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Flow Toxicity and Liquidity in a High Frequency World 

 
ABSTRACT 

 
Order flow is toxic when it adversely selects market makers, who may be unaware they are 
providing liquidity at a loss. We present a new procedure to estimate flow toxicity based on 
volume imbalance and trade intensity (the VPIN toxicity metric). VPIN is updated in volume-
time, making it applicable to the high frequency world, and it does not require the intermediate 
estimation of non-observable parameters or the application of numerical methods. It does require 
trades classified as buys or sells, and we develop a new bulk volume classification procedure that 
we argue is more useful in high frequency markets than standard classification procedures. We 
show that the VPIN metric is a useful indicator of short-term, toxicity-induced volatility. 
 
Keywords: Flash crash, liquidity, flow toxicity, volume imbalance, market microstructure, 
probability of informed trading, VPIN. 
 
JEL codes: C02, D52, D53, G14. 
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Flow Toxicity and Liquidity in a High Frequency World 
 

 

High frequency (HF) trading firms represent approximately 2% of the nearly 20,000 

trading firms operating in the U.S. markets, but since 2009 they have accounted for over 70% of 

the volume in U.S. equity markets and are fast approaching 50% of the volume in futures 

markets (Iati [2009], CFTC [2010]). These HF firms typically act as market makers, providing 

liquidity to position-takers by placing passive orders at various levels of the electronic order 

book. A passive order is defined as an order that does not cross the market, thus the originator 

has no direct control on the timing of its execution. HF market makers generally do not make 

directional bets, but rather strive to earn tiny margins on large numbers of trades. Their ability to 

do so depends on limiting their position risk, which is greatly affected by their ability to control 

adverse selection in the execution of their passive orders. 

Practitioners usually refer to adverse selection as the “natural tendency for passive 

orders to fill quickly when they should fill slowly and fill slowly (or not at all) when they should 

fill quickly” (Jeria and Sofianos [2008]). This intuitive formulation is consistent with market 

microstructure models (see Glosten and Milgrom [1985], Kyle [1985], and Easley and O’Hara 

[1987, 1992]), in which informed traders take advantage of uninformed traders. Order flow is 

regarded as toxic when it adversely selects market makers who may be unaware that they are 

providing liquidity at a loss.  

This paper develops a new framework for measuring order flow toxicity in a high 

frequency world. A fundamental insight of the microstructure literature is that the order arrival 

process is informative for subsequent price moves in general, and flow’s toxicity in particular. 

Extracting this information from order flow, however, is complicated by the very nature of 
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trading in high frequency markets. We argue that in the high frequency world, trade-time, as 

captured by volume, is a more relevant metric than clock-time. Information is also different, 

relating now to an underlying event that induces unbalanced or accelerated trade over a relatively 

short horizon. Information events can arise for a variety of reasons, some related to asset returns, 

but others reflecting more systemic or portfolio-based effects. Our particular application is to 

futures contracts, where information is more likely to be related to systemic factors, or to 

variables reflecting hedging or other portfolio considerations. 

We present a new procedure to estimate flow toxicity directly and analytically, based on 

a process subordinated to volume arrival, which we name Volume-Synchronized Probability of 

Informed Trading, or the VPIN flow toxicity metric. The original PIN estimation approach (see 

Easley, Kiefer, O’Hara and Paperman [1996]) entailed maximum likelihood estimation of 

unobservable parameters fitted on a mixture of three Poisson distributions of daily buys and sells 

on stocks. That static approach was extended by the Easley, Engle, O’Hara and Wu [2008] 

GARCH specification, which models a time-varying arrival rate of informed and uninformed 

traders. The approached based on the VPIN toxicity metric developed in this paper does not 

require the intermediate numerical estimation of non-observable parameters, and is updated in 

stochastic time which is calibrated to have an equal volume of trade in each time interval. Thus, 

our methodology overcomes the difficulties of estimating PIN models in highly active markets 

and provides an analytically tractable way to measure the toxicity of order flow using high 

frequency data. 

We provide empirical evidence on the statistical properties of the VPIN metric. We show 

how volume bucketing (time intervals selected so that each has an equal volume of trade) 

reduces the impact of volatility clustering in the sample.1 Because large price moves are 
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associated with large volumes, sampling by volume is a proxy for sampling by volatility.2 The 

resulting time series of observations follows a distribution that is closer to normal and is less 

heteroskedastic than it would be if it were sampled uniformly in clock-time.  

We illustrate the usefulness of the VPIN metric by estimating it for the E-mini S&P 500 

futures (CME) and the WTI crude oil futures contract (NYMEX). We also demonstrate that 

VPIN has important linkages with future price variability.  Because toxicity is harmful to 

liquidity providers, high levels of VPIN should presage high volatility.  We show that VPIN 

predicts short-term toxicity-induced volatility, particularly as it relates to large price moves. 

An incidental contribution of this paper is a new approach for classifying buy and sell 

volume.  The speed and volume of trading in high frequency markets challenges traditional 

classification schemes for assigning trade direction.  We propose a new “bulk volume” 

classification algorithm in which we aggregate trades over short time or volume intervals 

(respectively denoted time bars and volume bars) and then use the standardized price change 

between the beginning and end of the interval to approximate the percentage of buy and sell 

volume.  We believe this new approach will be useful for a wide variety of applications in high 

frequency markets. 

Estimates of the toxicity of order flow have a number of immediate applications. Market 

makers, for example, can use the VPIN metric as a real-time risk management tool. In other 

research (see Easley, López de Prado, and O’Hara [2011a]), we presented evidence that order 

flow as captured by the VPIN metric was becoming increasingly toxic in the hours before the 

May 6th 2010 ‘flash crash’, and that this toxicity contributed to the withdrawal of many liquidity 

providers from the market.3 Tracking the VPIN metric would allow market makers to control 

their risk and potentially remain active in volatile markets. Regulators and exchanges could use 
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the VPIN metric to monitor the conditions under which liquidity is provided, and pro-actively 

restrict trading or impose market controls if conditions deteriorate to the point that liquidity 

provision is threatened.4 In a high frequency world, effective regulation needs to be done on an 

ex-ante basis, anticipating problems before, and not after, they lead to market breakdowns. 

Monitoring VPIN metric levels can signal when liquidity provision is at risk and allow for 

market halts, slowdowns or other regulatory actions to forestall crashes. Furthermore, this will 

limit the success of predatory algorithms that attempt to profit from a failure of the liquidity 

provision process. Traders can also use measures based on the VPIN metric in designing 

algorithms to control execution risks. Microstructure models have long noted (see, for example, 

Admati and Pfleiderer [1988]) that intra-day seasonalities can reflect the varying participation 

rates of informed and uninformed traders. Designing algorithms to delay or accelerate trading 

depending on the VPIN metric may reduce the so- called implementation shortfall. 

Our analysis of order toxicity and its effects in high frequency markets is related to a 

growing body of recent research looking at high frequency trading in a multiplicity of markets. 

Hendershott and Riordan [2009] present evidence on HF trading on the Deutsche Borse; 

Brodegaard [2010] and Hasbrouck and Saar [2010] analyze the role and strategies of high 

frequency traders in U.S. equity markets. Kirilenko, Kyle, Samadi and Tuzun [2010] extensively 

characterize the behavior of HF traders and other market participants in the S&P 500 futures 

market. There is also a developing literature looking at the more normative effects of 

computerized or HF trading on liquidity. Hendershott, Jones and Menkveld [2011] study the 

empirical relationship between algorithmic trading and liquidity, finding that algorithmic trading 

improves liquidity for large stocks. Chaboud, Chiquoine, Hjalmarsson, and Vega [2009] provide 

a similar analysis of the effects of computerized trading in foreign exchange. These analyses 
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complement recent theoretical research looking at the relation between liquidity and market 

fragility (see Brunnermeir and Pedersen [2009] and Huang and Wang [2011]). 

Methodologically, this paper is related to research by Engle and Lange [2001] and 

Deuskar and Johnson [2011]. Engle and Lange proposed a market depth measure, VNET, which 

is calculated using order imbalance measured over price change increments.  Our analysis is 

calculated over volume increments (or buckets), but both their analysis and ours depart from 

standard time-based approaches to analyze the effects of asymmetric information in dynamic 

market environments. Deuskar and Johnson also analyze order flow imbalance in futures 

markets. These authors estimate the flow-driven component of systematic risk and its dynamic 

properties. Our focus is not on asset pricing issues, but their finding that flow-driven risk 

accounts for over half of the risk in the market portfolio underscores our argument that order 

flow imbalance (a source of toxicity) has important effects on market behaviour and 

performance. 

This paper is organized as follows. Section 1 discusses the theoretical framework and 

shows how PIN impacts the bid-ask spread. Section 2 presents our procedure for estimating the 

VPIN metric. Section 3 evaluates the robustness of the VPIN metric. Section 4 provides 

estimates of the VPIN metric for equity indices and oil futures. Section 5 discusses predictive 

properties of the VPIN metric for volatility. Section 6 summarizes our findings. Technical 

Appendices (available on the RFS web site) present the pseudocode for computing the VPIN 

toxicity metric, and its Monte Carlo accuracy.  
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1.  THE MODEL 

In this section we describe the basic model that allows us to infer the toxicity of order 

flow. We begin with a standard microstructure model in which we derive our measure of flow 

toxicity, PIN, and we then show how to modify PIN to apply it to high frequency markets. 

Readers conversant with the standard PIN approach can proceed directly to Section 2. 

In a series of papers, Easley et. al. demonstrate how a microstructure model can be 

estimated for individual stocks using trade data to determine the probability of information-based 

trading, PIN. This microstructure model views trading as a game between liquidity providers and 

traders (position takers) that is repeated over trading periods i=1,…,I. At the beginning of each 

period, nature chooses whether an information event occurs. These events occur independently 

with probability α. If the information is good news, then informed traders know that by the end 

of the trading period the asset will be worthSi; and, if the information is bad news, that it will be 

worth Si, with i iS S> . Good news occurs with probability (1-δ) and bad news occurs with the 

remaining probability, δ. After an information event occurs or does not occur, trading for the 

period begins with traders arriving according to Poisson processes throughout the trading period. 

During periods with an information event, orders from informed traders arrive at rate µ. These 

informed traders buy if they have seen good news, and sell if they have seen bad news. Every 

period, orders from uninformed buyers and uninformed sellers each arrive at rate ε.5 

The structural model relates observable market outcomes (i.e. buys and sells) to the 

unobservable information and order processes that underlie trading. The previous literature 

focuses on estimating the parameters determining these processes via maximum likelihood. 

Intuitively, the model interprets the normal level of buys and sells in a stock as uninformed trade, 

and it uses that data to identify the rate of uninformed order flow, ε. Abnormal buy or sell 
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volume is interpreted as information-based trade, and it is used to identify µ. The number of 

periods in which there is abnormal buy or sell volume is used to identify α and δ.  

A liquidity provider uses his knowledge of these parameters to determine the price at 

which he is willing to go long, the Bid, and the price at which he is willing to go short, the Ask. 

These prices differ, and so there is a Bid-Ask Spread, because the liquidity provider does not 

know whether the counterparty to his trade is informed or not. This spread is the difference in the 

expected value of the asset conditional on someone buying from the liquidity provider and the 

expected value of the asset conditional on someone selling to the liquidity provider. These 

conditional expectations differ because of the adverse selection problem induced by the possible 

presence of better informed traders.  

As trade progresses, liquidity providers observe trades and are modeled as if they use 

Bayes rule to update their beliefs about the toxicity of the order flow, which in our model is 

described by the parameter estimates. Let P(t) = (Pn(t), Pb(t), Pg(t)) be a liquidity provider’s 

belief about the events “no news” (n), “bad news” (b), and “good news” (g) at time t. His belief 

at time 0 is P(0) = (1-α, αδ, α(1-δ)).  

To determine the Bid or Ask at time t, the liquidity provider updates his beliefs 

conditional on the arrival of an order of the relevant type. The time t expected value of the asset, 

conditional on the history of trade prior to time t, is 

 𝐸[𝑆𝑖|𝑡�] = 𝑃𝑛(𝑡)𝑆𝑖∗ + 𝑃𝑏(𝑡)𝑆𝑖 + 𝑃𝑔(𝑡)𝑆𝑖 (1) 
 

where 𝑆𝑖∗ = 𝛿𝑆𝑖 + (1 − 𝛿)𝑆𝑖 is the prior expected value of the asset. 

The Bid is the expected value of the asset conditional on someone wanting to sell the 

asset to a liquidity provider. So it is  
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 𝐵(𝑡) = 𝐸[𝑆𝑖|𝑡�] −
𝜇𝑃𝑏(𝑡)

𝜀 + 𝜇𝑃𝑏(𝑡)
�𝐸[𝑆𝑖|𝑡�] − 𝑆𝑖�

 

(2) 
 

Similarly, the Ask is the expected value of the asset conditional on someone wanting to 

buy the asset from a liquidity provider. So it is 

 𝐴(𝑡) = 𝐸[𝑆𝑖|𝑡�] +
𝜇𝑃𝑔(𝑡)

𝜀 + 𝜇𝑃𝑔(𝑡)
�𝑆𝑖 − 𝐸[𝑆𝑖|𝑡�]� 

(3) 
 

These equations demonstrate the explicit role played by arrivals of informed and 

uninformed traders in affecting quotes. If there are no informed traders (µ = 0), then trade carries 

no information, and so the Bid and Ask are both equal to the prior expected value of the asset. 

Alternatively, if there are no uninformed traders (ε=0), then the Bid and Ask are at the minimum 

and maximum prices, respectively. At these prices no informed traders will trade either, and the 

market, in effect, shuts down. Generally, both informed and uninformed traders will be in the 

market, and so the Bid is less than 𝐸[𝑆𝑖|𝑡�] and the Ask is greater than𝐸[𝑆𝑖|𝑡�]. 

The Bid-Ask Spread at time t is denoted by Σ(t) = A(t) – B(t). This spread is 

 Σ(𝑡) =
𝜇𝑃𝑔(𝑡)

𝜀 + 𝜇𝑃𝑔(𝑡)
�𝑆𝑖 − 𝐸[𝑆𝑖|𝑡�]� +

𝜇𝑃𝑏(𝑡)
𝜀 + 𝜇𝑃𝑏(𝑡)

�𝐸[𝑆𝑖|𝑡�] − 𝑆𝑖� 
(4) 

 

The first term in the spread equation is the probability that a buy is an information-based 

trade times the expected loss to an informed buyer, and the second is a symmetric term for sells. 

The spread for the initial quotes in the period, Σ, has a particularly simple form in the natural 

case in which good and bad events are equally likely. That is, if δ = 1-δ then  

 Σ =
𝛼𝜇

𝛼𝜇 + 2𝜀
�𝑆𝑖 − 𝑆𝑖� 

(5) 
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The key component of this model is the probability that an order is from an informed 

trader, which is called PIN. It is straightforward to show that the probability that the opening 

trade in a period is information-based is given by 

 𝑃𝐼𝑁 =
𝛼𝜇

𝛼𝜇 + 2𝜀 
(6) 

 

where αµ + 2ε is the arrival rate for all orders and αµ is the arrival rate for information-based 

orders. PIN is thus a measure of the fraction of orders that arise from informed traders relative to 

the overall order flow, and the spread equation shows that it is the key determinant of spreads. 

These equations illustrate the idea that liquidity providers need to correctly estimate PIN 

in order to identify the optimal levels at which to enter the market. An unanticipated increase in 

PIN will result in losses to those liquidity providers who don’t adjust their prices. 

 

2.  THE VPIN METRIC AND THE ESTIMATION OF PARAMETERS 

The standard approach to computing the PIN model uses maximum likelihood to estimate 

the unobservable parameters (𝛼, 𝜇, 𝛿, 𝜀) driving the stochastic process of trades and then derives 

PIN from these parameter estimates. In this section, we propose a direct analytic estimation of 

toxicity that does not require intermediate numerical estimation of non-observable parameters. 

We update our measure in volume-time in an attempt to match the speed of arrival of new 

information to the marketplace. This volume-based approach, which we term VPIN, provides a 

simple metric for measuring order toxicity in a high frequency environment.  First, we begin 

with a discussion of the role of information and time in high frequency trading. 
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2.1.  The Nature of Information and Time 

Information in the standard sequential trade model is generally viewed as data that is 

informative about the future value of the asset.  In an equity market setting it is natural to view 

information as being about future events such as the prospects of the company or the market for 

its products.  In an efficient market, the value of the asset should converge to its full information 

value as informed traders seek to profit on their information by trading.  Because market makers 

can be long or short the stock, future movements in the value of the asset affect their profitability 

and so they attempt to infer any underlying new information from the patterns of trade.  It is their 

updated beliefs that are impounded into their bid and ask prices. 

In a high frequency world, market makers face the same basic problem, although the 

horizon under which they operate changes things in interesting ways.  A high frequency market 

maker who anticipates holding the stock for minutes is affected by information that influences its 

value over that interval.  This information may be related to underlying asset fundamentals, but it 

may also reflect factors related to the nature of trading in the overall market or to the specifics of 

liquidity demand over a particular interval.  For example, in a futures contract, information that 

induces increased hedging demand for a contract will generally influence the futures price, and 

so is relevant for a market maker.  This broader definition of information means that information 

events may occur frequently during the day, and they may have varying importance for the 

magnitude of future price movements.  Nonetheless, their existence is still signaled by the nature 

and timing of trades. 

The most important aspect of high frequency modeling is that trades are not equally 

spaced in terms of time.6 Trades arrive at irregular frequency, and some trades are more 

important than others as they reveal differing amounts of information. For example, as Figure 1 
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shows, trading in E-mini S&P 500 futures (the blue curve and scale on the left side of the graph) 

and EUR/USD futures (the red curve and scale on the right side of the graph) exhibit a different 

intraday seasonality. The arrival of new information to the marketplace triggers waves of 

decisions that translate into volume bursts. Information relevant to different products arrives at 

different times, thus generating distinct intraday volume seasonalities. 

[FIGURE 1 HERE] 

In this study, rather than modeling clock-time, we work in volume-time. Easley and 

O’Hara [1992] developed the idea that the time between trades was correlated with the existence 

of new information, providing our basis for looking at trade time instead of clock time.7  It seems 

reasonable that the more relevant a piece of news is, the more volume it attracts. By drawing a 

sample every occasion the market exchanges a constant amount of volume, we attempt to mimic 

the arrival to the market of news of comparable relevance. If a particular piece of news generates 

twice as much volume as another piece of news, we will draw twice as many observations, thus 

doubling its weight in the sample.  

 

2.2.  Volume Bucketing 

In the example above, if we draw one E-mini S&P 500 futures sample every 200,000 

traded contracts, we will draw on average about 9 samples per day. On very active days, we draw 

a large multiple of 9, while inactive days contribute fewer data points. Since the EUR/USD 

futures contract trades about 1/10 of E-mini S&P 500 futures’ daily volume on average, targeting 

9 draws per day will require reducing the volume-distance between two observations to about 

20,000 contracts. Because of their differing intra-day patterns of trade, by the time we draw our 
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first E-mini S&P 500 futures observation of the day, we are about to draw our fourth observation 

of the day for the EUR/USD futures. 

To implement this volume dependent sampling, we group sequential trades into equal 

volume buckets of an exogenously defined size V. A volume bucket is a collection of trades with 

total volume V. If the last trade needed to complete a bucket is for a size greater than required, 

the excess size is given to the next bucket. We let τ=1,…,n be the index of equal volume buckets. 

A detailed algorithm for this volume packaging process is presented in the Appendix. Sampling 

by volume buckets allows us to divide the trading session into periods of comparable information 

content over which trade imbalances have a meaningful economic impact on the liquidity 

providers. 

 

2.3.  Buy Volume and Sell Volume Classification 

An issue we have not yet addressed is how to distinguish buy volume and sell volume.8 

Recall that signed volume is necessary because of its potential correlation with order toxicity. 

While the overall level of volume signals the possible presence of new information, the direction 

of the volume signals its implications for the direction of price changes. Thus, a preponderance 

of buy (sell) volume would suggest toxicity arising from the presence of good (bad) news. 

Microstructure research has relied on tick-based algorithms to sign trades. Trade 

classification, however, has always been problematic.  One problem is that reporting conventions 

in markets could treat orders differently depending upon whether they were buys or sells. The 

NYSE, for example, would report only one trade if a large sell block crossed against multiple 

buy orders on the book, but would report multiple trades if it were a large buy block crossing 

against multiple sell orders. Similarly, splitting large orders into multiple small orders meant that 
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trades occurring in short intervals were not in fact independent observations. Aggregating trades 

on the same side of the market over short intervals into a single observation was the convention 

empirical researchers used to deal with these problems.  

A second difficulty is that signing trades also requires relating the trade price to the 

prevailing quote. Traders taking the market maker’s bid (ask) were presumed to be sellers 

(buyers), and trades falling in between were signed using a tick-based algorithm. The Lee-Ready 

[1991] algorithm also suggested using a 5 second delay between the reported quote and trade 

price to reflect the fact that the mechanism reporting quotes to the tape was not the same as the 

trade-reporting mechanism. Even in the simpler world of specialist trading, trade classification 

errors were substantial. 

In a high frequency setting, trade classification is much more difficult. In the futures 

markets we investigate, there is no specialist, and liquidity arises from an electronic order book 

containing limit orders placed by a variety of traders. In this electronic market, a trader could hit 

the book at the same level as the last trade or could submit a limit order that improves the last 

traded price, and the tick rule can assign the wrong side to the trade.9 Additionally, order 

splitting is the norm, cancellations of quotes and orders are rampant, and the sheer volume of 

trades is overwhelming.10 Using E-mini S&P 500 futures data from May 2010, we found that an 

average day featured 2,650,391 quote changes due to order additions or cancellations, and 

789,676 quote changes due to trades. Because the Best-Bid-or-Offer (BBO) changes several 

times between trades, many contracts exchanged at the same price in fact occurred against the 

bid and the offer. In this high frequency world, applying standard algorithms over individual 

transactions is problematic. 
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In our analysis, we aggregate trades over short intervals and then use the standardized 

price change between the beginning and end of the interval to determine the percentage of buy 

and sell volume.11 Aggregation mitigates the effects of order splitting, and using the standardized 

price change allows volume classification in probabilistic terms (which we call bulk 

classification). In this particular paper, we calculate buy and sell volumes (𝑉𝜏𝐵 and 𝑉𝜏𝑆) using 

one-minute time bars (we show later that our analysis works equally well with other time 

aggregations), but the analysis can also be done using volume bars.12 Let 

 
𝑉𝜏𝐵 = � 𝑉𝑖 ∙ 𝑍 �

𝑃𝑖 − 𝑃𝑖−1
𝜎∆𝑃

�
𝑡(𝜏)

𝑖=𝑡(𝜏−1)+1

 

𝑉𝜏𝑆 = � 𝑉𝑖 ∙ �1 − 𝑍 �
𝑃𝑖 − 𝑃𝑖−1
𝜎∆𝑃

��
𝑡(𝜏)

𝑖=𝑡(𝜏−1)+1

= 𝑉 − 𝑉𝜏𝐵
 

(7) 
 

where 𝑡(𝜏) is the index of the last time bar included in the τ volume bucket, Z is the CDF of the 

standard normal distribution and 𝜎∆𝑃 is the estimate of the standard derivation of price changes 

between time bars. Our procedure splits the volume in a time bar equally between buy and sell 

volume if there is no price change from the beginning to the end of the time bar. Alternatively, if 

the price increases, the volume is weighted more toward buys than sells and the weighting 

depends on how large the price change is relative to the distribution of price changes. 

A key difference between bulk classification and the Lee-Ready algorithm is that the 

latter signs volume as either buy or sell, whilst the former signs a fraction of the volume as buys 

and the remainder as sells.13 In other words, the Lee-Ready algorithm provides a discrete 

classification, while the bulk algorithm is continuous. This means that even in the extreme case 

that a single time bar fills a volume bucket, volume may still be perfectly balanced according to 

bulk classification (contingent on 𝑃𝑖−𝑃𝑖−1
𝜎∆𝑃

). 
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Our primary use of volume is to compute order imbalance. Let 𝑂𝐼𝜏 = |𝑉𝜏𝐵 − 𝑉𝜏𝑆| be the 

order imbalance in volume bucket τ. Our measure is, of course, an approximation to actual order 

imbalance as it is based on our probabilistic volume classification. We first ask how 𝐸[𝑂𝐼𝜏] 

relates to the rate of trading by showing that it is unaffected by a simple rescaling of trading. 

Suppose that each time bar’s volume is rescaled by a factor of 𝛽 > 0, 𝑉𝑖∗ = 𝛽𝑉𝑖, and that volume 

imbalance is homogeneously distributed within the bucket.14 Then the expected number of time 

bars required to fill a bucket will be inversely proportional to 𝛽, 𝑡(𝜏)−𝑡(𝜏−1)
𝛽

. From Eq. (7), this 

leaves the expected order imbalance, 𝐸[𝑂𝐼𝜏], unaltered, 

 𝐸[𝑂𝐼𝜏∗] = 𝐸[|𝑉𝜏∗𝐵 − 𝑉𝜏∗𝑆|] =
1
𝛽
𝐸[|𝛽𝑉𝜏𝐵 − 𝛽𝑉𝜏𝑆|] = 𝐸[𝑂𝐼𝜏] 

(8) 
 

Second, we ask whether, within reasonable bounds, the amount of time contained in a 

time bar effects our measure of order imbalance? To determine this, we computed order 

imbalance for the E-mini S&P 500, for the period January 1,  2008 to August 1,  2011, using 

time bars ranging from 1 to 240 minutes per time bar. For each specification of a time bar we use 

50 volume buckets per day and compute the ratio of order imbalance to the bucket size as 

measured by the volume in each bucket. We found that the ratio of order imbalance to bucket 

size (as a function of the average number of time bars per bucket) increases gradually as the 

number of time bars per bucket declines, never approaching one and eventually levels off as we 

use (unreasonable) long  time bars.15  Thus, for time bars of reasonable length the amount of 

time in a time bar is of little consequence in measuring the order imbalance. 

This methodology will misclassify some volume. Our goal is not to classify correctly 

each individual trade (a hopeless exercise in any case), but rather to develop an indicator of 

overall trade imbalance that is useful for creating a measure of toxicity. We use time bars to 
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allow time for the market price to adjust to the trade direction information that we attempt to 

recover through bulk classification. Later in the paper we present evidence that our bulk 

classification procedure leads to more useful results for the purposes of estimating flow toxicity 

than those based on the itemized classification of raw transaction data.16  

 

2.4.  Volume-Synchronized Probability Of Informed Trading (the VPIN Flow 
Toxicity Metric) 

 
The standard PIN model looks only at the number of buys and sells to infer knowledge 

about the underlying information structure; there is no explicit role for volume. In the high 

frequency markets we analyze, the number of trades is problematic. Going back to the theoretical 

foundation for PIN, what we ultimately want is information about trading intentions that arise 

from informed or uninformed traders. The link between these trading intentions and transactions 

data is very noisy as trading intentions may be split into many pieces to minimize market impact, 

one order may produce many trade executions, and information-based trades may be done in 

various order forms. For these reasons, we treat each reported trade as if it were an aggregation 

of trades of unit size (i.e. a trade for five contracts at some price p is treated as if it were five 

trades of one contract each at price p). This convention explicitly puts trade intensity into the 

analysis.   

We know from Easley, Engle, O’Hara and Wu [2008] that for each period the expected 

trade imbalance is 𝐸[|𝑉𝜏𝑆 − 𝑉𝜏𝐵|] ≈ 𝛼𝜇 and that the expected total number of trades is

[ ] 2B SE V Vτ τ αµ ε+ = + . Volume bucketing allows us to estimate this specification very simply.  

In particular, recall that we divide the trading day into equal-sized volume buckets and treat each 

volume bucket as equivalent to a period for information arrival. That means that 𝑉𝜏𝐵 + 𝑉𝜏𝑆 is 
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constant, and it is equal to V, for all τ. We then approximate expected trade imbalance by average 

trade imbalance over n buckets. 

From the values computed above, we can write the Volume-Synchronized Probability of 

Informed Trading, the VPIN flow toxicity metric, as17 

 𝑉𝑃𝐼𝑁 =
𝛼𝜇

𝛼𝜇 + 2𝜀
≈
∑ |𝑉𝜏𝑆 − 𝑉𝜏𝐵|𝑛
𝜏=1

𝑛𝑉
 

(9) 
 

Estimating the VPIN metric requires choosing V, the volume in every bucket, and n, the 

number of buckets used to approximate the expected trade imbalance. As an initial specification, 

we focus on V equal to one-fiftieth of the average daily volume. If we then choose n=50, we will 

calculate the VPIN metric over 50 buckets, which on a day of average volume would correspond 

to finding a daily VPIN.   Our results are robust to a wide range of choices of V and n as we 

discuss in Section 5. 

The VPIN metric is updated after each volume bucket.  Thus, when bucket 51 is filled, 

we drop bucket 1 and calculate the new VPIN based on buckets 2 – 51. We update the VPIN 

metric in volume-time for two reasons. First, we want the speed at which we update VPIN to 

mimic the speed at which information arrives to the marketplace. We use volume as a proxy for 

the arrival of information to accomplish this goal. Second, we would like each update to be based 

on a comparable amount of information. Volume can be very imbalanced during segments of the 

trading session with low participation, and in such low-volume segments it seems unlikely that 

there is new information. So updating the VPIN metric in clock-time would lead to updates 

based on heterogeneous amounts of information.  

As an example, consider the trading of the E-mini S&P 500 futures on May 6th 2010. 

Volume on this date (remembered for the “flash crash” that took place) was extremely high, so 
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our procedure produces 137 estimations of the VPIN metric, compared to the average 50 daily 

estimations. Because our sample length (n) is also 50, the time range used for some estimations 

of the VPIN metric on May 6th 2010 was only a few hours, compared to the average 24 hours. 

[FIGURE 2 HERE] 

Figure 2 illustrates the way time ranges become “elastic”, contingent on the trade 

intensity (a proxy for speed of information arrival). At 9:30 am (EST), the data used to compute 

VPIN covered almost an entire day. But as the New York Stock Exchange opened on May 6th 

2010, our algorithm updated the VPIN metric more frequently and based its estimates on a 

shorter interval of clock-time. By 12:17pm, VPIN was being computed looking back only one-

half of a day. Note how reducing the time period covered by the sample did not lead to noisier 

estimations. On the contrary, the VPIN metric kept changing following a continuous trend. The 

reason is that time ranges do not contain comparable amounts of information. Instead, it is 

volume ranges that produce comparable amounts of information per update.18 

GARCH specifications provide an alternative way to deal with the volatility clustering 

typical of high frequency data sampled in clock-time. Working in volume-time reduces the 

impact of volatility clustering, since we produce estimates based on samples of equal volume. 

Because large price moves are associated with large volumes, sampling by volume can be 

viewed as a proxy for sampling by volatility. The result is a collection of observations whose 

distribution is closer to normal and is less heteroskedastic than it would be if we sampled 

uniformly in clock-time. Thus, working in volume-time can be viewed as a simple alternative to 

employing a GARCH specification. 

To see how this transformation allows a partial recovery of normality, we consider an E-

mini S&P 500 futures 1-minute bars sample from January 1, 2008 to August 1, 2011. We draw 
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an average of 50 price observations a day, equally spaced by time in the first case (chronological 

time), and equally spaced by volume in the second (volume time). Next, we compute first order 

differences and standardize each sample. Both samples are negatively skewed and have fat tails, 

but the volume-time sample is much closer to normal, exhibits less serial correlation, and is less 

heteroskedastic. This becomes more obvious as the sampling frequency increases (compare 

tables for 50 and 100 draws per day). Table 1 gives the resulting statistics and Figure 3 provides 

a graphical illustration of the normalized price changes. 

[TABLE 1 HERE] 

[FIGURE 3 HERE] 

 

3.  THE STABILITY OF VPIN ESTIMATES 

Estimating the VPIN volatility metric involves a variety of specification issues.  In this 

section, we show robustness of the VPIN measure to two of the most important of these issues, 

namely, alternative volume classification schemes and changes in the transaction record. Our 

calculations are based on the E-mini S&P 500 futures series of 1-minute bars, from January 1st 

2008 to August 15th 2011, for a bucket size consistent with an average of 50 volume buckets per 

day, and a sample length of 50 buckets. 

 

3.1.  Stability Under Different Volume Classification Schemes 
 
The choice of how to classify volume has an important effect on the estimate of VPIN. In 

particular, because VPIN involves looking at trade imbalance and intensity, aggregating over 

time bars would be expected to reduce the noise in this variable as well as to rescale it.  In 

Easley, López de Prado, and O’Hara [2011a], we argued that this necessitates looking at the 
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relative levels of VPIN as captured by their cumulative distribution function rather than at 

absolute levels of VPIN.19   

This point can be illustrated by looking at the behavior of VPIN on a given day for 

different volume classification algorithms.  The “flash crash” on May 6 is of particular 

importance in futures (and equity) markets and so we illustrate the behavior of VPIN on this day 

using three alternative volume classification schemes.  Figure 4(a) shows VPIN calculated using 

bulk classification of 1-minute time bars; 4(b) uses bulk classification of 10-second bars; and 

4(c) uses Lee-Ready trade-by-trade classification. 

[FIGURE 4 (a), (b), (c) HERE] 

The three methods concur in signaling an extreme level for the VPIN flow toxicity metric 

at least two hours before the crash (see the CDF(VPIN) dashed line crossing the 0.9 threshold).20 

The 1-minute and 10-second time bars produce qualitatively similar stories about the relative 

level of VPIN. In both cases, it rises before the crash and stays high throughout the rest of the 

day. The trade-by-trade classification results are different. Here the estimated VPIN increases 

before the crash, although not as dramatically as it does with time bars, but it falls to unusually 

low levels immediately after the crash and it remains low for the rest of the day. This inertia, 

however, is over a period in which the market rose by more than 4%. It seems highly unlikely 

that volume was, in fact, balanced over this period. We suspect that this is more a result of trade 

misclassification than anything else, and so we do not use trade-by-trade classification. Instead, 

we report results for 1-minute time bars while noting that the relative results with 10-second time 

bars are very similar. 
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3.2.  Stability to Changes in the Transaction Record 

A second stability test concerns the impact that changes in the trading record have on the 

VPIN estimate. Small discrepancies in the trading record, such as missing trades, produce two 

effects. First, missing trades could alter the volume imbalance. But since we use an amount of 

volume equivalent to an entire trading session, this impact is expected to be negligible (the 

typical trade is for a few contracts, compared to the daily average of more than two million 

contracts traded on E-mini S&P 500 futures in 2010). The second effect of missing trades comes 

in the form of a shift in the VPIN trajectory. This impact can be evaluated by shifting the starting 

point of VPIN trajectories and calculating the cross-sectional standard deviations over time. 

To assess the influence of different starting times, we compute 1,000 alternative VPIN 

trajectories for the E-mini S&P 500 futures, each starting one time bar after the previous one. We 

then take those 1,000 VPIN trajectories and align them for each time bar. Because VPIN is 

computed at the completion of each bucket, and buckets are not completed simultaneously, to 

each time bar we assign the last computed VPIN. We can then estimate a cross-sectional 

standard deviation on the difference between the first trajectory and the following 999. This 

estimate is likely to be greater than the true value of the standard deviation as a result of the 

asynchronicity in the completion of buckets. 

[FIGURE 5 HERE] 

Figure 5 shows that the cross-sectional standard deviation of differences on the 1,000 

VPIN trajectories is negligible. That time series has a mean of 0.015 while VPIN’s average value 

is much greater (around 0.23). But as we argued earlier, the fact that buckets for each of the 

1,000 trajectories are not completed simultaneously means that the true cross-sectional standard 

deviation is even smaller than this 0.015 average value. The spikes in cross-sectional standard 
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deviations that are apparent in Figure 5 coincide with spikes in VPIN values. For example, on 

May 6th 2010 the cross-sectional standard deviation was just above 0.02, on a day when VPIN 

reached a level close to 0.5. 

In conclusion, differences in the trading record due to missing transactions or alternative 

starting points do not seem to significantly impact VPIN estimates. To see this final point, 

consider two estimates of VPIN, one of 0.45, the other 0.5. This difference is well beyond what 

we see in Figure 5. Although the difference between these two VPIN estimates may seem large, 

they are not significantly different as the two VPIN estimates are at approximately the same 

point on the CDF of VPIN (0.991 compared to 0.995). 

 

4.  ESTIMATING THE VPIN METRIC ON FUTURES 

Having established the robustness of our estimation procedures for the VPIN toxicity 

metric, we now illustrate its application to two of the most actively traded futures contracts: the 

E-mini S&P 500 (trading on the CME) and the WTI crude oil future (trading on the NYMEX).   

Our sample period is January 1st 2008 to June 6th 2011, using at each point in time the expiration 

with highest daily volume, rolled forward. We use a bucket size equal to 1/50th of the average 

daily volume in our sample period (V). Parameters are estimated on a rolling window of sample 

size n = 50 (equivalent to 1-day of volume on average).  We use the entire sample period to 

determine the cumulative distribution function of the estimated parameters. Table 2 provides 

basic statistics of the VPIN metric estimates for these contracts. 

[TABLE 2 HERE] 
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A natural concern arising from our estimates of VPIN is that its AR(1) coefficients are 

very close to 1. This might suggest that VPIN has a unit root, with its consequent implications 

that VPIN is unstable and so its CDF over any sample period would not be useful in evaluating 

the likelihood of future values. Fortunately, this is not the case.  We have already shown that 

VPIN is not affected by the shifts of the starting date of our sample considered in Figure 5.   

Table 3 also shows that the CDFs of VPIN obtained by splitting our sample into a before and 

after Flash Crash (May 6, 2011) date are nearly identical. Thus, the VPIN is, in fact, highly 

stable.  The high AR(1) coefficient and the stability of VPIN occur for the same reason. Our 

VPIN measure is computed using 50 buckets. When it is updated, the first of the existing 50 

buckets is dropped and the latest one is added. This averaging makes VPIN highly auto-

correlated, but also insures that the process does not have a long memory as at each point the 

current value of VPIN cannot depend on the value that VPIN took on 51 buckets earlier.21 

[TABLE 3 HERE] 

 

4.1.  S&P 500 (CME) 

Figure 6 shows the evolution of the E-mini S&P 500 futures contract (red line, expressed 

in terms of market value) and its VPIN metric value (green line). The VPIN metric is generally 

stable, although it clearly exhibits substantial volatility. We note that the VPIN metric reached its 

highest level for this sample on May 6th 2010, the day of the flash crash.  Such high levels of the 

VPIN metric are consistent with the largest part of the order flow being one-sided for the 

equivalent of one day of transactions. As discussed in Easley, López de Prado and O’Hara 

[2011a], this excessive toxicity led some market makers to become liquidity consumers rather 

than liquidity providers as they shut down their operations.22 
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[FIGURE 6 HERE] 

A more recent episode of extreme toxicity occurred in the aftermath of the Japanese 

earthquake.  Although the major Tohoku earthquake and tsunami took place in the early morning 

of March 11th 2011, the S&P 500 did not experience a large move until the subsequent 

Fukushima nuclear crisis unfolded on March 14th 2011. That day the S&P 500 registered another 

extreme level of order flow toxicity. Unlike on May 6th 2010, the March 14th 2011 crash 

occurred with light volume, during the night session (from 6pm to 11pm EST). After only 

287,360 contracts had been traded, the index had lost approximately 2.5% of its value. Figure 7 

shows that CDF(VPIN) was at its 0.97 threshold as early as 3pm, illustrating that flow toxicity 

also occurs in instances of reduced trade intensity. 

[FIGURE 7 HERE] 

 

4.2.  WTI Crude Oil (NYMEX) 

Crude oil is the most heavily traded commodity, and its strategic role in the world 

economy makes it ideal for placing geopolitical and macroeconomic wagers. Energy futures are 

also a venue in which market makers face extreme volatility in order flows. As shown in Figure 

8, the highest flow toxicity reading for this contract occurred on May 6th 2010. Such behavior is 

consistent with the fact that while the problems on May 6th were not energy related, oil futures 

were affected by the contagion of liquidity and toxicity across markets. Other than the day of the 

flash crash, the next highest toxicity levels for this contract occurred on May 5th 2011. 

[FIGURE 8 HERE] 

In early May 2011, the CFTC reported the largest long speculative position among crude 

traders in history.23 The New York Times attributed these large positions to traders believing that 
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energy prices would ramp up, fueled by the violence sweeping through North Africa and the 

Middle East.24 Some of these traders decided to take profits on May 5th 2011.25 The unwinding 

of their massive positions led them to seek liquidity, but as market makers realized that the 

selling pressure was persistent, they started to withdraw, which in turn increased the 

concentration of toxic flow in the overall volume. Figure 9 shows that by 9:53am CDF(VPIN) 

crossed the 0.9 threshold, remaining there for the rest of the day. During those few hours, WTI 

lost over 8%.26 

[FIGURE 9 HERE] 

 

5.  TOXICITY AND FUTURE PRICE MOVEMENTS 

In a high frequency market, market makers can use the VPIN metric derived and 

estimated above to measure the toxicity of order flow. Because toxicity affects market makers’ 

profits, toxicity should also affect market maker behavior, and by extension liquidity in the 

market. In this section, we address in more detail the linkage between toxicity and future price 

movements. 

As noted earlier in the paper, time is not a particularly meaningful concept to a high 

frequency market maker. Since market makers are passive traders who must wait for the order 

flow to come to them, it is volume rather than time that is the operative metric. This same 

volume metric is also relevant for considering the future linkage of toxicity and price 

movements. A market maker needs to know how toxicity will influence price behavior while he 

or she is holding a position.27 Market makers seek to turn over their positions multiple times a 

day, but how frequently they are able to do so depends on the volume of trade. Thus, for the 

market maker, two questions are relevant. First, how does high toxicity affect price behavior 



28 
 

over this holding period?  And, second, how does the persistence of high toxicity affect price 

behavior?  

While these questions are straightforward, answering them is not.  One difficulty is that 

standard microstructure models are not well-suited for capturing behavior in the new high 

frequency world.  We simply do not have models of multiple, competing market makers who 

face information and inventory constraints, and who manage risk by moving across and between 

(or even completely out of) markets in microseconds. Thus, theory does not provide the exact 

linkage between toxicity, liquidity, and volatility that we seek.   A second difficulty is that the 

econometrics of analyzing liquidity and volatility in such a world are embryonic, reflecting the 

many distinctive features of high frequency data  already noted throughout this paper.   

To address these questions, therefore, we draw on basic relationships to examine the 

linkages between toxicity, liquidity and volatility.  We first look at the relationship between 

toxicity and price movements defined over the subsequent volume bucket, which we argue is the 

relevant interval from the perspective of the market maker.  We then consider how the 

persistence of toxicity influences return behavior over longer intervals.  In general, we know that 

as toxicity increases, market makers face potential losses and so may opt to reduce, or even 

abandon market making activities. This decrease in liquidity, in turn, suggests that high levels of 

VPIN should presage greater price variability.28  

 

5.1.  Correlation Surface 

We begin by asking a simple question:  Is the VPIN volatility metric correlated with 

future price movements?  To measure this relationship, we use Pearson’s correlation between the 

natural logarithm of VPIN and the absolute price return over the following bucket, 



29 
 

𝜌 �𝐿𝑛(𝑉𝑃𝐼𝑁𝜏−1), � 𝑃𝜏
𝑃𝜏−1

− 1��, where τ indexes volume buckets. Because VPINs can be estimated 

using various combinations of the number of volume buckets per day and the sample length, we 

examine how these estimation parameters affect the VPIN metric’s relationship with future price 

movements. 

For E-mini S&P 500 futures, VPINs are positively correlated with future price volatility.  

This relationship is demonstrated in Figure 10 where each point on the graph was computed 

using large samples, some of over 44,000 observations. The figure shows that the correlation 

between VPIN and the following absolute future returns varies smoothly across different 

parameter values.   In general, increasing the sample length increases the correlation as does, to a 

lesser degree, increasing the numbers of buckets per day. 

[FIGURE 10 HERE] 

The (50,250) combination seems a reasonably good pair for E-mini S&P 500, and it has a 

simple interpretation as “one week” of data (50 volume buckets per day and 5 trading days per 

week). For this combination, we obtain a correlation 𝜌 �𝐿𝑛(𝑉𝑃𝐼𝑁𝜏−1), � 𝑃𝜏
𝑃𝜏−1

�� = 0.400 on 44537 

observations.29 Figure 10 suggests that there is little advantage in “over-fitting” these parameters, 

as there is a wide region of parameter combinations yielding similar predictive power.30  

[FIGURE 11 HERE] 

Figure 11 provides a plot of the return on the E-mini S&P 500 futures over the next 

volume bucket (1/50 of an average day’s volume using the (50,250) combination) sorted by the 

previous VPIN level. The graph spreads out vertically as VPIN rises, illustrating that higher 

toxicity levels, as measured by higher VPIN, lead to greater absolute returns.  

These findings in terms of correlation are suggestive, but simple correlation is a narrow 

criterion of dependency. In fact, VPIN exhibits significant serial correlation, which makes 
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drawing conclusions from a simple correlation problematic. One alternative would be to estimate 

a time series model of the joint VPIN-returns process. We do not pursue this approach here as 

our hypothesis is not that high VPIN levels lead to high absolute returns in a particular time 

period. Instead, our hypothesis is that persistently high VPIN levels have implications for market 

maker behavior, which in turn have implications for absolute returns measured using a volume 

clock. To shed light on this hypothesis, we employ a model-free framework based on conditional 

probabilities. We then ask two fundamental questions: (1) When VPIN is high, what is the 

subsequent behavior of absolute returns? (2) When absolute returns are high, what was the 

preceding level of VPIN?  

 

5.2.  Conditional Probabilities 

To display these conditional probabilities we need to compute the joint distribution of 

VPIN and absolute returns. We do this by first grouping VPINs in 5%-tiles and absolute returns 

in bins of size 0.25% so that we can display discrete distributions. We then compute the joint 

distribution of �𝑉𝑃𝐼𝑁𝜏−1, � 𝑃𝜏
𝑃𝜏−1

− 1��. From this joint distribution we derive two conditional 

probability distributions.  

We first examine the distribution of absolute returns over the subsequent volume bucket 

conditional on VPIN being in each of our twenty 5%-tile bins. This results in twenty conditional 

distributions, one for each VPIN-bin, which are displayed in Table 4a. Each row of this table 

represents a conditional distribution of absolute returns, conditioned on the prior level of VPIN.  

[TABLE 4(a), 4(b) HERE] 

There are three important results to note.  First, when VPIN is low, subsequent absolute 

returns are also low.  In particular, when VPIN is in its bottom quartile, subsequent absolute 
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returns are in the 0% to 0.25% range more than 90% of time.. Second, when VPIN is high, the 

conditional distribution of subsequent returns is much more dispersed.  In particular, high 

absolute returns (above 1.5%) sometimes occur during the subsequent volume bucket, while they 

never occur following very low VPINs. Third, even for high levels of VPIN, absolute returns 

over the next volume bucket are most often not large. We elaborate on this point in the next 

subsection where we argue that it takes persistently high levels of VPIN to reliably generate 

large absolute returns.  

Next, in Table 4b we examine the distribution of VPIN in bucket τ-1 conditional on 

absolute returns between buckets τ-1 and τ. Each column of this table provides the distribution 

of prior VPINs conditional on absolute returns in each bin of size 0.25%. The important result 

here is that when absolute returns are large the immediately preceding VPIN was rarely small. In 

particular, the upper quartile of this distribution contains over 84% of all absolute returns greater 

than 0.75%. This fact suggests that VPIN has some insurance value against extreme price 

volatility.To compute these conditional probabilities, we used our standard (50,250) parameter 

combination. This choice of parameters maximized the correlation between VPIN and absolute 

returns, but it does not necessarily maximize a particular “risk scenario”, say for example, 

𝑃𝑟𝑜𝑏 �CDF(𝑉𝑃𝐼𝑁𝜏−1) > 3
4
�� 𝑃𝜏
𝑃𝜏−1

− 1�� > 0.75%�. The following figure shows the effect of 

parameter choices on VPIN’s insurance value against absolute returns greater than 0.75%. 

[FIGURE 12 HERE] 

Figure 12 shows that as long as the number of buckets per day is not extremely large, and 

the sample length is not extremely small, the probability that VPIN was in the upper quartile one 

volume bucket prior to a 0.75% or greater absolute return will be between 80% and 90%. This 
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result not only means that VPIN anticipates a large proportion of extreme volatility events, but 

also that toxicity-induced volatility seems to be a significant source of overall volatility. 

 

5.3.  Is Extreme Volatility Always Preceded by High VPIN? 

Table 4a shows that for the E-mini S&P 500 futures contract, large absolute returns, 

greater than say 2%, are very unlikely if the preceding VPIN was low. But they are possible and 

searching across contracts certainly provides examples in which they occur. A recent example of 

extreme price volatility in the natural gas futures vividly illustrates this possibility. According to 

The Financial Times31, on June 8th 2011: “The New York Mercantile Exchange floor had been 

closed for more than five hours when late on Wednesday Nymex July natural gas dropped 39 

cents, or 8.1 per cent, to $4.510 per million British thermal units. After a few seconds, it bounced 

back up”. An explanation was offered in The Financial Times on June 9th 2011: “Some market 

watchers attributed the decline to a ‘fat finger’ error, when a trader mistakenly types an extra 

zero on the end of an order, increasing its size by a factor of 10. Others blamed it on a glitch in 

computer algorithms that trade futures. Volume was light, meaning any big order would have 

had an outsize impact and potentially triggered automated selling”.  

If the FT’s explanation is correct, then VPIN should not have been high before the price 

decline. Figure 13 shows that this is what occurred. There was a sudden decline in prices 

followed by an immediate recovery, all of which occurred at relatively low toxicity levels. This 

example illustrates two useful points:  Not all volatility is due to toxicity; and, it may be helpful 

to regulators to know when a price drop is due to toxicity or arises from other potential causes. 

[FIGURE 13 HERE] 
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5.4.  Does Extreme Volatility Always Occur Once VPIN is High?  
 
We know from Table 4b that large absolute returns do not necessarily occur in the next 

volume bucket when VPIN is large. In fact, most of the absolute returns immediately following a 

high VPIN observation are not large. This observation, however, is consistent with our 

hypothesis that persistently high levels of VPIN lead to volatility. To examine our hypothesis, we 

need to quantify the maximum amount of volatility that a market maker is exposed to once VPIN 

reaches some critical level and stays at or above that critical level. The flash crash provides a 

stark illustration of why the distinction between immediate volatility and ensuing volatility is 

important. During the flash crash, VPIN remained high from before the crash began until well 

after it ended and prices began their partial recovery. If we focus on the time period beginning 

when VPIN reached some high level and ending when it fell, there is only a small price decline. 

This fact would be of little comfort to the many market makers who left the market during the 

crash. They were affected by the large intermediate volatility that occurred while VPIN was 

high. 

To examine the maximum intermediate volatility experienced by a market maker while 

VPIN is high, we compute volatility events while VPIN remains within any 5%-tile. In 

particular, every time VPIN moves from one 5%-tile to another, we compute the largest absolute 

return that occurs between any two intermediate (not necessarily consecutive) buckets, until 

VPIN moves to another 5%-tile. For example, suppose that the VPIN metric moves into the 85th 

percentile and 4 volume buckets later it moves to the 90th percentile. We would calculate the 

absolute return between buckets 1 and 2, 1 and 3, 1 and 4, as well as between 2 and 3, 2 and 4, 

and 3 and 4. We are interested in the maximum of these absolute returns, which we view as the 

maximum volatility the market maker faces. We do this for every such VPIN crossing. 
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To be precise, we let i be an index that is updated by one every time that VPIN crosses 

from one percentile into another, and 𝜏(𝑖) the bucket associated with the ith cross. This means 

that VPIN remained in the same percentile for 𝜏(𝑖 + 1) − 𝜏(𝑖) buckets; in our example above 

this was the 4 bucket interval over which VPIN remained in the 85th percentile. The largest 

absolute return between any two intermediate buckets while VPIN remained in a particular 

percentile (i.e., from the bucket at which it made the ith crossing until it made the i+1th crossing) 

is then 

 max
𝜏(𝑖)≤𝑚<𝑙

𝜏(𝑖)<𝑙≤𝜏(𝑖+1)

�
𝑃𝑙
𝑃𝑚

− 1� (10) 
 

In our example above this is the maximum of the six intermediate returns over the interval in 

which VPIN remained in the 85th percentile.  

This analysis is richer than the conditional probabilities illustrated in Table 4a in two 

respects. First, we are not just considering the absolute return that occurs in the bucket 

immediately following VPIN’s crossing into a bin, but rather the maximum absolute return that 

occurs while VPIN remains in a bin. This is consistent with our microstructure theory that 

volatility appears once toxicity has reached a saturation point that exceeds market makers’ 

tolerance. Second, it captures price volatility across all sequences of intermediate buckets, thus 

incorporating the effect of price drifts as well as price recoveries. This is important, because slow 

price drifts and price recoveries may both hide extreme volatility. But this analysis is also limited 

in that it does not capture sustained increases in toxicity spanning multiple VPIN percentiles.  In 

particular, we do not capture what happens when toxicity increases from the 75th to the 80th and 

then on to the 85th, 90th, etc.  Thus, the hurdle we set here will surely underestimate the effect of 

toxicity-induced volatility.   
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[FIGURE 14 HERE] 

Figure 14 plots the probabilities of the largest absolute return being in excess of 0.75% 

while VPIN remains in any 5%-tile in the upper quartile of its distribution (i.e. VPIN is in the 

0.75-0.80, 0.80-0.85, 0.85-0.90, 0.90-0.95, or 0.95-1.00 bin) for various combinations of buckets 

per day and sample length. For our standard combination of (50,250), we find that 51.84% of the 

times that VPIN enters a 5%-tile within the upper quartile there is at least one intermediate return 

in excess of 0.75% before VPIN leaves that 5%-tile. The parameter combination that maximizes 

VPIN’s predictive power is (10,350), i.e. 10 buckets per day for a sample length of 350 (about 

1.6 months). For this parameter combination, Table 5 shows that 78.57% of the times that VPIN 

enters a 5%-tile within the upper quartile of its distribution, toxicity-induced volatility often will 

be substantial (absolute returns in excess of 0.75%) before VPIN leaves that 5%-tile. 

[TABLE 5 HERE] 

 

6.  CONCLUSIONS 

This paper presents a new procedure to estimate the Volume-Synchronized Probability of 

Informed Trading, or the VPIN flow toxicity metric. An important advantage of the VPIN 

toxicity metric and its associated estimation procedure is that it is updated intraday with a 

frequency attuned to volume in order to match the speed of information arrival. It is also a direct 

analytic estimation procedure that does not rely on intermediate estimation of unobservable 

parameters, or numerical methods. We have shown that the VPIN metric has significant 

forecasting power over toxicity-induced volatility, and that it offers insurance value against 

future high absolute returns.   
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It is this latter property that we believe makes VPIN a risk management tool for the new 

world of high frequency trading. Liquidity provision is now a complex process, and levels of 

toxicity affect both the scale and scope of market makers’ activities. High levels of VPIN signify 

a high risk of subsequent large price movements, deriving from the effects of toxicity on 

liquidity provision. This liquidity-based risk is important for market makers who directly bear 

the effects of toxicity, but it is also significant for traders who face the prospect of toxicity-

induced large price movements.32 Developing algorithms that would vary the execution pattern 

of orders depending upon toxicity would allow traders to mitigate this risk.33 Exchanges could 

also apply VPIN to provision machine resources in a way that speeds up trading on the side with 

greater liquidity while slowing down trading on the side under attack (a sort of dynamic circuit-

breaker), thus allowing market makers to remain active. We believe this is an important area for 

future research. 
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FOOTNOTES 

                                                 
1 See Clark [1973] or Ané and Geman [2000] for a primer on subordinated stochastic processes. 

2 See Tauchen and Pitts [1983], DeGennaro and Shrieves [1995], Jones et al. [1994]. 

3 Kirilenko, Kyle, Samadi and Tuzun [2010] give empirical evidence on market maker behavior 

during the “flash crash”. 

4Bethel, Leinweber, Rubel and Wu [2011] discuss the use of the VPIN metric to monitor 

liquidity in equity markets. 

5 The literature has more complex models of the arrival process, but to illustrate our ideas we 

stay with the simplest model. The simple model has an advantage over more complex models in 

that it yields a simple expression for the probability of information-based trade which is easy to 

compute. In spite of its simplicity and its obvious abstraction from the reality of the trading 

process, this expression has proven useful in a variety of settings. 

6 Mandelbrot and Taylor [1967] noted that this was true of equity trading even in the 1960s. 

7 A variety of authors have further developed this notion of time as an important characteristic of 

trading. Of particular importance, Engle [1996] and Engle and Russell [2005] develop the role of 

time in a new class of autoregressive-conditional duration (ACD) models. 

8 Publically available data generally do not distinguish buys and sells, so an algorithm is 

necessary to infer buys and sells. The algorithm we use seems to work well, but the algorithm 

itself is independent of the VPIN metric. Any algorithm (or even better data about buys and 

sells) could be used to provide input to the estimation of VPIN. 

9 Informed and uninformed trading in an electronic limit order market has been examined by 

numerous authors, for example Bloomfield, O’Hara and Saar [2005], and Foucault, Kadan and 

Kandel [2009]. 
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10 Over the last three years of E-mini S&P 500 futures data, in an average 10-minute period there 

were 2,200 trades encompassing 21,000 contracts traded. 

11 We thank Mark Ready for helpful advice on trade classification in high frequency markets. 

12 We focus on time bars because data vendors (such as Bloomberg) provide such information 

and so it is a more familiar concept to market practitioners. However, both conventions (Time 

and Volume bars) have their own merits, and we hope to investigate these alternatives further in 

future work.  

13 Readers familiar with unsupervised machine learning techniques will not be surprised with the 

logic behind our bulk classification procedure. 

14 This assumption may of course not reflect the empirical characteristics of the data, but we are 

at this point simply discussing the properties of 𝑂𝐼𝜏 as they relate to bulk classification.  

15 As the average number of time bars per bucket increases from 1 to 30, order imbalance as a 

fraction of bucket size decreases from 0.52 to 0.25, with standard deviations ranging from 0.33 

to 0.22. 

16 This is hardly a surprising result as it corresponds to the principle that bulk counting can be 

more useful than item counting under measurement error. 

17 This metric uses an approximation because the arrival rate of information-based trades is 

approximated by the expected order imbalance. A more accurate estimator is presented in 

Appendix A.1.3. However, Appendix A.2 shows through Monte Carlo simulations that this 

simpler expression produces an acceptable estimation error. 

18 At a daily level the relationship between volume and price change (which is a proxy for 

information arrival) has been explored by many authors including Clark [1973], Tauchen and 

Pitts [1983], Harris [1986], and Easley and O’Hara [1992]. 
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19 For predicting toxicity-induced volatility what matters is whether the level of VPIN at any 

time is unusual relative to its distribution for the asset in question. The actual level of VPIN, 

which is sensitive to the choice of bucket size, sample length, trade classification, and so on, is 

not our primary concern. Of course, if making different choices of these parameters does more 

than rescale VPIN it could affect relative VPINs. The results in this section and those in later 

estimations strongly suggest that this is not the case. 

20 For the 1-minute and 10-second time bars VPIN continues to increase during the flash crash 

and it remains high for the remainder of the flash crash day. Thus, according to our 

interpretation, order flow was highly toxic throughout the flash crash and it remained toxic 

during the price recovery following the crash. This is consistent with the very high price 

volatility observed during and after the crash---prices first fell and then rose. VPIN is not a 

directional indicator; it only indicates toxicity-induced volatility without predicting the sign of 

the price changes.  

21 There are, however, two means by which dependence can enter into VPIN. First, the exact 

timing of buckets does depend on the entire sample. Our results on variations in the starting date 

of the sample show that this timing issue is not important over our fairly long sample. Second, 

VPIN is based on order imbalance which is auto-correlated. But the auto-correlation of order 

imbalance for the E-mini S&P 500 contract over our sample is only 0.2146. 

22 A video of this event can be found at http://youtu.be/IngpJ18AhWU  

23 “Crude oil traders trim bets on price rise, CFTC data shows”. Bloomberg News, May 6th 

2011. 

24 “Price of crude oil falls again, but analysts warn it will remain at lofty levels”. The New York 

Times, May 7th 2011. 

http://youtu.be/IngpJ18AhWU
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25 “Nervy investors dump commodities”. Financial Times, May 7th 2011. 

26 A video of this event can be found at http://youtu.be/ifW-apeHeI0  

27 Of course, market makers affect prices through their own trading. Our analysis best applies to 

markets in which there are many participants, which is clearly the case for the E-mini S&P 500 

futures contract. 

28 Deuskar and Johnson [2011] also look at the effects of order imbalance (which they term flow-

driven risk) on market returns and volatility.  Their analysis uses chronological time and so it is 

not directly comparable to what we do here. They find significant flow-driven effects on returns 

but note that their measure does not appear to be consistent with measuring the degree of 

asymmetric information.  We believe this dimension is better captured by our volume-based 

analysis which incorporates the arrival of new information.  However, both their model and ours 

provide strong evidence that order imbalance has important implications for market liquidity.  

29 Statisticians often prefer to look at correlation using the Fisher transform, which for our 

analysis is given by 𝜎𝑎𝑟𝑐𝑡𝑎𝑛ℎ(𝜌) = 0.004742, and 95% confidence bands given by 

𝜌 �𝐿𝑛(𝑉𝑃𝐼𝑁𝜏−1), � 𝑃𝜏
𝑃𝜏−1

�� ∈ [0.392,0.408].   More details regarding the statistical properties of 

correlation coefficients  can be found in Fisher (1915).   

30 In the context of high frequency trading, such correlation is very significant. According to the 

Fundamental Law of Active Management, 𝐼𝑅 = 𝐼𝐶√𝐵𝑅, where IR represents the Information 

Ratio, IC the Information Coefficient (correlation between forecasts and realizations), and BR 

the breadth (independent bets per year). Although a correlation of 40% may seem relatively 

small, the breadth of high frequency models is large, allowing these algorithms to achieve high 

Information Ratios. For example, an IR of 2 can be reached through a monthly model with IC of 

http://youtu.be/ifW-apeHeI0
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0.58, or a weekly model with IC of 0.28, or a daily model with IC of 0.13. High frequency 

models produce more than one independent bet per day, thus a correlation of over 0.4 is very 

significant.  

31 Reported by Gregory Meyer at the Financial Times of June 9th 2011. 

32 We stress that, in our view, VPIN is not a substitute for VIX, but rather a complementary 

metric for addressing a different risk.  VIX captures the markets’ expectation of future volatility, 

and hence is useful for hedging the effects of risk on a portfolio’s return.  VPIN captures the 

level of toxicity affecting liquidity provision, which in turn affects future short-run volatility 

when this toxicity becomes unusually high.  For more discussion, see Easley, López de Prado 

and O’Hara [2011b].  

33 The Waddell and Reed trader who submitted a large sell order in S&P 500 futures 

precipitating the flash crash would surely have been well advised to avoid trading in a market 

that was exhibiting record high levels of toxicity. 
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APPENDICES 
 
A.1. ALGORITHM FOR COMPUTING THE VPIN METRIC1 
In this appendix, we describe the procedure to calculate Volume-Synchronized Probability of 
Informed Trading, a measure we called the VPIN flow toxicity metric. Similar results can be 
reached with more computationally efficient algorithms, such as re-using data from previous 
iterations, performing fewer steps or in a different order, etc.  The algorithm described below is 
illustrative of the general idea.  
 
One feature of this algorithm is that we apply a probabilistic approach to classify the volume 
exchanged within each 1-minute time bars. We cannot expect users to have data which 
unequivocally identifies trades as buyer-initiated or seller-initiated so some classification 
procedure is necessary. One could classify each trade separately or one could classify trades in 
aggregates of an alternative size (based on either time, number of trades or volume bars). 
Different schemes will lead to different levels of VPIN. We have used a variety of schemes and 
conclude that data aggregation leads to better flow toxicity estimates than working on raw 
transaction data. Data granularity has an impact on the magnitude of VPIN levels, however our 
focus is on how rare a particular VPIN is relative to the distribution of VPINs derived from any 
classification scheme, and this is unaffected by the classification schemes we have examined 
(including trade-by-trade as well as groups based on one-tenth of a bucket). We focus on 1-
minute time bars as this data is less noisy, more widely available and easier to work with. 
 
A.1.1. INPUTS 

1. Time series of transactions of a particular instrument : 
a. : Time of the trade. 
b. : Price at which securities were exchanged. 
c. : Volume exchanged. 

2. V: Volume size (determined by the user of the formula). 
3. n: Sample of volume buckets used in the estimation. 

 
Pi, Vi, V, n are all integer values. Ti is any time translation, in integer or double format, 
sequentially increasing as chronological time passes. 
 
A.1.2. PREPARE EQUAL VOLUME BUCKETS 

1. Sort transactions by time ascending: . 
2. Compute ∆𝑃𝑖, ∀𝑖. 
3. Expand the number of observations by repeating each ∆𝑃𝑖 as many times as . This 

generates a total of  observations ∆𝑃𝑖. 

4. Re-index ∆𝑃𝑖 observations, i=1,…,I. 
5. Initiate counter: τ = 0. 
6. Add one unit to τ. 
7. If VI τ< , jump to step 11 (there are insufficient observations). 

                                                 
1 Patent pending. U.S. Patent and Trademark Office. 

( )iii VPT ,,
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8. , split volume between buy and sell initiated: 

a. 𝑉𝜏𝐵 = ∑ 𝑍 �∆𝑃𝑖
𝜎∆𝑃
�𝜏𝑉

𝑖=(𝜏−1)𝑉+1  

b. 𝑉𝜏𝑆 = ∑ �1 − 𝑍 �∆𝑃𝑖
𝜎∆𝑃
��𝜏𝑉

𝑖=(𝜏−1)𝑉+1 = 𝑉 − 𝑉𝜏𝐵 
9. Assign to variable  the number of observations classified as buy in step 8, and the 

variable  the number of observations classified as sell. Note that . 
10. Loop to step 6. 
11. Set L = τ - 1 (last bucket is always incomplete or empty, thus it will not be used). 

 
A.1.3. APPLY VPIN’s FORMULA 

If 𝐿 ≥ 𝑛, there is enough information to compute 𝑉𝑃𝐼𝑁𝐿 = ∑ �𝑉𝜏𝑆−𝑉𝜏𝐵�𝐿
𝜏=𝐿−𝑛+1

∑ �𝑉𝜏𝑆+𝑉𝜏𝐵�𝐿
𝜏=𝐿−𝑛+1

= ∑ �𝑉𝜏𝑆−𝑉𝜏𝐵�𝐿
𝜏=𝐿−𝑛+1

𝑛𝑉
. 

 
Alternatively, the following formula could be used: 
 

𝑉𝑃𝐼𝑁𝐿 = 𝐸��𝑉𝜏𝑆−𝑉𝜏𝐵��
𝑉

, where: 
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•  is the cumulative standard normal distribution. 
 
 
A.2. MONTE CARLO VALIDATION 
Although three parameters appear in the formulation of the VPIN metric, only two need to be 
simulated. This observation follows from the facts that 𝜀 = 𝑉−𝛼𝜇

2
 and that in our methodology 

1

1 ( )
n

B SV VV
n τ τ

τ =

= +∑  is constant. Therefore we can measure the accuracy of our VPIN metric 

estimate by running a bivariate Monte Carlo on only the parameters . 
 

 
 
 
 

( )[ ]VVi ττ ,11 +−∈∀

BVτ
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Table A1 – Monte Carlo results for n=50 

 
We generate nodes of  scanning the entire range of possible parameters,  and 

, with V=100, and n=50 (where n is the number of volume buckets used to approximate 
the expected trade imbalance and intensity). The arrival rate of uninformed trade ε is then 
determined at each node, using the aforementioned expression. Ten equidistant partitions are 
investigated per dimension (112 nodes), carrying out 100,000 simulations of flow arrival per 
node (112 x 105 simulations in total). This yields a Monte Carlo accuracy of the order of 10-4. 
 
The Table shows that there is a negligible bias, on the order of 10-3, towards underestimating the 
true value of the VPIN metric. These results motivate our use of n=50 in our estimation of 
VPIN. 
 
Next, we present the Monte Carlo algorithm that we use to simulate order flow based on known 
parameters (α,μ,ε).2 The VPIN metric can be estimated on that simulated order flow, and 
compared with the PIN values derived from the actual parameter values, (α,μ,ε). 
 

1. Set Monte Carlo Parameters: 
a. Number of Simulations: S 

                                                 
2 δ can be arbitrarily set, as it does not affect the value of PIN or VPIN This can be easily seen by re-running this 
Monte Carlo with different values of δ. 

(α,μ) 0 50 100 150 200 250 300 350 400 450 500
0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.1 0.0000 -0.0001 0.0001 -0.0001 0.0009 0.0008 0.0011 0.0007 0.0016 0.0024 -0.0012
0.2 0.0000 -0.0002 0.0002 0.0001 0.0008 0.0009 0.0006 0.0012 0.0022 0.0025 -0.0002
0.3 0.0000 -0.0001 0.0000 0.0001 0.0004 0.0015 0.0010 0.0018 0.0034 0.0035 0.0023
0.4 0.0000 0.0001 0.0003 -0.0005 0.0009 0.0000 0.0021 0.0013 0.0032 0.0034 0.0035
0.5 0.0000 0.0000 0.0002 0.0002 0.0006 0.0024 0.0007 0.0010 0.0022 0.0026 0.0028
0.6 0.0000 0.0003 -0.0002 0.0003 0.0009 0.0009 0.0012 -0.0004 0.0005 0.0025 0.0025
0.7 0.0000 0.0000 0.0000 0.0005 0.0006 -0.0003 0.0008 0.0004 0.0012 0.0002 0.0013
0.8 0.0000 0.0002 0.0003 0.0000 0.0002 0.0006 0.0007 0.0013 0.0012 0.0009 0.0006
0.9 0.0000 0.0001 -0.0001 -0.0003 0.0001 0.0017 0.0001 -0.0007 0.0001 -0.0011 0.0001
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0001 0.0000 -0.0001 0.0000

(α,μ) 0 50 100 150 200 250 300 350 400 450 500
0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.1 0.0000 0.0100 0.0200 0.0300 0.0400 0.0500 0.0600 0.0700 0.0800 0.0900 0.1000
0.2 0.0000 0.0200 0.0400 0.0600 0.0800 0.1000 0.1200 0.1400 0.1600 0.1800 0.2000
0.3 0.0000 0.0300 0.0600 0.0900 0.1200 0.1500 0.1800 0.2100 0.2400 0.2700 0.3000
0.4 0.0000 0.0400 0.0800 0.1200 0.1600 0.2000 0.2400 0.2800 0.3200 0.3600 0.4000
0.5 0.0000 0.0500 0.1000 0.1500 0.2000 0.2500 0.3000 0.3500 0.4000 0.4500 0.5000
0.6 0.0000 0.0600 0.1200 0.1800 0.2400 0.3000 0.3600 0.4200 0.4800 0.5400 0.6000
0.7 0.0000 0.0700 0.1400 0.2100 0.2800 0.3500 0.4200 0.4900 0.5600 0.6300 0.7000
0.8 0.0000 0.0800 0.1600 0.2400 0.3200 0.4000 0.4800 0.5600 0.6400 0.7200 0.8000
0.9 0.0000 0.0900 0.1800 0.2700 0.3600 0.4500 0.5400 0.6300 0.7200 0.8100 0.9000
1 0.0000 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 1.0000

(α,μ) 0 50 100 150 200 250 300 350 400 450 500
0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.1 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
0.2 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
0.3 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
0.4 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
0.5 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
0.6 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
0.7 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
0.8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0000 0.0000
0.9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

MEAN ESTIMATION ERROR

TRUE VALUE

MONTE CARLO STANDARD ERROR

( )µα , [ ]1,0∈α
[ ]V,0=µ
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b. VPIN: (V,n) 
c. PIN: (α,μ) 

2. Set 𝜀 = 𝑉−𝛼𝜇
2

, s=0, j=0 
3. j=j+1 
4. Draw three random numbers from a U(0,1) distribution: u1, u2, u3 
5. If u1<α: 

a. If u2<δ:  
i. 𝑉𝑗𝐵 = 𝐹−1(𝑢3, 𝜀) 

ii. 𝑉𝑗𝑆 = 𝐹−1(𝑢3, 𝜇 + 𝜀) 
b. If u2≥δ:  

i. 𝑉𝑗𝐵 = 𝐹−1(𝑢3, 𝜇 + 𝜀) 
ii. 𝑉𝑗𝑆 = 𝐹−1(𝑢3, 𝜀) 

6. If u1≥α: 
a. 𝑉𝑗𝐵 = 𝐹−1(𝑢3, 𝜀) 
b. 𝑉𝑗𝑆 = 𝑉𝑗𝐵 

7. If j=n: 
a. j=0 
b. s=s+1 

c. 𝑉𝑃𝐼𝑁𝑠 =
∑ �𝑉𝑗

𝑆−𝑉𝑗
𝐵�𝑛

𝑗=1

∑ �𝑉𝑗
𝑆+𝑉𝑗

𝐵�𝑛
𝑗=1

 

8. If s<S, loop to Step 3 
9. Compute results: 

a. 𝐸[𝑉𝑃𝐼𝑁] = 1
𝑆
∑ 𝑉𝑃𝐼𝑁𝑠𝑆
𝑠=1  

b. 𝑉[𝑉𝑃𝐼𝑁] = 1
𝑆−1

∑ 𝑉𝑃𝐼𝑁𝑠2𝑆
𝑠=1 − 1

𝑆(𝑆−1)
(∑ 𝑉𝑃𝐼𝑁𝑠𝑆

𝑠=1 )2 
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TABLES 

Table 1:  Results of sampling by Chronological time versus Volume time 
 

 
 
We use data from 1-minute time bars from the E-mini S&P futures contract from January 1, 2008-August 
1, 2011. We draw an average of 50 (left panel) and 100 (right panel) price observations a day in two 
samples, one equally spaced in time (denoted chrono time) and the other equally spaced in volume 
(denoted volume time).  We compute first differences in mean returns and standardize each sample.  The 

table gives the resulting statistical properties, where
 

( )∑
=

−

−
+=−
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2
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i

i

iT
TTBL ττρ

, where i−ττρ ,  is the 

sample autocorrelation at lag i. Both samples have the same number of observations (T); White* is the R2 
of regressing the squared series against all cross-products of the first 10-lagged series; and 
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
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1 2

2* ksBJ , where s is skewness and k is excess kurtosis. 

 
 
 
 

  

Stats (50) Chrono time Volume time Stats (100) Chrono time Volume time
Mean 0.0000 0.0000 Mean 0.0000 0.0000
StDev 1.0000 1.0000 StDev 1.0000 1.0000
Skew -0.0878 -0.4021 Skew -0.1767 -0.4352
Kurt 34.2477 20.5199 Kurt 48.1409 29.2731
Min -23.5879 -25.1189 Min -30.5917 -34.1534
Max 20.8330 12.2597 Max 26.5905 17.2191
L-B* 40.7258 24.8432 L-B* 138.9320 48.7241

White* 0.0983 0.0448 White* 0.0879 0.0278
J-B* 40.6853 12.8165 J-B* 84.9096 28.7930
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Table 2: The VPIN toxicity metric for S&P 500 E-mini Futures 
and WTI Crude Oil Futures 

 

 
 

 
This table gives some basic statistics for the VPIN metric calculated for the E-mini S&P 500 future and 
the WTI (West Texas Intermediate) Crude Oil Future. 
 
 
 
  

Stat S&P500 Crude
Average 0.2251 0.2191

StDev 0.0576 0.0455
Skew 0.7801 0.5560

Ex. Kurt 0.9124 0.3933
AR(1) 0.9958 0.9932

#Observ. 44665 42425
CDF(0.1) 0.1578 0.1648

CDF(0.25) 0.1859 0.1858
CDF(0.5) 0.2178 0.2141

CDF(0.75) 0.2559 0.2492
CDF(0.9) 0.3023 0.2784
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Table 3: The CDF of VPIN for different sample periods 
 

 
 

This table provides critical values for the CDF of the E-mini S&P 500 VPIN for our entire 
sample and for the two subsamples: 1. Prior to the Flash Crash of May 6, 2010, and, 2. After the 
Flash Crash 

 
 
  

Prob CDF_1 CDF_2 CDF_Total
0.1 0.1711 0.1591 0.1648
0.2 0.1890 0.1792 0.1838
0.3 0.2030 0.1952 0.1989
0.4 0.2158 0.2101 0.2128
0.5 0.2284 0.2250 0.2267
0.6 0.2419 0.2409 0.2415
0.7 0.2571 0.2592 0.2583
0.8 0.2762 0.2824 0.2795
0.9 0.3050 0.3180 0.3119
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Table 4:  Conditional Probability Distributions of VPIN and Absolute Return 
 

 
Table 4a –𝑃𝑟𝑜𝑏 �� 𝑃𝜏

𝑃𝜏−1
− 1� |𝑉𝑃𝐼𝑁𝜏−1�� 

 
 

 

Table 4b – 𝑃𝑟𝑜𝑏 �𝑉𝑃𝐼𝑁𝜏−1 ��
𝑃𝜏
𝑃𝜏−1

− 1��� 

 
This table gives the conditional probability distributions of the VPIN toxicity metric and absolute return.  
Table 4(a) shows distributions of returns at time τ given VPIN at time τ-1.  Table 4 (b) shows 
distributions of VPIN at time τ-1 given returns at time τ.  
 

 

0.25% 0.50% 0.75% 1.00% 1.25% 1.50% 1.75% 2.00% >2.00%
0.05 96.56% 3.33% 0.11% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
0.10 96.33% 3.44% 0.23% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
0.15 91.54% 7.56% 0.73% 0.11% 0.06% 0.00% 0.00% 0.00% 0.00%
0.20 90.41% 8.24% 0.96% 0.28% 0.11% 0.00% 0.00% 0.00% 0.00%
0.25 90.47% 8.74% 0.79% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
0.30 89.45% 9.87% 0.62% 0.00% 0.06% 0.00% 0.00% 0.00% 0.00%
0.35 88.21% 10.55% 1.02% 0.06% 0.17% 0.00% 0.00% 0.00% 0.00%
0.40 84.72% 13.20% 1.69% 0.23% 0.17% 0.00% 0.00% 0.00% 0.00%
0.45 80.88% 17.26% 1.64% 0.17% 0.06% 0.00% 0.00% 0.00% 0.00%
0.50 81.90% 14.89% 2.65% 0.34% 0.06% 0.17% 0.00% 0.00% 0.00%
0.55 79.74% 17.55% 2.09% 0.56% 0.00% 0.06% 0.00% 0.00% 0.00%
0.60 79.30% 18.05% 2.09% 0.39% 0.11% 0.00% 0.06% 0.00% 0.00%
0.65 79.30% 16.92% 2.88% 0.39% 0.28% 0.11% 0.06% 0.00% 0.06%
0.70 75.06% 20.60% 3.22% 0.85% 0.11% 0.06% 0.06% 0.06% 0.00%
0.75 68.25% 24.99% 5.25% 1.18% 0.11% 0.11% 0.11% 0.00% 0.00%
0.80 62.32% 27.58% 6.49% 2.65% 0.51% 0.28% 0.17% 0.00% 0.00%
0.85 62.81% 26.52% 7.67% 1.86% 0.51% 0.23% 0.34% 0.06% 0.00%
0.90 56.38% 29.35% 9.20% 2.93% 1.24% 0.51% 0.06% 0.11% 0.23%
0.95 43.71% 30.51% 16.02% 5.75% 2.14% 0.79% 0.51% 0.17% 0.39%
1.00 39.56% 29.12% 16.42% 7.62% 3.27% 1.64% 0.90% 0.73% 0.73%

VP
IN

 p
er

ce
nt

ile
s

Absolute return between two consecutive buckets

0.25% 0.50% 0.75% 1.00% 1.25% 1.50% 1.75% >=2%
0.05 6.28% 0.98% 0.14% 0.00% 0.00% 0.00% 0.00% 0.00%
0.10 6.27% 1.02% 0.28% 0.00% 0.00% 0.00% 0.00% 0.00%
0.15 5.96% 2.23% 0.90% 0.44% 0.63% 0.00% 0.00% 0.00%
0.20 5.88% 2.43% 1.17% 1.11% 1.26% 0.00% 0.00% 0.00%
0.25 5.89% 2.59% 0.97% 0.00% 0.00% 0.00% 0.00% 0.00%
0.30 5.82% 2.92% 0.76% 0.00% 0.63% 0.00% 0.00% 0.00%
0.35 5.74% 3.12% 1.24% 0.22% 1.89% 0.00% 0.00% 0.00%
0.40 5.51% 3.90% 2.07% 0.89% 1.89% 0.00% 0.00% 0.00%
0.45 5.26% 5.10% 2.00% 0.67% 0.63% 0.00% 0.00% 0.00%
0.50 5.33% 4.40% 3.24% 1.33% 0.63% 4.29% 0.00% 0.00%
0.55 5.19% 5.19% 2.55% 2.22% 0.00% 1.43% 0.00% 0.00%
0.60 5.16% 5.34% 2.55% 1.56% 1.26% 0.00% 2.50% 0.00%
0.65 5.16% 5.00% 3.52% 1.56% 3.14% 2.86% 2.50% 2.22%
0.70 4.88% 6.09% 3.93% 3.33% 1.26% 1.43% 2.50% 2.22%
0.75 4.44% 7.39% 6.42% 4.67% 1.26% 2.86% 5.00% 0.00%
0.80 4.06% 8.16% 7.94% 10.44% 5.66% 7.14% 7.50% 0.00%
0.85 4.09% 7.84% 9.39% 7.33% 5.66% 5.71% 15.00% 2.22%
0.90 3.67% 8.67% 11.25% 11.56% 13.84% 12.86% 2.50% 13.33%
0.95 2.84% 9.02% 19.60% 22.67% 23.90% 20.00% 22.50% 22.22%
1.00 2.57% 8.61% 20.08% 30.00% 36.48% 41.43% 40.00% 57.78%

Absolute return between two consecutive buckets

VP
IN

 p
er

ce
nt

ile
s
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Table 5:  VPIN and Volatility Events  
 

 
 
This table shows the maximum exposure of the market maker to price movements following a transition 
of the VPIN metric from one level to the next. It is computed using10 buckets per day and a sample 
length of 350 (about 1.6 months). 
 
  

0.25% 0.50% 0.75% 1.00% 1.25% 1.50% 1.75% 2.00% >2.00%
0.05 25.00% 16.67% 25.00% 8.33% 0.00% 8.33% 8.33% 8.33% 0.00%
0.10 27.27% 27.27% 3.03% 9.09% 3.03% 0.00% 9.09% 0.00% 21.21%
0.15 39.58% 12.50% 10.42% 4.17% 6.25% 4.17% 2.08% 8.33% 12.50%
0.20 30.99% 25.35% 15.49% 8.45% 9.86% 0.00% 4.23% 1.41% 4.23%
0.25 21.69% 19.28% 22.89% 12.05% 6.02% 9.64% 2.41% 2.41% 3.61%
0.30 17.50% 25.00% 20.00% 13.75% 7.50% 3.75% 3.75% 2.50% 6.25%
0.35 19.05% 26.19% 16.67% 13.10% 5.95% 8.33% 5.95% 2.38% 2.38%
0.40 10.71% 16.67% 23.81% 13.10% 11.90% 7.14% 4.76% 2.38% 9.52%
0.45 15.91% 19.32% 13.64% 13.64% 14.77% 9.09% 6.82% 1.14% 5.68%
0.50 19.59% 16.49% 19.59% 16.49% 6.19% 4.12% 5.15% 4.12% 8.25%
0.55 18.39% 13.79% 18.39% 13.79% 11.49% 4.60% 6.90% 4.60% 8.05%
0.60 14.04% 10.53% 21.05% 17.54% 7.02% 7.02% 1.75% 10.53% 10.53%
0.65 12.00% 12.00% 8.00% 10.00% 14.00% 8.00% 2.00% 12.00% 22.00%
0.70 12.07% 10.34% 12.07% 8.62% 6.90% 8.62% 6.90% 6.90% 27.59%
0.75 14.04% 14.04% 10.53% 15.79% 5.26% 3.51% 10.53% 0.00% 26.32%
0.80 10.53% 8.77% 7.02% 8.77% 10.53% 3.51% 1.75% 7.02% 42.11%
0.85 8.33% 13.89% 5.56% 8.33% 11.11% 8.33% 5.56% 5.56% 33.33%
0.90 0.00% 0.00% 0.00% 10.00% 10.00% 20.00% 0.00% 10.00% 50.00%
0.95 0.00% 7.69% 7.69% 7.69% 0.00% 0.00% 0.00% 0.00% 76.92%
1.00 0.00% 0.00% 0.00% 0.00% 10.00% 0.00% 0.00% 0.00% 90.00%

VP
IN

 p
er

ce
nt

ile
s

Absolute return between any two intermediate buckets
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Figure 1: Average daily volume profile of E-Mini S&P Future and EC1 Future 
 

This figure shows the intra-day volume pattern in the E-Mini S&P futures contract and the 
Eurodollar/USDollar futures contract (the EC1 contract).  E-Mini volume is measured in 
contracts on the left axis while the EC1 volume is measured in contracts on the right axis. 
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Figure 2: Time gap and VPIN on May 6, 2010 
 

This Figure demonstrates how the time gap used to compute the E-Mini S&P futures contract 
changed over the course of May 6.  The Figure also shows how the VPIN metric changed over 
the day.  The time gap is measured on the left axis while the VPIN is measured over the right 
axis. 
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Figure 3: Graphs of Price Changes for E-mini S&P 500 futures, sampled by regular time 
intervals and regular volume intervals 
 
This figure shows the distribution of normalized price changes for the E-Mini S&P futures 
contract.  Our sample period is January 1, 2008 – August 1, 2011.  We draw an average of 50 
price observations per day equally spaced in time for the time clock and equally spaced by 
volume for the volume clock.  We compute first order differences and standardize each sample.  
The black line gives the normal distribution. 
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Figure 4: The VPIN Toxicity Metric and Trade Classification 
 
(a)  VPIN estimated on 1-minute time bars bulk classification 
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Figure 4: The VPIN Toxicity Metric and Trade Classification 
 
(b) – VPIN estimated on 10-second time bars bulk classification 
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Figure 4: The VPIN Toxicity Metric and Trade Classification 

 
(c) – VPIN estimated on trade-by-trade Lee-Ready classification 
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Figure 5: Stability of VPIN Toxicity Metric Estimates 
 
This figure shows the differences in VPIN and their cross-sectional standard deviations from 
computing 1,000 alternative VPIN trajectories for the E-Mini S&P futures contract.   
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Figure 6: VPIN for E-mini S&P 500 futures 
 

This figure shows the evolution of the E-Mini S&P futures contract (measured on the left axis) 
and its VPIN metric (measured on the right axis).  The sample period is January 1, 2008 – 
August 1. 2011. 
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Figure 7: E-mini S&P 500 futures during the Fukushima Nuclear crisis 
 

This figure shows the behavior of the E-Mini S&P futures contract and its VPIN on March 14, 
2011. 
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Figure 8: The VPIN Toxicity Metric for WTI Crude Oil Futures 
 
This figure shows the evolution of the WTI futures contract (measured on the left axis) and its 
VPIN metric (measured on the right axis) for the sample period January 1, 2008 – August 1, 
2011. 
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Figure 9: Crude on May 5th 2011 
 
This figure shows the behavior of the WTI futures contract and its VPIN on March 14, 2011. 
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Figure 10: Correlation between VPIN and future volatility for E-mini S&P 500 
 
This figure shows the correlation between VPIN and the following absolute returns for the E-
Mini S&P futures contract for various combinations of buckets per day and the number buckets 
used to calculate VPIN (the sample length). 
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Figure 11: E-mini S&P 500’s response to VPIN 
 
This figure shows the return on the E-mini S&P 500 futures over the next volume bucket (1/50 of an 
average day’s volume using the (50,250) combination) sorted by the log of the previous VPIN level.   
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Figure 12:  Heat Map of High VPIN and High Returns  
 
This figure shows how parameter selection regarding bucket size and sample length influences the 

toxicity measure and subsequent volatility. The Figure shows Prob�CDF(VPINτ−1) > 3
4
�� Pτ
Pτ−1

− 1�� >

0.75%�. 
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Figure 13: Natural Gas on June 8th 2011  
 
This figure shows the behavior of the Natural Gas futures contract and its VPIN on June 8, 2011. 
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Figure 14: Probability of “True Positives” 
 
This figure plots the probabilities of the largest absolute return being in excess of 0.75% while 
VPIN remains in any 5%-tile in the upper quartile of its distribution for various combinations of 
buckets per day and sample length. 
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