holds in a 
market whenever all investors utility functions are from the linear-risk-tolerance (LRT) class with 
the same cautiousness or all asset distributions come from the separating distributions defined by 
Ross (1978). 

Utility-based two-fund separation will not obtain under CPT. Clearly the S-shaped utility 
functions are not of the LRT class. Nor, will utility-based two-fund separation hold for LRT 
investors who use probability weighting unless investors had identical probability weights. While 
this could be coincidentally true, it would typically only arise if investors had homogeneous objec-
tive beliefs and used the same weighting functions. For example, mean-variance analysis remains 
valid for quadratic utility under probability weighting. All portfolios can be ranked by just knowing 
their mean and variance, but the means and variances required are those computed using decision 
weights. Therefore, investors will have different (decision-weighted) mean-variance efficient 
frontiers if they use different probability weighting functions even if they have homogeneous 
objective beliefs. Their optimal portfolios will no longer be the same except for leverage and the 
CAPM equilibrium will not result. 

Distributional-based separation also does not hold in general with loss aversion or 
probability weighting. Ross (1978) has shown that investors will hold combinations of a single 
risky-asset index portfolio and the risk-free asset if and only if returns are characterized by 
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 (24) 

Under the conditions in (24), all risk-averse investors optimally hold some mixture of the risk-free 
asset and the index portfolio, with return y which has no residual risk. The optimality of these 
mixtures follows immediately by second-order stochastic dominance. These conditions are clearly 
necessary for two-fund separation under CPT,

,α

35 but they are not sufficient.  

A loss averse-investor may not choose the stochastically dominating index portfolio if 
some other portfolio has residual risk that is small and nonzero only when y is sufficiently below 
its mean. In this case, the two portfolios’ gains will have the same risk, but the extra riskiness of the 
losses on the portfolio with residual risk can lead to its preference by loss-averse investors.  

Even if we confine our attention to risk-aversion, (24) is insufficient to guarantee mutual 
fund separation amongst investors who use probability weighting. Suppose rf = 1, y = {1, 2} with 
equal probability, and an asset with b = 1 has   0 when y = 1 and  = 1 with equal probability 
when y = 2. The residual risk  is conditionally mean zero, as required, making the asset more risky 
than the index. Consider a risk-averse investor with a utility function u(w) = w for w > 0 and u(w) = 
3w for w  0 and a probability weighting function that assigns (0.5) = 0.5, (0.75) = 0.70. This 
investor will compute an expected payoff and utility (since all outcomes are positive) of 1.6 for the 

 
35 They are clearly necessary if we allow an identity weighting function and utility that is linear for losses and concave 
for gains (though the residual risk free portfolio might only be weakly preferred). 
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asset. The expected payoff and utility of the index is 1.5. Levering the index down will decrease 
the expected return and utility. Levering the index up will increase its expected return, but also 
decrease its expected utility as the worst outcome moves into the high marginal utility region. So 
this investor’s optimal portfolio is not a levered position in the index, and two-fund separation does 
not hold. 

This example illustrates the added complexity of establishing two-fund separation under 
probability weighting. Recall that two-fund separation requires showing that for any increasing, 
concave utility function and any portfolio in a large class, there exists a portfolio in a smaller class 
(those that have no idiosyncratic risk) that gives at least as high expected utility. Using objective 
probabilities, any portfolio in Ross’ class with a given b has the same expected return as and is 
more risky than the levered position in the index with the same b. Since this specific levered index 
portfolio stochastically dominates all assets with the same b value, we need not consider each 
utility function separately — two-fund separation holds trivially. However, with probability 
weighting, a levered position in the index no longer dominates all other portfolios with the same b 
because the convex portion of an inverted-S-shaped weighting function can increase the subjective 
mean after an objective-mean-preserving spread. Therefore, risk-neutral investors and those 
sufficiently close to risk-neutral will prefer the portfolio that is objectively dominated. This does 
not mean that two-fund separation fails, but it does mean that to verify separation we can no longer 
just compare portfolios with the same value of b. We must potentially compare every portfolio with 
idiosyncratic risk to all levered index positions with the same or higher subjective mean.  

Two related questions immediately arise. Which weighting functions and what restrictions 
on utility do preserve two-fund separation for Ross’ distributions? And can the class of separating 
distributions be further restricted so that mutual fund separation does hold for some or all loss 
averse utility functions and inverse-S weighting functions? In fact we have already mostly 
answered the first questions in our examples. Two-fund separation cannot hold for all of the 
distributions in Ross’ class whenever the utility function has any strictly convex portion since a 
portfolio with residual risk in only that region will be preferred. Similarly any strictly convex 
portion of the probability weighting function will increase the mean of some portfolios with 
residual risk which again removes the dominance of the index. Ross’ two-fund separation theorem 
can remain valid only for risk aversion and concave weighting functions. Proposition VII shows 
that this is sufficient as well. 

Proposition VII: Two-fund Separation with Concave Probability Weighting. If the 
returns on all assets are as described in (24), then optimal portfolios for all risk-averse investors are 
combinations of the risk-free asset and a single portfolio of risky assets if and only if all investors 
have weakly concave probability weighting functions. 

Proof: The necessity of concavity has already been discussed. The proof of sufficiency is 
given in the Appendix which shows that an increasing concave weighting function preserves the 
second-order stochastic dominance of the levered index so two-fund separation holds for all risk-
averse investors.  

Recall that the decision weight density is the product of the probability density and the 
derivative of the weighting function. A concave weighting function has a decreasing derivative so 
it emphasizes the probabilities of the low payoffs relative to those of high payoffs; i.e., [ ] 0  E  so 
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the mean-preserving spread, , adds risk and reduces the expectation. This ensures that objectively 
dominated prospects remain dominated under probability weighting.  

The challenge to two-fund separation under CPT is that some increased risk is liked either 
because utility is locally convex or because it induces an increased subjective mean through 
probability weighting. To maintain two-fund separation, we need to insure that such good risk is 
balanced by bad risk; that is, we need some symmetry in the distributions and weighting function. 

To preserve two-fund separation under an inverse-S weighting functions as utilized in CPT 
rather than just concave weighting functions, we must preclude objective-mean preserving spreads 
that increase the subjective mean. One way to accomplish this is to assume enough symmetry so 
that any mean-increasing alterations in one tail have offsetting mean-reducing alterations in the 
other tail. This requires symmetric distributions and “no better than symmetric” probability 
weighting adjustments.  

Proposition VIII: Two-Fund Separation under Inverse-S Probability Weighting. 
Sufficient conditions for two-fund separation under risk aversion and probability weighting are: (i) 
returns satisfy the Ross conditions for two-fund separation as given in (24); (ii) the distributions 
of y and all asset returns, are symmetric; and (iii) the probability weighting function for the 
cumulative distribution F has the form (F)  ((F)) where () [0,1]  [0,1] is increasing and 
concave below ½ with (1  F) = 1  (F), and () [0,1]  [0,1] is increasing and concave.

,ir

36 

Proof: Let F and G be the cumulative distributions of fr y  and .f ir b y i    Because F 
and G are the distributions of symmetric random variables, the transformations (F) and (G) 
preserve the riskiness ordering as shown in Lemma 3 in the Appendix. Therefore, (G) remains 
riskier than (F) in a Rothschild-Stiglitz sense. Now applying Proposition VII, we see that the 
increasing concave transformation  preserves the second-order stochastic dominance.   

Unfortunately the assumption in Proposition VIII does not apply to the KT weighting 
function for any parameter value nor to many of the other probability weighting functions used in 
CPT. The second derivative of ((F)) is (′)2″ + ″′. Since ″ is assumed to be negative, the 
inflection point in the probability weighting function can only occur when ″ is positive which, by 
assumption, must be for F  ½. However, the inflection point for the KT probability weighting 
function occurs at a probability less than ½ for all values of  and occurs at 1/e for all values of  
for Prelec’s preferred single parameter function ( = 1).37 In fact, using a non-parametric approach 
to determine the “least favored” probability, Wu and Gonzalez (1966) have estimated that the 
inflection point is no higher than 40%. If this is correct, then the probability weighting function 
cannot be represented as required in this proposition. 

Even the assumed symmetry of the distributions in Proposition VIII is insufficient to 
                                                 
36 Assumption (ii) does not require that the distributions of  be symmetric. If the distributions of conditional on 
y y a  and that of   conditional on y y a  are identical, then the asset returns will be symmetric. As noted 

previously in footnote 7, assuming (1  F) = 1  (F) is equivalent to using identical weighting functions for losses 
and gains and requiring (½) = ½. Of course, after the  transformation, they will no longer be identical. 
37 The inflection point for Prelec’s two-parameter function can be at probabilities above ½ for some parameter values; 
e.g.,  = 0.9,  = 0.7. 
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guarantee two-fund separation with loss aversion. The symmetry assures that risk in both the upper 
and lower tails is the same, but to preserve the separation, the bad upper-tail risk has to more than 
offset the good lower-tail risk. Consider a portfolio which has a small amount of residual 
risk which is nonzero only at two isolated points of the index y. By symmetry these two 
points must be at 

2(   0)
y  a.38 Since the portfolio and levered index have the same return except at 

those two points of the index return, the difference between their expected utilities is equal to the 
probability that the index return is y + a (which equals the probability it is y  a by symmetry) 
multiplied by 
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The third line follows from a Taylor expansion and [] = 0. Therefore, to guarantee two-fund 
separation even assuming symmetric distributions that satisfy (24), we also require v″(x1) + v″(x2) 
 0 for the relevant values of x1 and x2. Since the index has a symmetric distribution with a positive 
risk premium, only long positions can be optimal. So the only relevant cases have b (plus rf , ,y and 
a) all positive implying x1 is positive and x2 is less than x1. If both x1 and x2 are positive the 
condition is trivially true. Thus a necessary condition in addition to symmetry for Ross two-fund 
separation to hold is v″(x1) + v″(x2)  0  x2  0  x1. This condition does not hold for any twice-
differentiable increasing utility function with a strictly convex portion.39 
  

The problem of extending two-fund separation to CPT still remains. Solving this problem 
with loss aversion requires an assumption stronger than symmetry. Solving it with probability 
weighting requires that we be able to compare portfolios with different levels of both systematic 
and idiosyncratic risk and not just the latter. We need stronger distributional assumptions that make 
the comparison of all portfolios easy. 

One answer to this problem is mean-variance analysis — the same hypothesis that simpli-
fies portfolio comparison under objective probabilities. Two-fund separation and a resulting CAPM 
equilibrium do hold under probability weighting and in many cases under loss aversion when asset 
returns have a multi-variate elliptical distribution. 

VIII  Mean-Variance Analysis under CPT 

Elliptical distributions were introduced into portfolio analysis by Chamberlain (1983) and 
Owen and Rabinovitch (1983). The distributions get their name from the ellipsoidal shape of their 
isoprobability manifolds. The best-known example of an elliptical distribution is the multivariate 
normal. Elliptical distributions are characterized by a probability density (if it exists) and a 
characteristic function for excess returns x of 

                                                 
38 We may assume y > 0 with no loss of generality since y can equally well serve as the random variable describing 
the index. In any case investors will hold an index with a symmetric distribution in preference to the risk-free asset only 
if it has a positive risk premium. 
39 If v″(x) = c > 0 at some negative x, then v″(x)  c for all positive x. But if the second derivative is bounded away for 
zero, the first derivative cannot remain positive as x increases. 
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whereμ is the vector of means and is the covariance matrix.Θ 40 We assume that  is non-singular 
so there are no risk-free arbitrages available. If there is a risk-free asset, it can be added in the usual 
fashion. The function g can be essentially any nonnegative function for which the density can be 
normalized to unit mass over the relevant domain. For example, the multivariate normal 
has   1/2(2 ) exp( /2).z  ( )g z

The property of elliptical distributions important for portfolio analysis is that all linear 
combinations of elliptical returns have the same distribution apart from location and scale; i.e., g 
and  remain the same.41 In particular, a portfolio investing the fraction of wealth i in each of the 
assets will have a marginal elliptical return with density  1 2( ) /p p pg x 2

p   where p  α μ and 
are the portfolio’s mean and variance. As with the normal distribution any portfolio’s 

return can therefore be expressed as a translated and scaled standardized variable p p p  
where is an elliptical variable of the same type with zero mean, unit variance, and a particular 
cumulative distribution F().  

2
p   α Θα


x    

Proposition IX: Portfolio Separation with Elliptical Distributions under CPT  If the 
returns on all assets are elliptically distributed and investors have homogeneous objective beliefs, 
then all CPT (and risk-averse) investors will hold objectively mean-variance efficient portfolios. 
Provided an equilibrium exists, two-fund separation and the CAPM relation between the objective 
means and covariances will obtain. 

Proof: The usual mean-variance mathematics applies to the objective distribution indepen-
dent of any utility assumptions. The feasible portfolios in mean standard deviation space are 
bounded by a minimum-variance hyperbola with a tangent borrowing-lending line if a risk-free 
asset exists. The set of objective minimum-variance is the same for all investors since they have 
identical objective beliefs. 

The expected decision-weighted utility of a portfolio for any utility function is completely 
determined by the portfolio’s objective mean and standard deviation, the cumulative distribution 
function F (which is the same for all portfolios), and the individual probability weighting function. 
Define the derived objective mean-variance utility function for a particular weighting function, V, 
as  
                                                 
40 Elliptical distribution can be fat-tailed with undefined means or variances, for example the multi-variate Cauchy 
distribution. In this case,  and  are the vector of medians and a general co-dispersion matrix. The discussion below 
remains valid for such elliptical distributions provided, of course, that expected utility is defined. See Chamberlain 
(1983), Owen and Rabinovitch (1983), and Ingersoll (1987) for more details about elliptical distributions and their 
applicability to the mean-variance portfolio problem. If different investors have different zero-utility reference points, 
ˆ,x they will use different mean vectors ; however, the reference level applies equally to all returns including the 

interest rate so it will not differentially affect the risk premia or alter any of the trade-offs discussed. 
41 This can be verified immediately from (26). Using the vector t  t, the characteristic function of the return on any 
portfolioαwith mean, ,p   α μ and variance, 2 ,p   α Θα is 2 2[exp( )] exp( ) ( ).p pit it t    α rE   So all portfolios have 
the same distribution apart from location and scaling. 
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Since v is strictly increasing, V must be strictly increasing in  and every investor likes objective 
mean. Therefore, all investors will hold portfolios on the upper portion of the objective minimum 
variance hyperbola or its tangent borrowing-lending line. In either case the set of optimal portfolios 
is spanned by any two portfolios it includes.42 If every investor’s demand for the tangency 
portfolio is finite, then an equilibrium exists and the market portfolio is on the minimum variance 
frontier or tangency line. In either case, the relevant objective CAPM equilibrium will result as it 
depends only on the mean variance algebra.  

The existence of an equilibrium has been examined by Barberis and Huang (2008) and 
Levy, De Giorgi and Hens (2004). Both papers consider only the multivariate normal case with a 
risk-free asset and use a zero-utility reference return equal to the risk-free rate. The former paper 
constructs an equilibrium assuming identical investors. The latter paper shows that an equilibrium 
does not exist for investors with heterogeneous TK loss aversion functions all with  = . We 
know from Proposition I in this paper that demand will be bounded and hence an equilibrium will 
exist if all CPT investors have a zero-utility reference return less than or equal to the risk-free rate 
and asymptotic risk avoidance ( >  for the TK function). Of course, some investors can be risk 
averse and/or use objective probabilities as well. 

The CAPM equilibrium guaranteed by this proposition need not be the same one that 
would prevail if all investors used objective probabilities and were risk averse. In particular, 
probability weighting will tend to increase the market price of risk as it emphasizes the extreme 
outcomes, and investors will therefore be more reluctant to take on the risk of the market. Loss 
aversion could have either effect on the market price of risk. The makeup on the market portfolio 
itself could also change as a different market price of risk will alter the point of tangency of the 
borrowing-lending line.  

Unfortunately, while elliptical returns might be a reasonable description of the returns on 
the primary assets in an economy, it certainly does not describe the returns on the myriad derivative 
contracts that could be introduced on those primary assets. In fact, if a set of assets has an elliptical 
return, then a vanilla call or put option on any one of them cannot have a return that falls into the 
same elliptical class since one tail of the distribution is eliminated. Fortunately, the CAPM 
equilibrium can still be partially valid even if two-fund separation does not hold.  

                                                 



42 We have not shown, nor is it necessarily true, that variance is disliked by CPT investors. However, this is neither 
necessary nor sufficient to guarantee an equilibrium. What must be true is that the indifference curves in - space be 
convex and sufficiently sloped at high  so that they have a finite tangency with the borrowing-lending line (or mean-
variance hyperbola if there is no risk-free asset). Loss aversion can prevent this tangency; probability weighting, by 
itself, cannot. For a risk-averse utility function, u, the expected utility of a levered position in the tangency portfolio is 

which is a concave function of leverage, b,  

Therefore,  risk-averse investors who use probability weighting will never have 

infinite demand if there is a risk-free asset. Since this is true regardless of the interest rate assumed (provided it is less 
than the rate of return on the global minimum variance portfolio so a tangency exists, the indifference curves must also 
be convex relative to the minimum-variance hyperbola supporting all possible borrowing lending lines. 

[ ( )]pu r E

( )(



  

( ( ) ) ( ( )),f t f tu r b r b d F



       

2) ( ( )) 0.t f tu r d F      

2 2[ ( )] /pu r b E
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Dybvig and Ingersoll (1982) have shown that the linear relation between risk premia and 
beta holds for the set of primary assets described by an elliptical distribution even in the presence 
of non-elliptical derivative contracts provided the market is complete or effectively so. The same 
analysis applies here to the objective moments so only a summary of the reasoning is given. The 
elliptical distributions fall within the class of Ross’ separating distributions so amongst just the 
primary assets any portfolio that is not mean-variance efficient is second-order stochastically 
dominated. From Proposition VI, the market portfolio is objectively risk-averse efficient within a 
broader class so it cannot be stochastically dominated, and it must, therefore, be mean-variance 
efficient within just the primary assets. 

This reasoning does not mean that the CAPM can be used to price derivatives. Only the 
primary (elliptically distributed) assets need have a linear relation between their risk premia and 
market betas. 

IX  Multiperiod CPT and First-Order Stochastic Dominance 

All of our analysis thus far has been in the context of single period models. In this section 
of the paper we address two issues that arise in multi-period problems, probability updating and 
dynamic portfolio allocation. Both of these issues create complications for CPT causing violations 
of first-order stochastic dominance.  

In multi-period models in finance, probabilities of certain events must be updated. This is 
true both in intertemporal portfolio problems and in information models where agents take actions 
after receiving signals. The subproportionality property of probability weighting means that Bayes’ 
Law will not hold in general for decision weights. There might be an alternative rule that applies in 
CPT, but the following simple example illustrates the problem and demonstrates that such a rule 
likely does not exist. The example uses a linear utility function, so the problem illustrated is not 
due to loss aversion or even risk aversion. It also uses only losses and therefore a single weighting 
function so the differential weighting of gains and losses is not an issue nor is the subcertainty of 
the decision weighs summing to less than unity. 

There are four states with losses ranging from 400 to 100 as illustrated in Table IV below. 
The probability weighting function is that proposed by Tversky and Kahneman (7) with a para-
meter of  = 0.833921.43 The expected loss is [x] = 260; while the decision-weighted 
“expected” loss is [x] = 255.88. This latter number may be thought of as the certainty 
equivalent for the gamble, but in this case, the difference between the certainty equivalent and the 
expected value is due not to risk preferences but to the probability weighting. At this point, 
however, there is nothing to distinguish this form of probability weighting from simple 
heterogeneous beliefs. 

Now suppose that the investor receives a binary signal. The signal is the partitioning of the 
states: A = {a, c} or B = {b, d} so that after receiving the signal, the investor knows that only two 
of the four original states remain possible with the original relative likelihoods. The probability of 

                                                 
43 This parameter value equates the two post-signal expected values as shown. For other parameter values a similar 
problem arises, but not so obviously. 
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signal A is 40% (10% + 30%). Once that signal has been observed, the conditional probabilities of 
states a and c are ¼ and ¾, respectively. On the other hand if signal B is observed (with probability 
60%), then only states b and d are possible, and their conditional probabilities are 5

6 and1 . The 
expected values conditional on the signals are [x | A] = 250 and [x | B] = 266 2/3.  

/ 6/

Bayes’ Law relates the conditional objective probabilities of these events. That law does 
not work with the decision weights, but we might hope that some similar rule could be applied. 
Unfortunately, there does not seem to be any way to accomplish this as the table illustrates. 
Applying the weighting function to the conditional probabilities, we see that after observing signal 
A, a|A = 28.03% and c|A = 71.97% while after observing signal B, b|B = 78.03% and d|B = 
21.97%. The conditional (decision-weighted) expected losses, [x | A] = [x | B] = 256.06, are 
equal. Clearly no updating rule like Bayes’ Law that simply weights the conditional expectations 
can lead to any original unconditional expected value other than 256.06. 

An investor who applied this CPT probability weighting myopically would, before the 
receiving the signal, willingly take on this risk rather than face a sure loss of 255.9. But after 
receiving the signal, he would always willingly trade the remaining risk for a sure loss of 256. That 
is, the investor would willingly give up 0.1 for sure while acting myopically in an “optimal” 
fashion.   

Loss aversion has a similar, though probably less severe problem. Suppose the investor’s 
two-period loss-averse utility function is defined as follows44 

  (28) 2
1 2 1 2( , ) ( ) ( )V x x v x v x  

  1 is a discount factor. We assume that v has the same properties as in the single-period 
problem. 

Each period there are S states defined over the assets’ returns. The market is complete and 
the set of states is the same for each period with the same state prices, ps, and state probabilities. 
The investor’s portfolio problem is  

 1 2

2
1 2

,

1 2 1 2

Max ( ) ( )

subject to .
s s

s s s s
x x

s s s s s s

v x v x

p x p x B x x x x

   

   

 
 

 (29) 

Typically, dynamic programming is used to determine the second portfolio conditional on the 
realization in the first period, but for a complete-market problem, both optimal portfolios can be 
determined ab initio. Forming the Lagrangian and maximizing gives 

                                                 
44 For simplicity this example uses loss aversion defined over the percentage gain or loss each period to keep the 
optimal portfolio the same in each period. Similar examples can be constructed for loss aversion defined over the dollar 
gain or loss. Since the example illustrates a problem with loss aversion, probability weighting is ignored.  
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 (30) 

If xts > ,x then the first of these conditions holds as an equality. It is clear by inspection that the 
optimal portfolio will be the same in both periods.45 

As a specific example assume the investor has TK loss aversion with  = 0.8  = 0.9, and  
= 2.25. Each period there are three sates with a = 0.2, b = c = 0.4 and pa = 0.1, pb = 0.3, pc = 0.6. 
The optimal single-period portfolio is x  (1.271, 0.167,0.296). The portfolio returns are inversely 
aligned with the price-probability ratio,  = (0.50, 0.75, 1.5), so we know it is also optimal for 
some risk-averse agent (as well as our loss-averse investor) and therefore is not stochastically 
dominated.  

Table V shows the state-by-state returns of holding this portfolio for two periods. They 
range from a high of 5.160 to a low of 0.496. Note, however, that the total returns are no longer 
ordered inversely to the two-period price-probability ratios. In particular, ac = papc/ac = 0.75 > 
bb =  while the return earned in outcome bb is smaller than that earned for outcomes 
ca and ac. As shown in the table, a two-period portfolio that switched these returns earning 1.363 
in states ac and ca and 1.600 in state bb has the same probability distribution but a lower cost. So 
this second portfolio first-order stochastically dominates the “optimal” portfolio.  

2 2/b bp  9
16/

Prospect Theory was reformulated as CPT to preclude first-order stochastic dominance, but 
these example demonstrate that it remains in a dynamic setting with either probability weighting or 
loss aversion. CPT requires further reformulation if it is to applied in a multiperiod model without 
first-order stochastic dominance. Of course, one might choose to ignore stochastic dominance 
instead, but the assumption that more is preferred to less seems much more basic than CPT. 

                                                 
45 The multipliers will satisfy 2 = 1. 
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Appendix 

 This appendix collects some technical results.  

Lemma 1: Second-order Stochastic Dominance. The following relations are 
equivalent ways to express second order stochastic dominance of the random variable x with 
cumulative distribution F over the random variable y with cumulative distribution G:  
 
 [ ( )] [ ( )] with 0, 0u x u y u u u   E E   (A1a) 

 [ ( ) ( )] 0
T

F t G t dt T


    (A1b) 

 1 1

0
[ ( ) ( )] 0

P
G p F p dp P  .    (A1c) 

 
Proof: It is well known that the first two relations are equivalent. The equivalence of 

relation (A1c) was proved by Levy and Kroll (1979). It can be demonstrated by Figure 1. Both 
the integrals of F(x)  G(x) and give the signed area between the two curves; 
therefore the two integrals up to any crossover point like (Ti, Pi) must be equal. Consider any 
point like P′ where G p  clearly  

1 1( ) ( )G p F p 

1( ),F p1( ) 
 

  (A2) 
1 11 1 1 1

0 0
[ ( ) ( )] [ ( ) ( )] [ ( ) ( )] 0.

i iP P T
G p F p dp G p F p dp F t G t dt

     


       

.

.

 
The inequality follows because the first integral includes an extra portion where the integrand is 
negative. Similarly, consider any point like P″ where  again  1 1( ) ( ),G p F p 
 

  (A3) 
1 11 1 1 1

0 0
[ ( ) ( )] [ ( ) ( )] [ ( ) ( )] 0

i iP P T
G p F p dp G p F p dp F t G t dt

     


      

 
In this case, the first integral excludes a portion where the integrand is positive.  

Proof of Proposition V: The conditions in equation (24) are sufficient for two-fund 
separation with probability weighting if the weighting function, , preserves second-order 
stochastic dominance. As given in (A1b) and (A1c), second-order stochastic dominance will be 
preserved under the probability weighting function, , if and only if 

  (A4) 1 1 1 1

0
[ ( ( )) ( ( ))] 0 or [ ( ( )) ( ( ))] 0

T P
F t G t dt T F p G p dp P   


         

Using the change in variable, p  (q), the second integral in (A4) can be re-expressed as  

  (A5) 
1 ( ) 1 1

0
[ ( ) ( )] ( )

P
F q G q q dq

    
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Now define and  Then integrating 1 1( ) ( ) ( )h q F q G q   0( ) ( ) .
Q

H Q h q dq  (A5) by parts we 

have 
 

 
1 11( ) ( )( )

00 0
( ) ( ) ( ) ( ) ( ) ( ) .

P PP
h q q dq H q q H q q dq

           (A6)  (A6) 

The first term is nonnegative since H(0) = 0 and H and ′ are nonnegative elsewhere. The 
integral is nonpositive as H is nonnegative everywhere and ″ is nonpositive everywhere. 
Therefore the integral in (A5) and equivalently the second in (A4) is nonnegative.  

The first term is nonnegative since H(0) = 0 and H and ′ are nonnegative elsewhere. The 
integral is nonpositive as H is nonnegative everywhere and ″ is nonpositive everywhere. 
Therefore the integral in (A5) and equivalently the second in (A4) is nonnegative.  
  

Lemma 2: Increasing Risk for Variables with Symmetric Distributions and the 
Same Mean. If two random variables x and y with the same mean have symmetric cumulative 
distributions F and G, then y is riskier than x in the sense of Rothschild and Stiglitz if and only if  

Lemma 2: Increasing Risk for Variables with Symmetric Distributions and the 
Same Mean. If two random variables x and y with the same mean have symmetric cumulative 
distributions F and G, then y is riskier than x in the sense of Rothschild and Stiglitz if and only if  

  
1 1 1

20
[ ( ) ( )] 0

P
G p F p dt P  .     (A7)   
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Proof: When x and y have identical means, then being riskier than and being second-
order stochastically dominated are the same. Clearly if (A1c) is valid then (A7) is true as well. 
Conversely, suppose (A7) is valid. Then clearly (A1c) is valid for all P  ½. Consider now some 
P > ½,  

  (A8) 

1 1

0

1 ½1 1 1 1 1 1

0 1 ½

1 1 1

0

[ ( ) ( )]

[ ( ) ( )] [ ( ) ( )] [ ( ) ( )]

[ ( ) ( )] 0 ½.

P

P P

P

P

G p F p dp
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  



     

    



  


 
Since the means are equal, the integral of 1G F 1   from 0 to 1 is zero, and by the symmetry of 
the two distributions, integrals over corresponding ranges on either side of ½ are equal in 
magnitude and opposite in sign. Therefore, the last integrals in the second line cancel. The 
remaining integral is nonpositive by assumption.   
 

Lemma 3: Symmetry Preservation of Increasing Risk. Consider two random 
variables x and y with the same mean and symmetric cumulative distributions F and G with y 
riskier than x in the sense of Rothschild and Stiglitz. Let () be an anti-symmetric probability 
weighting function (i.e, (F) + (1  F) = 1) with  increasing and concave below ½ and 
increasing and convex above ½. Then (G) is riskier than (F). 

 
Proof: The transformation  preserves the symmetry of F and G. So by Lemma 2, (G) 

is riskier than (F) if  
 

 1 1 1 1 1
20

[ ( ( )) ( ( ))] 0 .
P

G p F p dt P          (A9) 

 
Using the change in variable, p  (q), this integral can be re-expressed as  

 
1 ( ) 1 1 1

20
[ ( ) ( )] ( )

P
F q G q q dq P

    .     (A10) 

By the symmetry property 1(½) = ½ so we need evaluate this integral only up to F = G = ½.. 
But in this region  is concave so the integral is nonpositive just like that in (A5).   
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Table I: Optimal Portfolio with Probability Weighting:  

Illustrating Portfolio Skewing 
This table presents a three-state portfolio problem for an investor with a utility function 

( )u x  0.6x who uses a Tversky-Kahneman probability weighting function with para-
meter  = 0.7. The two sections of the table demonstrate that either assumed ordering of 
the state’s returns (a, b, c) or (b, a, c) leads to a contradiction where the first-order 
conditions for the optimal portfolio would have the opposite ordering. Therefore, the 
true optimal portfolio must constrain the outcomes in states a and b to be equal. 

 

Expected-Utility Maximizing Portfolio 

state  p p/ x* u(x)  
a 20% 0.3 1.5 0.328 0.102 
b 30% 0.3 1.0 0.903 0.282 
c 50% 0.4 0.8 1.577 0.657 

 

 [u()] = 1.042    

 

Optimal Decision-Weighted Portfolio 
   Assumed order (a,b,c) Corrected (b,a,c) Constrained 

state  p (a,b,c) x* u(x) (b,a,c) u(x)  x* u(x) 
a 20% 0.3 25.60% 0.575 0.184 12.93% 0.093 
b 30% 0.3 20.13% 0.315 0.101 32.81% 0.164 

45.74% 0.437 0.278 

c 50% 0.4 54.26% 1.832 0.780

  

 54.26% 0.780 54.26% 1.845 0.784 
         “”[u()] = 1.065    [u()] = 1.037              [u()] = 1.062   

 
Assumed order (b,a,c) Corrected (a,b,c)    Constrained 

state  p x*(b,a,c)  u(x) (a,b,c) u(x) x*  u(x) 
b 30% 0.3 32.81% 0.985 0.325 20.13% 0.210 
a 20% 0.3 12.93% 0.096 0.032 25.60% 0.066 

45.74% 0.437 0.278 

c 50% 0.4 54.26% 1.689 0.743 54.26% 0.780 54.26% 1.845 0.784 
    “”[u()] = 1.100    [u()] = 1.006               [u()] = 1.062      
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Table II: Optimal Portfolio with Probability Weighting:  

Illustrating Midrange Flattening 
 

This table presents a four-state problem for an investor with a von-Neumann 
Morgenstern utility function who uses an inverted S shaped probability 
weighting function with the properties:  (0.3) = 0.32, (0.5) = 0.51, (0.7) = 
0.68, (1) = 1. The middle section of the table demonstrates that a portfolio 
whose returns are ordered inversely to the likelihood ratio, p/, will induce a 
probability weighting likelihood ratio, p/, which reverses the order of the 
middle two states, b and c. However, as shown in the last section, a portfolio 
whose returns are ordered inversely to the likelihood ratio, p/, will induce a 
new decision-weighted likelihood ratio, p/, which again switches the order of 
the middle two states. Since both assumed orderings lead to contradictions, the 
true optimal portfolio must constrain the outcomes in states b and c to be equal. 

 
state 

state  p p/ order   p/ 
state

p/′order    

a a a 30% 0.40 1.33 32% 32% 1.250 32% 32% 1.250 
b b c 20% 0.21 1.05 51% 19% 1.105 51% 19% 1.000 
c c b 20% 0.19 0.95 68% 17% 1.118 68% 17% 1.235 
d d d 30% 0.20 0.67 100% 32% 0.625 100% 32% 0.625 
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Table III: Optimal Portfolio with Probability Weighting:  

Illustrating Non-Monotonic Response 
 

This table presents a four-state problem for an investor with a von-Neumann 
Morgenstern utility function who uses an inverted S shaped probability 
weighting function with the properties:  (0.2) = 0.3, (0.4) = 0.5, (0.6) = 
0.56, (0.8) = 0.75, (1) = 1. The middle section of the table demonstrates that 
a portfolio whose returns are ordered inversely to the price-probability ratio, 
p/, will induce a probability weighting ratio, p/, which reverses the order of 
the middle two states, b and c. Furthermore, a portfolio whose returns are order-
ed inversely to the ratio, p/, keeps the same decision-weighted ratio ordering. 
Therefore, the optimal portfolio will have xa < xc < xb < xd which is not 
monotonic in the price-probability ratio p/. 

 

state  p p/ 
state 
order   p/ 

state 
order   p/′ 

a 20% 40% 2.00 a 30% 30% 1.33 a 30% 30% 1.33 
b 20% 20% 1.00 b 50% 20% 1.00 c 56% 26% 1.15 
c 40% 30% 0.55 c 75% 25% 1.20 b 75% 19% 1.05 
d 20% 10% 0.50 d 100% 25% 0.40 d 100% 25% 0.40 
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Table IV: Updating Decision Weights 

 
This table demonstrates the intertemporal inconsistency of the 
updating of the decision weights used in Cumulative Prospect 
Theory. The post-signal “expected value” is independent of the 
signal received, but the pre-signal “expected value” is different. 
The agent forms his decision weights with the Tversky and 
Kahneman formula (7) with a parameter of  = 0.833921. 

 
 

state x  x   x 

     Before receiving signal: 
a 400 10%   40 13.63% 13.63%  54.52 
b 300 50% 150 57.08% 43.45% 130.35 
c 200 30%   60 85.17% 28.09%  56.17 
d 100 10%    10  100% 14.83%  14.83 
  [x] = 260  [x] = 255.88 

 
     After receiving signal A: 

a 400 1/4 100 28.03% 28.03% 112.12 
c 200 3/4  150  100% 71.97%  14.94 
  [x] = 250  [x] = 256.06 

 
     After receiving signal B: 

b 300 5/6 250       78.03% 78.03% 234.09 
d 100 1/6    16.67 100% 21.97%   21.97 
  [x] = 266.67  [x] = 256.06 
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Table V: Dominated Multi-Period Loss-Averse Portfolio 
 

This table demonstrates that an optimal single-period loss-averse portfolio can 
be first-order stochastically dominated over two periods. The loss-averse 
function is v(x1) + v(x2) where v is the TK function with  = 0.8  = 0.9,  = 
2.25. The zero-utility reference point is at an excess return of 0. The economy is 
identical each period and the single-period state probabilities and prices are  = 
(0.2, 0.4, .04), p = (0.1, 0.3, 0.6). The optimal single-period total portfolio 
returns are 1 + x = (2.271, 1.167, 0.704). 

 
   Loss-Averse  Dominating 

state prob price   Portfolio      Portfolio   
  12 p1p2 return cost  Return cost 

a a 4% 1% 5.160 0.052  5.160 0.052 
a b 8% 3% 2.652 0.080  2.652 0.080 
a c 8% 6% 1.600 0.096 1.363 0.082 
b a 8% 3% 2.652 0.080 2.652 0.080 
b b 16% 9% 1.363 0.123 1.600 0.144 
b c 16% 18% 0.822 0.148 0.822 0.148 
c a 8% 6% 1.600 0.096 1.363 0.082 
c b 16% 18% 0.822 0.148 0.822 0.148 
c c 16% 36% 0.496 0.179 

══╗┌───►
  ║│ 
  ╚│╗ 

►───┤╠══
   ╔│╝

  ║│ 
══╝└───►

0.496 0.179 
    1.000   0.993 

 
 


