Have Financial Markets Become More Informative?

Alexi Savov with Jennie Bai and Thomas Philippon

NYU Stern

Research Day 2012

The growth of the financial sector

The role of the financial sector

The allocation of capital

Risk-sharing

Consumption-smoothing

The role of the financial sector

The allocation of capital

Risk-sharing

Consumption-smoothing

Trading volume (annual turnover)

The allocation of capital

Framework 1: Exogenous information (q - theory)

Two firms, A and B:

$$i_{A} - i_{B} = \frac{q_{A} - q_{B}}{\gamma} = \frac{E[z_{A}] - E[z_{B}]}{\gamma(1+r)}$$

- 1 Tobin's q predicts future earnings z
- 2 Investment i is explained by q
- \bigcirc Investment *i* predicts future earnings *z*

Framework 1: Welfare

 Wealth is increasing in the standard deviation of the predictable component of earnings σ_{E[z]}:

$$V \equiv \int_{i} v_{i} = \frac{1}{2\gamma} \left[\left(\frac{\overline{z}}{1+r} - 1 \right)^{2} + \left(\frac{\sigma_{E[z]}}{1+r} \right)^{2} \right]$$

- v_i : value of firm *i* \overline{z} : average earnings
- Information \Rightarrow the option to invest.
- Links price dispersion and welfare.

S&P 500 versus all firms

$$\frac{E_{i,t+3}}{A_{i,t}} = a_t \log\left(\frac{M_{i,t}}{A_{i,t}}\right) \times \mathbf{1}_t + b_t \left(\frac{E_{i,t}}{A_{i,t}}\right) \times \mathbf{1}_t + c_{s(i,t),t} \left(\mathbf{1}_{SIC1}\right) \times (\mathbf{1}_t) + \epsilon_{i,t}$$

Framework 2: Endogenous information (Kyle model)

- What is the link between financial development and the standard deviation of the predictable component?
- What does an increase in firm uncertainty imply about information production?
- What is the right measure of financial sector efficiency?

Regress future earnings on current prices

	σ_s : σ_v :	signal overall	strength volatility	$\sigma_u: \ \psi:$	noise trader dem cost of informati	iand ion	
Linear regressio	n		Exogenou informatio	s n	Endogenous information	$\int_{\sigma_{v}}^{lf}$	
Predicted	l vari	ation	$\frac{1}{\sqrt{2}}\sigma$	s	$rac{1}{\sqrt{2}}\sigma_{\mathbf{v}}-\sqrt{rac{\psi}{2}\left(rac{\sigma_{\mathbf{v}}}{\sigma_{u}} ight)}$	\uparrow	Ŷ
Price dis	persic	on	$\frac{1}{\sqrt{2}}\sigma$	s -	$\frac{1}{\sqrt{2}}\sigma_{\mathbf{v}} - \sqrt{\frac{\psi}{2}\left(\frac{\sigma_{\mathbf{v}}}{\sigma_{u}}\right)}$	\uparrow	\uparrow
R^2			$\frac{1}{2}\left(\frac{\sigma_{s}}{\sigma_{v}}\right)$	2	$rac{1}{2}\left(1-\sqrt{rac{\psi}{\sigma_{v}\sigma_{u}}} ight)^{2}$	\uparrow	\uparrow
Info expe	enditu	ıre	N//	4	$\sqrt{\psi\sigma_{v}\sigma_{u}}-\psi$	\uparrow	↑↓

S&P 500 firms: Forecasting earnings with equity prices

$$\frac{E_{i,t+3}}{A_{i,t}} = a_t \log\left(\frac{M_{i,t}}{A_{i,t}}\right) \times \mathbf{1}_t + b_t \left(\frac{E_{i,t}}{A_{i,t}}\right) \times \mathbf{1}_t + c_{s(i,t),t} \left(\mathbf{1}_{SIC1}\right) \times \left(\mathbf{1}_t\right) + \epsilon_{i,t}$$

0.0

0.00

2000 2010

0.03

0.00

1970 1980

NYU Stern

1980 1990

2000 2010

1990 2000 2010

S&P 500 firms: Forecasting earnings with bond spreads

$$\frac{E_{i,t+3}}{A_{i,t}} = a_t \log \left(y_{i,t} - y_{0,t}\right) \times \mathbf{1}_t + b_t \left(\frac{E_{i,t}}{A_{i,t}}\right) \times \mathbf{1}_t + c_{s(i,t),t} \left(\mathbf{1}_{SIC1}\right) \times \left(\mathbf{1}_t\right) + \epsilon_{i,t}.$$

S&P 500 firms: Forecasting R&D with equity prices

$$\frac{R\&D_{i,t+k}}{A_{i,t}} = a_t \log\left(\frac{M_{i,t}}{A_{i,t}}\right) \times \mathbf{1}_t + b_t \left(\frac{R\&D_{i,t}}{A_{i,t}}\right) \times \mathbf{1}_t + c_t \left(\frac{E_{i,t}}{A_{i,t}}\right) \times \mathbf{1}_t + d_{s(i,t),t} \left(\mathbf{1}_{SlC1}\right) \times (\mathbf{1}_t) + \epsilon_{i,t}.$$

Coefficients, at

Predicted variation, $a_t \times \sigma_t (\log M/A)$

Financial sector efficiency

- Based on our model, back out the cost of information ψ assuming constant noise trader demand.

Conclusion

- The finance industry has grown.
- We find little evidence of increased predictability.

Dispersion

R&D/A

