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Abstract

The extant theoretical literature on voluntary disclosure focuses on settings with a single
period and a single piece of private information. We extend this literature by studying a dy-
namic model of voluntary disclosure of multiple pieces of private information. Such situations
are prevalent in real life, e.g., in corporate disclosure environments that are characterized by
information asymmetry between the firm and the capital market with respect to whether, when,
and what kind of private information the firm has learned. We show (perhaps surprisingly) that,
due to dynamic strategic interaction between the firm and the capital market, later disclosures
are interpreted more favorably. We provide suffi cient conditions for the equilibrium to be in
threshold strategies. Our model also predicts higher likelihood of early voluntary disclosure by
managers who, for various reasons (such as higher short term incentives, prior to issuing new
debt or equity, higher probability of the firm being taken over) care more about short-term
price.



1 Introduction

In this paper, we study a dynamic model of voluntary disclosure of information by a potentially

informed agent. The extant theoretical literature on voluntary disclosure focuses on static models in

which an interested party (e.g., a manager of a firm) may privately observe a single piece of private

information (e.g., Grossman 1981, Milgrom 1981, Dye 1985, and Jung and Kwon 1988) or dynamic

models in which the disclosure timing does not play a role (e.g., Shin 2003, 2006) as the manager’s

decision is what to disclose but not when to disclose it. Corporate disclosure environments, however,

are characterized by multi-period and multi-dimensional flows of information from the firm to

the market, where the information asymmetry between the firm and the capital market can be

with respect to whether, when, and what relevant information the firm might have learned. For

example, firms with ongoing R&D projects can obtain new information about the state of their

projects, where the time of information arrival and its content is unobservable to the market. This

is common, for example, in pharmaceutical companies that get results of a drug clinical trial (prior

to FDA approval). Such results are not required to be publicly disclosed in a timely manner and

investors’beliefs about the result of a drug’s clinical trial may have a great effect on the firm’s price.

The multidimensional nature of the disclosure game (multi-period and multi-signal) plays a critical

role in shaping the equilibrium; e.g., when deciding whether to disclose one piece of information

the agent must also consider the possibility of learning and potentially disclosing a new piece of

information in the future.

In order to study a dynamic model of voluntary disclosure, we extend Dye’s (1985) and Jung

and Kwon’s (1988) voluntary disclosure model with uncertainty about information endowment to

a two-period, two-signal setting. We describe the potentially informed agent as a manager of a

publicly traded firm. In our two-period setting, a manager who cares about both periods’stock

price may receive up to two private signals about the value of the firm. In each period, the

manager may voluntarily disclose any subset of the signals he has received but not yet disclosed.

Our model demonstrates how dynamic considerations shape the disclosure strategy of a privately

informed agent and the market reactions to what he releases (or doesn’t release) and when. Absent

information asymmetry, the firm’s price at the end of the second period is independent of the arrival

and disclosure times of the firm’s private information. Nevertheless, we show that in equilibrium,

the market price depends not only on what information has been disclosed so far, but also on
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when it was disclosed. In particular, we show that the price at the end of the second period given

disclosure of one signal is higher if the signal is disclosed later in the game. This result might be

counter intuitive, as one might expect the market to reward the manager for early disclosure of

information, since then he seems less likely to be “hiding something.”

To see the intuition, let time be t ∈ {1, 2} and suppose it is now t = 2. Consider the following

two histories on the equilibrium path in which the manager discloses a single signal, x. In history

1, the manager disclosed x at t = 1 while in history 2 he discloses x at t = 2. The difference

between prices under the two histories stems from the scenario where the agent has learned the

second signal, y, but it was not disclosed at either t = 1 or t = 2. If x was disclosed at t = 1

then the market can infer that y is less than x and that y is suffi ciently low so that revealing it

at t = 2 would not increase the price at this time. If x is disclosed at t = 2, then the market also

considers the possibility that the manager knew y already at t = 1 and has learned x only at t = 2.

Conditional on this scenario the market learns that y is not only lower than x but also lower than

the threshold for disclosure of a single signal at t = 1.1 One might expect that this should lead to a

more negative belief about y. But the opposite is true! There are two effects that impact investors’

beliefs in opposite directions. On one hand, the lower threshold implies that the expected value of

y, conditional on this event, is lower. On the other hand, the lower threshold also implies that it

is less likely that the manager learned y at t = 1. In a threshold equilibrium the expectation of y

conditional on the manager not knowing it is higher; hence, this increases the expected value of y.

We argue that the second effect always dominates! The reason is that the manager still discloses

at t = 2 all signals y that exceed the market beliefs about y at this time. Hence, in the case of

the history with late disclosure, investors additionally rule out any y that is above the disclosure

threshold at t = 1 but below the threshold for disclosure at t = 2. Since the disclosure threshold at

t = 2 equals the average y for all managers’types who do not disclose y at t = 2 (including types

who did and did not learn y), ruling out these types, which are lower than the expected value of y

according to investors’beliefs, increases the expectation of y and hence increases the market price.

In Section 3, we formalize and extend this intuition to establish the main result of the paper.

We argue that later disclosure receives a better interpretation provided that the equilibrium is

monotone and symmetric. To further characterize the strategic behavior and market inferences in

our model, we characterize threshold equilibria in Section 4. We show that a threshold equilibrium
1To simplify the demonstration of the intuition, we assume that the agent follows a threshold strategy at t = 1.

However, our proof does not make this assumption.
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exists under suitable conditions.2 We then characterize the equilibrium disclosure strategy and

the properties of the corresponding equilibrium prices. We find that managers that assign higher

weight to the first period’s stock price compared to the second period’s stock price tend to issue

voluntary disclosure more frequently in the first period; i.e., their first period’s disclosure threshold

is lower. Assigning higher weight to the short term price compared to the long-term price may be

due to many reasons that are beyond the scope of our model. Several such examples are: managers

who face higher short-term incentives, managers of firms that are about to issue new debt or equity,

managers of firms with a higher probability of being taken over, managers with a shorter expected

horizon with the firm. The manager’s disclosure threshold is also affected by the probability of

obtaining private information. In particular, similar to the single-period models, the disclosure

threshold is decreasing in the likelihood of the manger to obtain private information.

1.1 Related Literature

The voluntary disclosure literature goes back to Grossman and Hart (1980), Grossman (1981),

and Milgrom (1981), who established the “unraveling result,” which states that under certain

assumptions (including: common knowledge that the agent is privately informed, disclosing is

costless, and information is verifiable) all types disclose their information in equilibrium. In light of

companies’propensity to withhold some private information, the literature on voluntary disclosure

evolved around settings in which the unraveling result does not prevail. The two major streams

of this literature are: (i) assuming that disclosure is costly (pioneered by Jovanovic 1982 and

Verrecchia 1983) and (ii) investors’uncertainty about information endowment (pioneered by Dye

1985 and Jung and Kwon 1988). Our model follows Dye (1985) and Jung and Kwon (1988) and

extends it to a multi-signal and a multi-period setting.

As mentioned in the introduction, in spite of the vast literature on voluntary disclosure, very

little has been done on multi-period settings and on multi-signal settings.3

To the best of our knowledge the only papers that study multi-period voluntary disclosures are

Shin (2003, 2006), Einhorn and Ziv (2008), and Beyer and Dye (2011). The settings studied in

these papers as well as the dynamic considerations of the agents are very different from ours. Shin

2 In most of the existing voluntary disclosure literature (e.g., Verrecchia 1983, Dye 1985, Acharya et al. 2011), the
equilibrium always exists, is unique, and is characterized by a threshold strategy. In our model, due to multiple periods
and signals, existence of a threshold equilibrium is not guaranteed, and therefore we provide suffi cient conditions for
existence (similar to Pae 2005).

3For example, this gap in the literature is pointed out in a survey by Hirst, Koonce, and Venkataraman (2008),
who write “much of the prior research ignores the iterative nature of management earnings forecasts.”
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(2003, 2006) studies a setting in which a firm may learn a binary signal for each of its independent

projects, where each project may either fail or succeed. In this binary setting, Shin (2003, 2006)

studies the “sanitization”strategy, under which the agent discloses only the good (success) news.

The timing of disclosure does not play a role in such a setup. Einhorn and Ziv (2008) study a

setting in which in each period the manager may obtain a single signal about the period’s cash

flows, where at the end of each period the realized cash flows are publicly revealed. If the agent

chooses to disclose his private signal, he incurs some disclosure costs. Acharya, DeMarzo, and

Kremer (2011) examine a dynamic model in which a manager learns one piece of information at

some random time and his decision to disclose it is affected by the release of some external news.

They show that a more negative external signal is more likely to trigger the release of information

by the firm. Perhaps surprisingly this clustering effect is present only in a dynamic model and

not in a static one. Given that the firm may learn only one piece of information the effect that

we study in our paper cannot be examined in their model. Finally, Beyer and Dye (2011) study a

reputation model in which the manager may learn a single private signal in each of the two periods.

The manager can be either “forthcoming” and disclose any information he learns or he may be

“strategic.”At the end of each period, the firm’s signal/cash flow for the period becomes public

and the market updates beliefs about the value of the firm and the type of the agent. Importantly,

the option to “wait for a better signal”that is behind our main result is not present in any of these

papers.

Our paper also adds to the understanding of management’s decision to selectively disclose

information. Most voluntary disclosure models assume a single signal setting, in which the manager

can either disclose all of his information or not disclose at all. In practice, managers sometimes

voluntarily disclose part of their private information while concealing another part of their private

information. To the best of our knowledge, the only exceptions in the voluntary disclosure literature

in which agents may learn multiple signals are Shin (2003, 2006), which we discussed above, and

Pae (2005). The latter considers a single-period setting in which the agent can learn up to two

signals. We add to Pae (2005) dynamic considerations, which are again crucial for creating the

option value of waiting for a better signal.
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2 The Model

We study a dynamic voluntary disclosure game. There is an agent, who we refer to as a manager

of a publicly traded company, and a competitive market of risk neutral investors. The value of the

company is a realization of a random variable V and is not known to the market or the manager,

but the agents share a common prior over the distribution of V . There are two signals, X and

Y , that are random variables, distributed conditional on realization of V symmetrically over R2

according to some atomless distribution that is symmetric across the two signals. The expected

value of V given the realizations of the two signals, (x, y), which equals the stock price P , given

the disclosure of the two signals, (x, y), is

E [V |X = x, Y = y] = P (x, y) = P (y, x) .

We assume that the distributions are such that P is continuous and strictly increasing in both

arguments. We also assume that the conditional distributions of the signals, Φ (x|y), have full

support.

The game has two periods, t ∈ {1, 2}. At the start of the game nobody knows the signal

realizations. At the beginning of period 1 the manager privately learns each of the signals with

probability p. Learning is independent across the two signals, so that the probability of learning

both signals at t = 1 is p2. The probability of learning a signal is also independent of the value of

any of the signals or the value of the company. In the beginning of period 2 the agent learns with

probability p any signal that he has not yet learned in period 1.4

Each period, after potentially learning some signals, the agent decides whether to reveal some

or all of the signals he has learned and not yet disclosed (so disclosure is voluntary and can be

selective). We follow Dye (1985) and assume that: (i) the agent cannot credibly convey the fact

that he did not obtain a signal, and (ii) any disclosure is truthful (or verifiable at no cost) and does

not impose a direct cost on the manager or the firm. Upon disclosure, the market can recognize

if it is signal X or Y - for example, they correspond to information about revenues and costs, or

domestic and foreign markets.

A public history at time t contains the set of signals that the agent has revealed and the times

at which he has revealed them. We denote it by hPt ∈ HP
t = {∅, (x, tx) , (y, ty) , (x, y, tx, ty)} . The

4All the model’s analysis and results are robust to the introduction of a third period in which the private signals
learned by the manager are publicly revealed.
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possible histories are that no signal has been revealed, that one signal has been revealed with value

x, or value y and that two signals have been revealed with values (x, y) . The times tx, ty ∈ {1, 2}

are the time signals are revealed.

We assume that when the agent reveals a signal the market does not know when he learned it.

For example, if the agent learns signal X at time 1 and reveals it in period 2, the market cannot

directly observe whether he has learned that signal in period 1 or 2.

A private history of the agent at time t = 1 is the set of signals that he has learned so far,

hA1 ∈ HA
1 = {∅, x, y, (x, y)} . At t = 2 the private history is the set of signals that he has learned

by then and the times he has learned them: hA2 ∈ HA
2 = {∅, (x, τx) , (y, τy) , (x, y, τx, τy)} , where

(τx, τy) are the times the agent has learned the signals x and y respectively. At t = 2 the agent also

knows the public history, i.e., whether he has revealed any signals at t = 1 and if so, which one. A

(behavioral) strategy of the agent at t = 1 is a mapping from private history hA1 into a disclosure

policy; at t = 2 the strategy is a mapping from HA
2 ×HP

1 to a disclosure policy.

We model the investors in a reduced form: given the public history, they form beliefs about the

value of the firm and set the market price at time t equal to that expectation:

Pt
(
HP
t

)
= E

[
V |HP

t

]
= E

[
P (x, y) |HP

t

]
.

If the agent reveals two signals, the market price is Pt
(
HP
t

)
= P (x, y) no matter in which period

the agent revealed those signals since upon revealing both signals there is no more information

asymmetry about V (recall that we have assumed that the probability of learning a signal is

independent of the value of the company).5 However, if the agent does not reveal any signal the

market prices P1 (∅) and P2 (∅) will be different from the prior expectation of P (x, y) because

investors form beliefs based on the equilibrium strategy of the agent and will infer that the agent

might have learned some signals and decided not to reveal them (since with positive probability

the agent does not learn any signals, both these histories are on the equilibrium path). Finally,

when only one signal, e.g., x, has been revealed the price will be

Pt (x, tx) = Ey
[
P (x, y) |HP

t

]
,

where the beliefs over the second signal, y, are formed consistently with Bayes rule and the equi-

librium strategy of the agent, whenever possible. In fact, some histories in which only x has been

5Prices are set this way even after an off-equilibrium disclosure of (x, y) .
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revealed may be out-of-equilibrium and in this case we do not put restrictions on the market’s

beliefs about the second signal.

We restrict attention to symmetric equilibria in which if only signal Y is revealed then the

market price Pt (y, ty) is the same as if only signal X is revealed at the same time and happens

to have the same value. This allows us to save on some notation. We also restrict attention to

problems and equilibria in which Pt (x, tx) is increasing in x (so that if the agent knows that he

plans to reveal only one signal, he will prefer to reveal the higher one).6 We describe the properties

of Pt (x, tx) in greater detail in the next section.

The manager’s objective is to maximize a weighted average of the firm’s price over the two

periods. For simplicity and without loss of generality we assume throughout most of the analysis

that the manager weighs the prices equally across the two periods.

A (perfect Bayesian) equilibrium is a profile of disclosure policies of the agent and a set of price

functions {Pt (∅) , Pt (x, tx) , P (x, y)} (both on and off the equilibrium path) such that the agent

optimizes given the price functions and the prices are consistent with the strategy of the agent

by applying Bayes rule whenever applicable. The equilibrium is monotone (which is the class we

analyze) if the price function Pt (x, tx) is increasing in x for all t, tx.

Figure 1 summarizes the sequence of events in the model.

Each signal is learned with probability p.
The manager decides what subsets of the
signals learned by him to disclose. At the
end of the period investors set the stock
price equal to their expectation of the
firm’s value.

Each signal that has not yet been received at
t=1 is obtained by the manager with
probability p. The manager may disclose a
subset of the signals he has received but not
yet disclosed at t=1. At the end of the period
investors set the stock price equal to their
expectation of the firm’s value.

t=1 t=2

Figure 1: Timeline

6For example, if X and Y are positively correlated and the agent follows a threshold strategy for revealing y
conditional on revealing x, then the equilibrium will satisfy this constraint.
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3 Later Disclosures Receive Better Responses

As mentioned above, we focus on symmetric equilibria. We also restrict attention to monotone

pure strategy equilibria, so that Pt (x, tx) is increasing in x for all t and tx. Finally, without loss

of generality we focus on histories in which x is disclosed before y or both signals are not disclosed

so, tx ≤ ty if ty ≤ 2.

In this section we present our main result: if we compare two public histories in which one signal

is revealed but at different times, the market price is higher in the history with later disclosure.7 In

other words, the market forms its beliefs based on what is revealed and also when it is revealed. It

is so even though the time of learning a signal is not informative about the value of the company.

Formally:

Theorem 1 Consider any symmetric monotone PBE in which public histories hP2 = (x, 1) and

ĥP2 = (x, 2) are on the equilibrium path.8 Then:

P2 (x, 2) ≥ P2 (x, 1) ,

i.e., in period 2 the price upon revelation of only one signal is higher if that signal was revealed

later.

Theorem 1 characterizes a property of any equilibrium that satisfies the monotonicity assump-

tion. In Section 4 we demonstrate the existence of a particular equilibrium, a threshold equilibrium

which satisfies the monotonicity (and symmetry) assumption. Moreover, we show in Section 4

that there exists an x′ such that P2 (x, 2) > P2 (x, 1) for all x > x′ such that x is revealed on the

equilibrium path.

We establish the result of Theorem 1 via a series of claims and lemmas. Some of the details

are in the appendix but we try to present the basic intuition in this section. We assume existence

of equilibrium with these two public histories hP2 = (x, 1) and ĥP2 = (x, 2) on the equilibrium path

and keep these two histories fixed. We start with the following observation:

7Since in our model there are only 2 signals that can be revealed, the effect of the time of disclosure is relevant
only for public histories where one signal is revealed.

8 I.e., for some x, both at t = 1 and t = 2 there are some private histories in which the agent learns that X = x
and his disclosure policy is to disclose only that signal.
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Claim 1 At t = 2 a manager who knows y follows a threshold strategy: conditional on revealing x

at tx = 1 or tx = 2, the manager reveals y if and only if P (x, y) ≥ P2 (x, tx) .9

This claim follows immediately from the objective function of the manager and the assumption

that P (x, y) is increasing in y.

We refer to managers who disclose x and by t = 2 know the second signal y as informed and

those who have not learned y as uninformed. Since we look at histories in which x has been

disclosed, the only uncertainty of the investors is about y. Formally, the set of informed managers

is given by {(y, τy)|τy ≤ 2} and the set of uninformed managers is given by {(y, τy)|τy > 2}, where

τy > 2 indicates that the manager did not learn y in either of the periods.

A key concept we use is that of potential disclosers. This is the set of agents for which Claim

1 applies. These are informed agents at t = 2 (τy ≤ 2) who have not disclosed y at t = 1 and their

disclosure decision at t = 2 can be described as myopic given that x is disclosed (either at t = 1 or

t = 2). In order to get to the set of potential disclosers from the set of informed agents, we need to

eliminate the following agents: agents who have disclosed y earlier, agents who would have disclosed

y but not x, and agents who would have preferred to disclose nothing given x and y. Alternatively,

the set of potential disclosures can be describes as the set of all (y, τy) that are consistent with the

history
(
hP2 or ĥ

P
2

)
plus all the types (y, τy) who reveal x (at either t = 1 or t = 2) and reveal y at

t = 2 and it is consistent with the history
(
hP2 or ĥ

P
2

)
. In the next two subsections we characterize

the set of “potential disclosers" for the two scenarios/histories hP2 (when x is disclosed at t = 1)

and ĥP2 (when x is disclosed at t = 2).

Let A denote the set of uninformed agents and B1 denote the set of potential disclosers when

x is disclosed at t = 1. Since the price equals the expectation over y of the firm’s value conditional

on non-disclosure of y, Claim 1 implies that

P2(x, 1) = E[P (x, y) |y ∈ SA,B1 ], (1)

where

SA,B1 = A ∪B1\{B1 ∩ {y : P (x, y) ≥ E [(P (x, y) |y ∈ SA,B1)]}}.

The set SA,B1 is constructed by looking at the union of A and B1 when we remove “above

average" types from B1 (above average in the sense that the price when disclosing y at t = 2

9To simplify the exposition, throughout this section we assume that an agent who is indifferent will disclose his
information.
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(P (x, y)) is higher than the the non-disclosure price (P2(x, 1)), as described by Claim 1). Similarly,

denoting the set of potential disclosers when x is disclosed at t = 2 by B2, we have

P2(x, 2) = E[P (x, y) |y ∈ SA,B2 ], (2)

where

SA,B2 = A ∪B2\{B2 ∩ {{y : P (x, y) ≥ E [(P (x, y) |y ∈ SA,B2)]}.

Note that the above definitions of SA,B1 and SA,B2 rely on the existence and uniqueness of a certain

fixed point. We prove the existence and uniqueness of such fixed point below. SA,B1 and SA,B2

play a central role in our proof of Theorem 1.

The roadmap for the proof is as follows. We show that a suffi cient condition for P2 (x, 2) ≥

P2 (x, 1) is that the set of potential disclosers when x is disclosed at t = 2 is a subset of the set of

potential disclosers when x is disclosed at t = 1, that is, B2 ⊆ B1. Rather than proving this directly

we prove it by way of contradiction. In particular, we show that if P2 (x, 1) > P2 (x, 2), then B2 ⊆

B1, but we also show that if B2 ⊆ B1 then P2 (x, 2) > P2 (x, 1), which leads to a contradiction.

3.1 Generalized Minimum Principle

We now establish a general statistical lemma (it is an extension of the minimum principle that

appeared first in Acharya, DeMarzo, and Kremer (2011)).10 Given sets A and B, let SA,B be

defined as

SA,B = A ∪B\{B ∩ {y ≥ E[y|y ∈ SA,B]}}.

Lemma 1 Generalized Minimum Principle

(0) SA,B exists and is unique.

(i) E [y|y ∈ A ∪B] ≥ E [y|y ∈ SA,B], with equality if and only if any y ∈ B satisfies y < E [y|y ∈ SA,B].

(ii) Suppose that B′ ⊇ B”. Then E[y|y ∈ SA,B′′ ] ≥ E[y|y ∈ SA,B′ ].

(iii) Suppose that B′ ⊃ B”. Then SA,B′′ = SA,B′ if and only if y > E[y|y ∈ SA,B′′ ] for all

y ∈ B′\B”.11

10Acharya et al. (2011) established a claim that is similar to (0) and (i) of the lemma below.
11Note that (ii) and (iii) imply that if there are elements y ∈ B′\B” such that y < E [y|y ∈ SA,B′′ ] then

E [y|y ∈ SA,B′′ ] > E [y|y ∈ SA,B′ ].
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To see the intuition behind the existence of SA,B consider an iterative procedure in constructing

SA,B. In each step the average goes down since we remove some types higher than the previous

average. This procedure converges since if we remove all types in B we are left with the set A. The

intuition behind (ii) is that having a smaller domain in set B can have two effects: if we reduce

the domain of B by removing realizations of y that are higher than the overall average, then the

expectation does not change (as these elements would have been removed anyhow from B). If we

remove some elements that are lower than the average (even if these are above-average elements of

B, but are smaller than the overall average that includes A) then the average goes up. The proof

of (ii) and (iii) and the formalization of (0) and (i) are in the appendix.

3.2 The Set of Potential Disclosers when x is Disclosed at t=1

We first note that once x is revealed, prices drop over time if no further disclosure is made, which

is formalized in the following Lemma.

Lemma 2 P1 (x, 1) ≥ P2 (x, 1).

We present the proof in the appendix. The intuition is that once the agent reveals x, the market

grows more and more worried about adverse selection over y because the probability that the agent

learned y grows over time. Since at t = 2 an agent that disclosed X but did not disclose Y behaves

myopically (see Claim 1), Lemma 2 implies the following corollary:

Corollary 1 A manager that has disclosed x at t = 1 is myopic with respect to the decision to

disclose y. That is, conditional on disclosing x at t = 1 an informed manager reveals also y at

t = 1 if and only if P (x, y) ≥ P1 (x, 1) .

We decompose the set B1 into two disjoint subsets, B1 = B1
1 ∪ B2

1 where B
1
1 ∩ B2

1 = ∅. The

subsets B1
1 and B

2
1 are given by

B1
1 = {(y, τy)|τy = 1, y is consistent with x being revealed at t = 1 and y not being revealed} ,

B2
1 = {(y, τy)|τy = 2, y is consistent with x being revealed at t = 1} .

If x is disclosed at t = 1 and y was known only at t = 2 then no realization of y can be ruled

out. Hence, B2
1 consists of all the agents who became informed at t = 2, i.e., B2

1 = {(y, τy)|τy = 2}.

What can we infer about B1
1 from x being revealed at tx = 1? Under the contradictory assumption

that P2 (x, 2) < P2 (x, 1) we can infer the following.
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Claim 2 Assume that P2 (x, 2) < P2 (x, 1) and define the set B
′1
1 ≡ {(y, τy) |τy = 1, y ≤ min{x, y∗(x)}},

where y∗ (x) satisfies P2 (x, 2) ≤ P (x, y∗(x)). Then using either the set B
′1
1 or B1

1 when computing

P2 (x, 1) using equation (1) yields the same price P2 (x, 1).

See the appendix for the proof.

3.3 The Set of Potential Disclosers when x is Disclosed at t=2

Consider the set B2. As in the case of B1, we decompose B2 into two disjoint subsets, B2 = B1
2∪B2

2

where B1
2 ∩B2

2 = ∅. The subsets B1
2 and B

2
2 are given by

B1
2 = {y|τy = 1, y is consistent with x being revealed at t = 2}

B2
2 = {y|τy = 2, y is consistent with x being revealed at t = 2}

What do we learn about B1
2 under the contradictory assumption that P2 (x, 2) < P2 (x, 1)? We first

argue that

Lemma 3 Suppose that P2 (x, 2) < P2 (x, 1). If only x is disclosed at time t = 2 then the agent

could not have known both signals at t = 1.

The proof is provided in the appendix.

Based on this lemma and using monotonicity of equilibrium, we can infer that if y was learned

at t = 2 it must be that y ≤ x.We can also rule out that y is such that it would have been disclosed

at t = 1 if it were the only signal known to the agent. Therefore, an immediate corollary is

Corollary 2 Suppose that P2 (x, 2) < P2 (x, 1). Then B1
2 = {(y, τy)|τy = 1, y ≤ x, y ∈ ND} where

ND is the set of values of y that are not disclosed at t = 1 when the agent only knows y at t = 1.

Considering B2
2 we learn that the agent would not have preferred to disclose just y to disclosing

just x, and therefore B2
2 = {(y, τy)|τy = 2, y ≤ x}.12

12 In principle we also know that y is such that the agent prefers to reveal x than to keep both x and y hidden.
This can be ignored as it does not include additional information about y (it implies only that P2 (∅) ≤ P2 (x, 2) ,
which is independent of y).
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3.4 Proof of the Main Theorem

Based on the definition of SA,B2 we have E[P (x, y) |y ∈ SA,B2 ] = E[P (x, y) |y ∈ SA,B′2 ] where

SA,B′2 = SA,B2 ∩ {y < P2(x, 2)}. Hence we can replace B2 with B′2. Note that we have

B′12 = {(y, τy)|τy = 1, y ≤ x, y ∈ ND, y < P2(x, 2)}.

Given Claim 2 we have that B1
1 ⊇ B′12 . Similarly

B′22 = {(y, τy)|τy = 2, y ≤ x, y < P2(x, 2)}

and we have B2
1 ⊇ B′22 which implies that B1 ⊇ B′2. However, Lemma 1(ii) shows that B

2
1 ⊇ B′22

implies E[y|y ∈ SA,B′2 ] ≥ E[y|y ∈ SA,B1 ] and therefore that P2 (x, 2) ≥ P2 (x, 1). This contradicts

the assumption that P2 (x, 2) < P2 (x, 1) and implies that Theorem 1 holds.

In section 4 we analyze a threshold equilibrium and show that the inequality in Theorem 1 is

strict for suffi ciently high values of x. This may hold either for all values of x that are disclosed

on the equilibrium path, or else for values of x that are higher than some finite x′. In the general

case of Theorem 1 a suffi cient condition for the inequality to be strict is that the set B′2 is strictly

subsumed by the set B′1 (where B
′
1 = B′11 ∪B2

1). More intuitively, a suffi cient condition for a strict

inequality is that there are values y < P2(x, 2) which are not precluded under the assumption that

the agent learned only y at t = 1 and concealed it, i.e., there are values y ∈ ND that are lower

than P2(x, 2).

4 A Threshold Equilibrium

In this section we demonstrate that a symmetric threshold equilibrium exists under suitable condi-

tions. In this way, we establish that the assumptions in the previous section are non-vacuous. We

also show that for large x the inequality in Theorem 1 is strict.

In static voluntary disclosure models with one signal, it is easy to prove that any equilibrium

is in threshold strategies. It follows from the facts that (i) the payoff upon non-disclosure is fixed;

and (ii) the payoff upon disclosure equals the expected type given the signal, which is increasing in

the signal. Hence, the incentives to disclose are increasing in type and equilibrium is characterized

by a threshold strategy. In contrast, in our dynamic setting (i) the agent’s expected payoff upon

non-disclosure is not constant but rather increasing in type; and (ii) the payoff upon disclosure of

13



one signal is diffi cult to compute since it depends on the equilibrium beliefs (regarding the second

signal). Therefore, unlike the static case, we are not able to prove that all equilibria are in threshold

strategies. Instead we show existence of such equilibria by showing that if market prices are set

using beliefs that the manager follows a threshold strategy then indeed it is optimal for the manager

to follow a threshold strategy (for some thresholds consistent with the beliefs).

To demonstrate the existence and properties of a threshold equilibrium, we make the following

additional assumptions. The value of the firm, V , is normally distributed. Without loss of gen-

erality, V has zero mean, i.e., V ∼ N(0, σ2). The private signals that the manager may learn are

given by X = V + ε̃x and Y = V + ε̃y where ε̃x, ε̃y ∼ N(0, σ2
ε) and ε̃x, ε̃y are independent of V and

of each other.

We denote investors’ equilibrium expectation at time t of the signal y, conditional on the

manager disclosing X = x at time tx ≤ t by

ht (x, tx) .

Properties of the joint normal distribution of the signals imply the following conditional expec-

tations:

E[V |X = x] = β1x,

E[Y |X = x] = β1x

E[V |X = x, Y = y] = β2(x+ y)

where β1 = σ2

σ2+σ2ε
and β2 = σ2

2σ2+σ2ε
. Note that β2 < β1 < 2β2 < 1 and β2(1 + β1) = β1.

Of course, equilibrium prices are more complicated because when the manager discloses only

one signal investors form beliefs about the other signal. In particular, the expectation of the firm’s

value given disclosure of a single signal, X = x, at t = tx as calculated at the end of period t is:

Pt (x, tx) = E [V |x was disclosed at tx]

= β2(x+ ht (x, tx)).

We define a threshold strategy in our dynamic setting with two signals as follows:

Definition 1 Denote the information set of an agent by {x, y} ∈ (R ∪ ∅)2 where x = ∅ means that

the agent has not learned the signal X yet. We say that the equilibrium is a threshold equilibrium if

14



an agent with information set {(x, τx) , (y, τy)} who discloses x at time tx ∈ {1, 2} also discloses any

x′ > x by time tx when his information set is {(x′, τx) , (y, τy)}, and symmetrically for the signal

Y .13

As shown in Section 3 the agent is myopic at t = 2, so he follows a threshold strategy then.

Hence, we focus our attention on the manager’s disclosure decision at t = 1. The main result of

this section is:

Proposition 1 For p < 0.95 there exists a threshold equilibrium in which14

(i) an agent who at t = 1 learns only one signal discloses it at t = 1 if and only if it is greater than

x∗. If the agent learns both signals at t = 1 and one of them is greater than x∗ then he discloses

at least the highest signal at t = 1. Disclosing a single signal x < x∗ at t = 1 is not part of the

equilibrium disclosure strategy.

(ii) there exists x′ ≥ x∗ such that P2 (x, 2) > P2 (x, 1) for any x ≥ x′.

Note that an agent who learns both signals at t = 1 and one of them is greater than x∗ may

choose to disclose at t = 1 both signals or just the higher signal.

The proof of Proposition 1 is quite complex and therefore we provide few interim steps. We

start by describing the expected payoff the various manager types obtain from different disclosure

decisions. Next, in Section 4.1, we discuss a variant of a static disclosure model that provides some

of the insights we later use in the proof for our dynamic setting. We should note that this variant

of the static model may be of independent interest. In Section 4.2, we characterize the equilibrium

prices if the manager is believed to follow a threshold strategy. For these prices, we show that the

agent’s expected payoff upon disclosure at t = 1 increases in his type faster than his expected payoff

upon non-disclosure. Therefore, given these prices, the agent’s best response would indeed be to

follow a threshold strategy in the first period, which allows us to complete the proof of Proposition

1. In Section 4.3 we discuss some empirical predictions that our model offers.

We first assume (and later confirm) that there exists a threshold equilibrium in which a manager

who learns a single signal, x, at t = 1 discloses it at t = 1 if and only if x ≥ x∗. We later show that
13While we do not know whether a non-threshold equilibrium exists, one can show that it is always the case that

the equilibrium-reporting strategy of the second period is a threshold strategy.
14We believe that the threshold equilibrium exists also for values of p greater than 0.95; however, for tractability

reasons we restrict the values of p.
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a manager with x ≥ x∗ who deviates and does not disclose x at t = 1 still prefers to disclose x at

t = 2 over not making any disclosure at t = 2.

It is useful to partition the set of managers who learn a signal x ≥ x∗ at t = 1 into the following

three subsets: (I) managers who learn only x at t = 1; (II) managers who learn both signals at

t = 1 but the signal y is suffi ciently high, such that if the manager doesn’t disclose any signal at

t = 1 he will disclose both x and y at t = 2; and (III) managers who learn both signals at t = 1

but the signal y is suffi ciently low, such that if the manager doesn’t disclose any signal at t = 1

he will not disclose y at t = 2 (and will disclose x at t = 2). In cases (II) and (III) we assume

without loss of generality that y ≤ x (if y > x then our reasoning is symmetric when replacing x

with y).

Consider case (I).

If the manager discloses x at t = 1 he will disclose Y at t = 2 (if learns it) only if P (x, y) ≥

P2 (x, 1), i.e., only if y ≥ h2 (x, 1). On the other hand, if the manager does not disclose x at t = 1

he may benefit at t = 2 from one of two “real options.”The first option value will be realized if the

manager learns at t = 2 a suffi ciently high y, so that at t = 2 his optimal strategy will be to disclose

y and conceal x. This will happen for suffi ciently high realizations of y, such that y > yH (x).15

For such realizations of y, not disclosing x at t = 1 increases the manager’s payoff at t = 2 relative

to his payoff at t = 2 if he were to disclose x at t = 1. The second option value will be realized

if either the manager does not learn y at t = 2 or if he learns a suffi ciently low y such that he

does not disclose y and only discloses x at t = 2. When he learns y at t = 2 the manager will not

disclose it (and will disclose only x) if P (x, y) < P2 (x, 2), i.e., if y < h2 (x, 2). In such a case, since

P2 (x, 2) ≥ P2 (x, 1) (see Theorem 1), the manager’s payoff at t = 2 is higher than his payoff would

have been had he disclosed x at t = 1.

In order for the agent who learned a single signal at t = 1 to disclose it at t = 1, his expected

benefit from these two real options should be (weakly) lower than the difference in equilibrium prices

at t = 1 conditional on disclosing or not disclosing x at t = 1. This implies that in equilibrium,

each agent who discloses x at t = 1 benefits from an immediate gain upon disclosure relative to

concealing his signal at t = 1, that is,

P1 (x, 1) > P1 (∅) for any x ≥ x∗. (3)

This inequality means that following the disclosure of any single signal at t = 1 (on the equi-
15The value yH (x) is the value of y for which P2 (y, 2) = P (x, y), or equivalently h2 (y, 2) = x.
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librium path) the price goes up by some uniformly bounded amount compared to the price when

no information is disclosed. This is different from the standard Dye (1985) and Jung and Kwon

(1988) model.

More explicitly, the optimal disclosure policy of a manager who learns only x at t = 1 depends

on the comparison of the following two payoffs. The expected payoff at t = 1 of an agent that

learned only x and chooses to disclose it is:

Et=1 (U |τx = 1, τy 6= 1, tx = 1, x) = β2 (x+ h1 (x, 1)) + Ey [max {β2 (x+ h2 (x, 1)) , β2 (x+ y)} |x]

= β2 (x+ h1 (x, 1)) + (1− p)β2 (x+ h2 (x, 1))

+ pβ2

[(
x+

∫ h2(x,1)

−∞
h2 (x, 1) f (y|x) dy

)
+

∫ ∞
h2(x,1)

(x+ y) f (y|x) dy

]
.

where f (y|x) is the pdf of the distribution of Y conditional on X = x. The first term is the period

1 price, the second term is the period 2 price if the agent does not learn Y and the last term is the

average second period price if the agent learns Y and follows the optimal strategy of revealing y if

and only if y ≥ h2 (x, 1) .

The expected payoff at t = 1 of an agent that learned only x at t = 1 and withholds his

information at t = 1 is:16

Et=1 (U |τx = 1, τy 6= 1, tx 6= 1, x) = P1 (∅) + Ey [max {β2 (x+ h2 (x, 2)) , β2 (x+ y) , β2 (y + h2 (y, 2))} |x]

= P1 (∅) + (1− p)β2 (x+ h2 (x, 2))

+ pβ2

[∫ h2(x,2)

−∞
(x+ h2 (x, 2) f (y|x) dy) +

∫ yH(x)

h2(x,2)
(x+ y) f (y|x) dy +

∫ ∞
yH(x)

(y + h2 (y, 2) f (y|x) dy)

]
.

The first two terms are analogous to the first two terms in the previous case. The last term is

the average price from an optimal strategy in period 2 which is: if y < h2 (x, 2) then disclose only

x, if y ∈
[
h2 (x, 2) , yH (x)

]
disclose both signals, and if y > yH (x) disclose only y.

A manager that learns a single signal, x, at t = 1 prefers to disclose x at t = 1 to not disclosing

it if

Et=1 (U |τx = 1, τy 6= 1, tx = 1, x) ≥ Et=1 (U |τx = 1, τy 6= 1, tx 6= 1, x) . (4)

Next, consider subset (II).

16The agent considers Ey [max {β2 (x+ h2 (x, 2)) , β2 (x+ y) , β2 (y + h2 (y, 2)) , P2 (∅)} |x]. However, for any x > x∗

an agent who did not disclose at t = 1 is better off disclosing x at t = 2 than not disclosing at all. Therefore, we omit
the price at t = 2 given no disclosure, P2 (∅), from the agent’s expected utility.

17



Subset (II) consists of managers who learn both signals at t = 1 and y is such that P (x, y) ≥

P2 (x, 2) ≥ P2 (x, 1), i.e., y ≥ h2 (x, 2) . Such types disclose both signals at t = 2 no matter if they

disclose x at t = 1 or not. Therefore, such types do not benefit from any of the real options that

managers in subset (I) do. Such a manager will disclose x at t = 1 if

max {P1 (x, 1) , P (x, y)} ≥ P1 (∅) .

So types in subset (II) will clearly follow a threshold strategy.

Finally, consider subset (III).

Subset (III) consists of managers who learn both signals at t = 1 and y is such that P (x, y) <

P2 (x, 2), i.e., y < h2 (x, 2). If such a type discloses nothing at t = 1, he will benefit from the delay

since P2 (x, 2) ≥ P2 (x, 1). So, they trade off a higher price at t = 1 against a lower price at t = 2.

Such a manager will disclose x at t = 1 if

P1 (x, 1) + P2 (x, 1) ≥ P1 (∅) + P2 (x, 2) , (5)

or, equivalently, if

β2 (x+ h1 (x, 1)) + β2 (x+ h2 (x, 1)) ≥ P1 (∅) + β2 (x+ h2 (x, 2)) .

To show that given the equilibrium prices the manager’s best strategy is a threshold strategy

at t = 1 it is suffi cient to show that LHS−RHS of both inequalities (4) and (5) increase in x. We

will show below that if LHS − RHS of (5) is increasing in x so does LHS − RHS of (4). Hence,

it will be suffi cient to prove that:

∂

∂x
P1 (x, 1) +

∂

∂x
P2 (x, 1) ≥ ∂

∂x
P2 (x, 2) ,

or equivalently,
∂

∂x
h1 (x, 1) +

∂

∂x
h2 (x, 1) ≥ ∂

∂x
h2 (x, 2)− 1. (6)

Next, in Section 4.1 we study an extension of Dye’s (1985) static model, in which we assume

that the disclosure threshold of the agent is determined exogenously and is stochastic. This will be

instrumental in Section 4.2 which is the last stage of proving Proposition 1.

4.1 A Variant of a Static Model

Consider the following static disclosure setting, similar to Dye (1985) and Jung and Kwon (1988).

The agent’s potential signal is now the firm’s value and it is a realization of S ∼ N(µ, σ2).17 With
17The reason we are considering general µ is that in our dynamic setting investors will update their beliefs about

the undisclosed signal, y, based on the value of the disclosed signal, x.
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probability p the agent learns this value. If the agent learns the realization of S he may choose to

disclose it. We are interested in investors’beliefs about the firm’s value given no disclosure for an

arbitrary threshold disclosure policy. That is, what is the expectation of S given that the agent

discloses s if and only if s ≥ z, for exogenously determined z. Unlike Dye (1985) and Jung and

Kwon (1988), we are not constraining z to be consistent with optimal disclosure strategy by the

agent’s, i.e., z is not part of an equilibrium. We will refer to this setting as the "Dye setting with

an exogenous disclosure threshold.”

Denote by hstat (µ, z) investors’expectation of S given that no disclosure was made and given

that the disclosure threshold is z. Figure 2 plots hstat (µ, z) for S ∼ N (0, 1) with p = 0.5.

­3 ­2 ­1 1 2 3

­0.3

­0.2

­0.1

0.1

z

h(z)

Figure 2: Price Given No-Disclosure in a Dye Setting with Exogenous Disclosure Threshold z

For z → ∞ none of the agents discloses, and hence, following no disclosure investors do not

revise their beliefs relative to the prior. For z → (−∞) all agents who obtain a signal disclose it,

and therefore, following no disclosure investors infer that the agent is uninformed, and therefore

(as for z →∞) investors posterior beliefs equal the prior distribution. As the exogenous disclosure

threshold, z, increases from −∞, upon observing no disclosure investors know that the agent is

either uninformed or that the agent is informed and his type is lower than z. Therefore, for any

finite disclosure threshold, z, investors’expectation of s following no disclosure is lower than the

prior mean (zero). The following lemma provides a further characterization of investors’expectation

about s given no disclosure, hstat (µ, z).

Lemma 4 Consider the Dye setting with an exogenous disclosure threshold. Then:

1. hstat (µ+ ∆, z + ∆) = hstat (µ, z) + ∆ for any constant ∆; this implies that ∂
∂µh

stat (µ, z) +

∂
∂zh

stat (µ, z) = 1.

2. z∗ = arg minz h
stat (µ, z) if and only if z∗ = hstat (µ, z∗). This implies that the equilibrium
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disclosure threshold in the standard Dye (1985) and Jung and Kwon (1988) equilibrium minimizes

hstat (µ, z).

The second point follows from Lemma 1 (the Generalized Minimum Principle). Note that for all

z < hstat (µ, z) the price given no disclosure, hstat (µ, z), is decreasing in z (and for z > hstat (µ, z)

it is increasing in z).

Direct analysis of the hstat (µ, z) shows that for p < 0.95 the absolute value of the slope of

hstat (µ, z) with respect to z is uniformly bounded by 1. This bound allows to bound how future

prices change with x and that allows us to establish the existence of a threshold strategy equilibrium;

this is where we use the assumption p < 0.95 in Proposition 1.

For the analysis of our dynamic model it will prove useful to consider a richer variant of this

model, allowing a random threshold policy. In particular, with probability λi, i ∈ {1, ..,K} , where∑K
i=1 λi = p, the agent discloses only if his type is above zi (µ). The reason we are considering a

random disclosure policy is as follows. In our dynamic setting, when by t = 2 the agent disclosed

a single signal investors do not know whether the agent learned a second signal and if so, whether

he learned it at t = 1 or at t = 2. Since the agent follows different disclosure thresholds at the

two possible dates, investors’ beliefs about the agent’s disclosure threshold for the signal y are

stochastic. Moreover, the disclosure thresholds for y change with x, but x affects also the investor’s

belief about the unconditional mean of the second signal Y , so we write z as a function of the

mean.

Let us denote by hstat (µ, {zi(µ)}) the conditional expectation of the type given no disclosure

and given that the disclosure thresholds are zi (µ).

Lemma 5 For p ≤ 0.95 suppose that zi (µ) < hstat (µ, {zi (µ)}) and z′i (µ) ∈ [0, c] for all i. Then

d
dµh

stat (µ, {zi(µ)}) ∈ (1, 2− c).

The intuition for the random case, in which K > 1, is somewhat complicated, and, therefore, we

defer it to the appendix where we formally prove Lemma 5. In order to provide the basic intuition

for the result, we analyze the particular case in which the disclosure strategy is nonrandom, i.e.,

K = 1. We start by providing the two simplest examples, for the cases where z′ (µ) = 1 and

z′i (µ) = 0. These examples are useful in demonstrating the basic logic and how it can be analyzed

using Figure 2. These two examples also provide most of the intuition for the case with no restriction
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on z′i (µ), which is presented in Example 3. Note that example 3 also provides the upper and lower

bounds for the more general case in Lemma 5.

Examples (all the examples assume K = 1):

1. If z′ (µ) = 1 then d
dµh

stat (µ, z(µ)) = 1.

Using point 1 in Lemma 4 we have d
dµh

stat (µ, z(µ)) = ∂
∂µh

stat (µ, z)+z′ (µ)∗ ∂∂zh
stat (µ, z) = 1.

The intuition can be demonstrated using Figure 2. A unit increase in µ (keeping z constant)

shifts the entire graph both upwards and to the right by one unit. However, since also z

increases by one unit, the overall effect is an increase in hstat (µ, z(µ)) by one unit.

2. If z′ (µ) = 0 and z (µ) = z∗, then d
dµh

stat (µ, z(µ)) ∈ (1, 2).

From Lemma 4 we know that ∂
∂µh

stat (µ, z∗)+ ∂
∂z∗h

stat (µ, z∗) = 1 and therefore ∂
∂µh

stat (µ, z∗) =

1 − ∂
∂z∗h

stat (µ, z∗). We also know that ∂
∂z∗h

stat (µ, z∗) ∈ [(−1, 0) since z∗ ≤ hstat (µ, z∗).

Therefore, ∂
∂µh

stat (µ, z∗) ∈ (1, 2). The intuition can be demonstrated using Figure 2. The

effect of a unit increase in µ can be presented as a sum of two effects: (i) a unit increase in the

disclosure threshold z as well as a shift of the entire graph both to the right and upwards by

one unit and (ii) a unit decrease in the disclosure threshold z (as z′ (µ) = 0). The first effect

is similar to Example 1 above and therefore increases hstat (µ, z(µ)) by one. The second effect

increases hstat (µ, z(µ)) by the absolute value of the slope of hstat (µ, z), which is between zero

and one.

3. In the general case z′ (µ) = c, we have d
dµh

stat (µ, z(µ)) ∈ (1, 2− c).

This covers previous examples as special cases. Following a similar logic, we conclude that

d
dµh

stat (µ, z(µ)) = ∂
∂µh

stat (µ, z) + c ∗ ∂
∂zh

stat (µ, z) = 1 + (c− 1) ∂
∂zh

stat (µ, z(µ)). Recall that

∂
∂zh

stat (µ, z(µ)) ∈ (−1, 0) for p < 0.95.

4.2 Existence of a Threshold Equilibrium and Characterization of Prices

In this section, we first assume the existence of a threshold equilibrium in which a manager who

learns only x at t = 1 discloses it if and only if x ≥ x∗. We derives some characteristics of prices

that always hold for such a disclosure strategy. Then, using these characteristics of prices, we

finalize the proof of Proposition 1 by showing that it is indeed optimal for the manager to follow a

threshold strategy.
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Recall three observations that we discussed earlier. First, at t = 2 the manager behaves my-

opically and follows a threshold disclosure strategy. Second, the price at t = 1 given no disclosure,

P1 (∅), is lower than the price at t = 1 given disclosure of any x ≥ x∗. That is, P1 (∅) < P1 (x, 1)

(see Equation 3). Third, an agent who learns both signals at t = 1 such that y < x and discloses x

at t = 1, behaves myopically with respect to the disclosure of his signal y in both t = 1 and t = 2

(see Corollary 1).

Next, we characterize the slopes of the various prices given disclosure of a single signal; i.e., we

characterize: P1 (x, 1) = β2 (x+ h1 (x, 1)), P2 (x, 1) = β2 (x+ h2 (x, 1)), and P2 (x, 2) = β2 (x+ h2 (x, 2)).

As we discussed earlier, a suffi cient condition for a threshold strategy to indeed be optimal for the

manager is to show that inequality (6), which uses the derivatives of the above prices, holds.

Claim 3 Suppose that investors believe that the manager follows a threshold reporting strategy

similar to the one in Proposition 1. Then, for p ≤ 0.95:

∂

∂x
h1 (x, 1)

{
= β1 if h1 (x, 1) < x

∈ (2β1 − 1, β1) if h1 (x, 1) > x

∂

∂x
h2 (x, 2)

{
= β1 if h2 (x, 2) < x∗

∈ (2β1 − 1, 2β1) if h2 (x, 2) > x∗
(7)

∂

∂x
h2 (x, 1)

{
= β1 if h2 (x, 1) < x

∈ (2β1 − 1, β1) if h2 (x, 1) > x

Proof. We provide here the reasoning for h1 (x, 1) and delegate the other two cases to the appendix.

As we showed in Section 3, for any x that is disclosed at t = 1 such that h1 (x, 1) < x (the

non binding case),18 if τy = 1 the agent is myopic with respect to the disclosure of y and discloses

it whenever y ≥ h1 (x, 1). This makes the analysis of the effect of an increase in x on h1 (x, 1)

qualitatively similar to the analysis of an increase in the mean of the distribution in a standard

Dye (1985) and Jung and Kwon (1988) equilibrium. In this case, an increase in the mean of

the distribution results in an identical increase in both the equilibrium beliefs and the equilibrium

disclosure threshold. This case is captured by Example 1 in Section 4.1. The quantitative difference

in our dynamic setting is that a unit increase in x increases investors’beliefs about y by β1 (rather

18We use the term non-binding to indicate that the constraint/investors’inference y < x is not binding. The reason
is that in this case h1 (x, 1) < x also implies that y < x.
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than by 1) and therefore also increases both the beliefs about y and the threshold for disclosure of

y by β1. As a result, in our dynamic setting, for h1 (x, 1) < x we have ∂
∂xh1 (x, 1) = β1.19

In the binding case, i.e., for all x such that h1 (x, 1) > x (if such x > x∗ exists) we know that if

τy = 1 then y < x (otherwise, the manager would have disclosed y). An increase in x increases the

beliefs about y at a rate of β1 while the increase in the constraint/disclosure threshold (y < x) is

at a rate of 1. Therefore, this is a special case of Example 3 in Section 4.1, where we increase the

mean by β1 and z′ (µ) ≡ c = 1
β1
. From Example 3 we know that an increase in the beliefs about y

given a unit increase in x (which is equivalent to an increase of β1 in the value of µ in Example 3)

is given by β1

(
1 + (c− 1) ∂

∂zh
stat (µ, z)

)
. Substituting c = 1

β1
and rearranging terms yields

∂

∂x
h1 (x, 1) = β1 + (1− β1)

∂

∂z
hstat (µ, z) .

Since ∂
∂zh

stat (µ, z) ∈ (−1, 0) we have ∂
∂xh1 (x, 1) ∈ (2β1 − 1, β1).

Analyzing the effect of x on h2 (x, 2) and h2 (x, 1) is more involved and more technical. There-

fore, we defer it to the appendix (See Proof of Claim 3). The reason these cases are more complicated

is that when pricing the firm at t = 2 investors do not know whether the manager learned y at

t = 1 or at t = 2 (in the case where the agent did in fact learn y). Investors’inferences about y

depend on when the agent learned it, and therefore the analysis of h2 (x, 2) and h2 (x, 1) requires

stochastic disclosure thresholds. This is where we use Lemma 5.

Equipped with this characterization of how prices change with x, under the assumption of a

threshold disclosure strategy, we are now ready to establish the existence of a threshold equilibrium.

The existence proof is complicated and technical, and therefore we provide only a sketch of the

proof below, while the formal proof is deferred to the appendix.

Sketch of Proof for Proposition 1. We show that if the manager learns a suffi ciently high

signal at t = 1 he will disclose it at t = 1 (and if he learns a second signal at t = 1 he sometimes

discloses it as well). If the highest signal the manager learns at t = 1 is suffi ciently low he will not

make a disclosure at t = 1. Finally, using the properties of the slopes of the various prices that we

derived in Claim (3), we show that the difference between the agent’s expected payoff at t = 1 from

disclosing a signal x at t = 1 and his expected payoff at t = 1 from not disclosing it is increasing in

the signal x. This guarantees the existence of a threshold equilibrium.

19Since both the beliefs about y and the disclosure threshold increase at the same rate, the probability that an
agent who discloses only x at t = 1 learned y at t = 1 but did not disclose it is independent of x.
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Finally, we show that there exists an x′ such that for x > x′ later disclosure receives a strictly

better interpretation, i.e., P2 (x, 2) > P2 (x, 1).

While Proposition 1 establishes the existence of a threshold equilibrium, it does not describe

how x∗, the disclosure threshold at t = 1, is determined. We complete this analysis below.

At the beginning of Section 4, when discussing the manager’s trade-offs we partitioned the set

of managers who make a disclosure at t = 1 into subsets (I)−(III). We will use the same partition

in order to describe how the threshold for disclosure of a single signal at t = 1 is determined.

For a given x, if a manager in subset (III) prefers to disclose x at t = 1 then it is easy to see

that every manager in subset (II) strictly prefers to disclose x at t = 1. It is not easy, however, to

compare the incentives to disclose in subsets (I) and (III). The reason is that a type in subset (I)

that does not disclose x at t = 1 may benefit from either one of the real options, or none of them,

while a type in subset (III) benefits for sure from just one of the real options (the increased price

at t = 2 when disclosing a single signal at t = 2 relative to the price at t = 2 when disclosing x at

t = 1).

To obtain an equilibrium with a threshold for disclosure of a single signal at t = 1, we set x∗

to equal the lowest value of x for which all agents with x = x∗ from all subsets (I)− (III) weakly

prefer to disclose x∗ at t = 1 to not disclosing at t = 1. The binding constraint might be either

Equation (4) or Equation (5). Since in equilibrium, there are agents who learn a signal x∗ at t = 1

and strictly prefer to disclose it at t = 1 to not disclosing at t = 1 (these are agents in subset

(II) and possibly some agents from one of the other subsets), the price given disclosure of x < x∗

at t = 1, which is off the equilibrium path, must be suffi ciently low to prevent the above types

from deviating from the equilibrium strategy and disclosing x < x∗ at t = 1. This implies that a

necessary condition for our equilibrium is that prices exhibit a discontinuity at x∗. Note that on

the equilibrium path, prices are continuous.

4.3 Empirical Implications

Our model demonstrates how strategic considerations affect an agent’s voluntary disclosure deci-

sions in a dynamic setting. An immediate empirical implication of our model is that, given all

else equal, a later occurrence of voluntary disclosure receives a better interpretation. There are

many real life circumstances in which, as our model assumes, investors are uncertain about the
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time in which a firm observes value-relevant information and the disclosure of such information is

voluntary. Firms that have ongoing R&D projects can obtain new information about the state of

their projects, where the time of information arrival and its content is unobservable to the market.

Moreover, such results are not required to be publicly disclosed. One such example is pharmaceu-

tical companies that get results of drug clinical trials. Investors’beliefs about a drug’s clinical trial

may have a great effect on the firm’s price and may also affect beliefs about the prospect of other

projects of the firm. In such a setting, our model predicts that when the firm discloses the results

of only part of its projects, a later disclosure gets a more positive market reaction. Another related

example is firms that apply for patents. After the initial application, the firm first waits to receive

a notice of allowance (NOA) from the US PTO (U.S. Patent and Trademark Offi ce) for each of

the applications, which indicates that the patent is near approval. Typically, patent applications

may include many claims to be covered under the patent and the NOA informs the firms which of

the claims have been approved and which have not been approved. Following the NOA, the firm

waits for the formal issuance, indicating that the PTO has formally bestowed patent protection.20

As Lansford (2006, page 5) indicates: “It is important to note that firms enjoy wide discretion

as to when to announce a patent event.” Lansford (2006) documents that firms indeed time the

disclosure of NOA strategically.

In light of the focus of the current literature on static models, an interesting question is how the

dynamic/multi period nature of our setting, which we believe is very prevalent in practice, affects

the agent’s disclosure decisions. One way to demonstrate this effect is to compare the disclosure

strategy in a single-period setting (as in Pae 2005) with the disclosure strategy in our setting.

In particular, consider a single-period benchmark setting, in which the probability of obtaining

each signal equals the probability of obtaining each signal in the first period of our two-period

setting. That is, the first period of our two-period setting differs from the single-period benchmark

setting only in that there is a future in which the agent may learn additional information and

may voluntarily disclose information. Our model indicates that the existence of a continuation to

the first period decreases the amount of disclosure in the first period. The reason is that in the

two-period setting, withholding information in the first period generates a real option for the agent,

and, therefore, increases the disclosure threshold relative to a setting where such real options for

20 It typically takes a few months between the NOA and the time at which the patent is published in the US PTO
website.

25



non-disclosure do not exist.

The disclosure strategy and investors’beliefs in the single-period benchmark are identical to

the ones in the first period of the limit case of our two-period setting in which the manager assigns

an infinite weight to the first period’s price relative to the second period’s price, or, equivalently,

when the discount rate used by the manager goes to infinity. This result can be generalized and it

demonstrates that the higher the weight the manager assigns to the first period’s price (short term)

relative to the second period’s price (long term), the higher the expected probability of disclosure in

the first period. In other words, increasing the weight assigned to the first period’s price decreases

the first period’s disclosure threshold. Higher weight assigned by the manager to the first period’s

price can reflect, for example, managers who face higher short-term incentives, managers of firms

that are about to issue new debt or equity, a higher probability of the firm being taken over, a

shorter expected horizon for the manager with the firm, etc. This gives rise to the testable empirical

prediction of a higher likelihood of early voluntary disclosure by managers of firms who care more

about short-term price (for various reasons, including the ones mentioned above).

Our model also provides some predictions regarding the extent to which managers’voluntary

disclosures tend to cluster. For example, conditional on disclosure of two signals the disclosed values

are on average closer to each other than in the original distribution of the signals; i.e., disclosed

values are clustered. Another type of clustering for which our model can generate predictions is

the time-clustering of the disclosures.

5 Conclusion

The vast literature on voluntary disclosure models focuses on static models in which an interested

party (e.g., a firm’s manager) may privately observe a single piece of private information (e.g., Dye

1985 and Jung and Kwon 1988). Many real-life voluntary disclosure environments, for example

corporate disclosure environments, are multi-period in their nature and the informed party often

obtains more than a single piece of private information. In such settings, the decisions whether to

disclose one piece of information must take into account the possibility of learning and potentially

disclosing a new piece of information in the future. To the best of our knowledge, such dynamic

considerations of voluntary disclosure have not been studied in the literature.

In this paper, we show that the interaction between these two dimensions affects disclosure

decisions and equilibrium prices in a qualitatively new way. In our model, absent information
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asymmetry, the firm’s price at the end of the second period would be independent of the disclosure

time of the firm’s private information. Nevertheless, we show that when managers strategically

choose what and when to disclose the market price does depends on the timing of disclosure. In

particular, we show that the price at the end of the second period given disclosure of one signal

is higher if the signal is disclosed later in the game. That result illustrates the importance of

considering dynamic aspects of voluntary disclosure.

The model generates several empirical predictions. For example: market reaction to later

voluntary disclosure is more positive and the amount of voluntary disclosure in the short term

increases if the manager assigns higher relative weight to short-term prices.
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Appendix

Proof of Claim . 1

Using the notation in Lemma 1, let the set A correspond to the set of y if the managers is uniformed

even at t = 2 (and who disclose x at t = 1). Let B correspond to the set of y that is informed

either at t = 1 and does not disclose then or learns y at t = 2. The claim follows from Lemma

1 as P1 (x, 1) = E [y|y ∈ |A ∪B] and P2 (x, 1) = E [g (z) |SA,B] (note that the distribution over A

is Φ (y|x) but the distribution over B is different since the investors have to form beliefs on the

relative likelihood of the agent learning y in the two periods, which is why it is useful to prove the

previous lemma for general distributions).

Prof of Lemma . 1

(0) For a constant c let ScA,B = A ∪ {B ∩ {(y, τy) : y ≤ c}. For c → −∞ we have that

Ey(S
c
A,B) = Ey(A) > c and for c→∞ we have that Ey(ScA,B) = Ey (A ∪B) < c. From continuity

we can find c∗ for which Ey(Sc
∗
A,B) = c∗. This establishes existence.

Now suppose by way of contradiction that there are multiple solutions. Specifically, assume there

are c′ < c” so that Ey(Sc
′
A,B) = c′ and Ey(Sc”A,B) = c”. When we compare Sc

′
A,B to S

c”
A,B we note

that Sc”A,B ⊃ Sc
′
A,B and that for (y, τy) ∈ Sc”A,B\Sc

′
A,B we have y < Ey(S

c”
A,B). This implies that Sc”A,B

can be represented as a union of Sc
′
A,B where the average c

′ (< c”) and a set of types that are lower

than c”. This however, implies that Ey(Sc”A,B) < c” and we get a contradiction.

(i) When comparing SA,B to A ∪B we note that we have excluded above average types for which

y > Ey(SA,B). This results in lower average type.

(ii) Suppose first that there exists (y, τy) ∈ SA,B”\SA,B′ . Since B′ ⊇ B′′ it must be that these

(y, τy) ∈ B′∩B′′ . From the definition of SA,B since (y, τy) ∈ SA,B′′ we conclude that Ey(SA,B′′) > y

. Since (y, τy) /∈ SA,B′ , we conclude that Ey(SA,B′) < y which implies the claim. Hence, we will

assume that SA,B′ ⊇ SA,B” and we consider (y, τy) ∈ SA,B′\SA,B” ; this implies y < Ey(SA,B′).

Hence, all the elements (y, τy) ∈ SA,B′\SA,B” have y that is below the average in SA,B′ which

implies that Ey(SA,B”) ≥ Ey(SA,B′) .

(iii) Consider the set SA,B”, and note that it satisfy the definition for SA,B′ . Hence, the claim

follows from uniqueness that was proven in (0)
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Proof of Claim 2.

B1
1 can be described as the intersection of three conditions, B

1
1 = C1 (x) ∩ C2 (x) ∩ C3 (x) where:

• C1 (x) : At t = 1, the agent prefers to reveal x instead of both x and y. By Corollary 1, y is

such that P (x, y) ≤ P1 (x, 1) .

• C2 (x) : At t = 1, the agent prefers to reveal x rather than y. Monotonicity of the equilibrium

then implies y ≤ x.

• C3 (x) : At t = 1, the agent prefers to reveal x rather than to hide both x and y.

The constraint C3(x) can be described using the inequality Πx ≥ Π∅ where:

Π∅ = P1 (∅) + max {P (x, y) , P2 (x, 2) , P2 (y, 2) , P2 (∅)}

Πx = P1 (x, 1) + max {P (x, y) , P2 (x, 1)}

where the first expression is the expected payoff of a type that knows x and y at time 1 and

decides not to reveal anything; and Πx is the payoff of the same type that decides to reveal x only.

Since x is revealed alone on the equilibrium path at time t = 1, the inequality Πx ≥ Π∅ needs to

hold. We also know that on the equilibrium path x is being disclosed at t = 2 which implies that

P2 (x, 2) > P2 (∅) . Condition C2(x) implies already that y ≤ x and by monotonicity of equilibrium

P2 (x, 2) > P2 (y, 2) . So, without changing the intersection of C1 (x)∩C2 (x)∩C3 (x) we can define

C3 (x) by replacing Π∅ with

Π′∅ = P1 (∅) + max {P (x, y) , P2 (x, 2)} .

If Πx ≥ Π′∅ for all y then the constraint C3 (x) can be ignored by defining y∗(x) = ∞. If this

condition does not hold for any y then the agent does not disclose x at t = 1 if he knows both

signals. This can be ruled out as an agent who only knows x decides to disclose it at t = 1. If for

each realization of y he would have preferred to keep quiet then this would be the case also when

he does not know y. So we focus on the case where Πx < Π′∅ holds for some y. As a function of y,

for low y, both Πx and Π′∅ are constants that depend only on x;for high y we have that Πx and Π′∅

have the same slope with respect to y. Let y∗ be defined as the unique y that equates Πx and Π′∅.

Suppose first that Π′∅ is larger than Πx for small y but starts increasing later than Πx. That case

would require P2 (x, 1) < P (x, y∗) < P2 (x, 2), but that contradicts the supposition. Hence, we
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are left with Π′∅ is smaller than Πx for small y, but starts increasing sooner than Πx. This implies

that C3(x) is given by y ≤ y∗ where y∗ satisfies P2 (x, 2) < P (x, y∗) < P2 (x, 1) . Finally, since

P2 (x, 1) ≤ P2 (x, 1) , C1(x) can be ignored which implies the claim. QED

Proof of Lemma 3. We know that x is being disclosed with positive probability if it is the only

signal known at t = 1. Let ΠD denote the payoff for such an agent, who learned only x at t = 1,

from disclosing x at t = 1 and ΠN his payoff from not disclosing at t = 1. We have:

ΠD = P1 (x, 1) + Ey [max {P2 (x, 1) , P (x, y)}] ,

ΠN = P1 (∅) + Ey [max {P2 (x, 2) , P2 (y, 2) , P (x, y),P2 (∅)}] .

We know that for some x we have that ΠD − ΠN ≥ 0. Consider an agent who knows both

signals at t = 1 and prefers to disclose just x at t = 2 (an agent with x ∈ (P2 (∅) , P1 (∅)) and a

suffi ciently low y). Such an agent knows at time t = 1 that he will disclose x and not disclose y at

t = 2. So, for this to happen it must be that Π′N −Π′D ≥ 0 where:

Π′D = P1 (x, 1) + P2 (x, 1) ,

Π′N = P1 (∅) + P2 (x, 2) .

This leads to contradiction as P2 (x, 1) > P2 (x, 2)⇒ Π′D −Π′N > ΠD −ΠN ≥ 0.

Proof of Lemma 5

By applying Bayes role, hstat (µ, {zi(µ)}) is given by:

hstat (µ, {zi(µ)}) =
(1− p)µ+

∑K
i=1 λi

∫ zi(µ)
−∞ yφ (y|µ) dy

(1− p) +
∑K

i=1 λiΦ (zi (µ) |µ)
.

Taking the derivative of hstat (µ, {zi(µ)}) with respect to µ and applying some algebraic manip-

ulation yields:

d

dµ
hstat (µ, {zi(µ)}) = 1 +

∑K
i=1 λi (z′i (µ)− 1)φ (zi (µ) |µ)

(
zi (µ)− hstat (µ, {zi(µ)})

)
(1− p) +

∑K
i=1 λiΦ (zi (µ) |µ)

.

We start by proving the supremum of this derivative

Given that z′i (µ) ≥ 0 and zi (µ) ≤ hstat (µ, {zi(µ)}) for all i ∈ {1, ..,K} we have

d

dµ
hstat (µ, {zi(µ)}) ≤ 1 +

∑K
i=1 λiφ (zi (µ) |µ)

(
zi (µ)− hstat (µ, {zi(µ)})

)
(1− p) +

∑K
i=1 λiΦ (zi (µ) |µ)

≤ 1 + max
zi≤h(x)
i∈{1,...K}

∑K
i=1 λiφ (zi (µ) |µ)

(
zi (µ)− hstat (µ, {zi(µ)})

)
(1− p) +

∑K
i=1 λiΦ (zi (µ) |µ)
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Due to symmetry, for all i ∈ {1, ..,K} the maximum is achieved at zi (µ) = z∗ (µ). To see this,

note that the FOC of the maximization with respect to zi (µ) is

0 =
(
φ′ (zi (µ) |µ)

(
hstat (µ, {zi(µ)})− zi (µ)

)
− φ (zi (µ) |µ)

)(
(1− p) +

K∑
i=1

λiΦ (zi (µ) |µ)

)

−
(

K∑
i=1

λiφ (zi (µ) |µ)
(
hstat (µ, {zi(µ)})− zi (µ)

))
φ (zi (µ) |µ) .

Since φ′ (zi (µ) |µ) = −α (zi (µ)− µ)φ (zi (µ) |µ) (for some constant α > 0), this simplifies to

−α (zi (µ)− µ)
(
hstat (µ, {zi(µ)})− zi (µ)

)
=

∑K
i=1 λiφ (zi (µ) |µ)

(
zi (µ)− hstat (µ, {zi(µ)})

)
(1− p) +

∑K
i=1 λiΦ (zi (µ) |µ)

+ 1.

In the range zi (µ) ≤ hstat (µ, {zi(µ)}) ≤ µ, the LHS is decreasing in zi (µ).21 The RHS is the same

for all i. Therefore, the unique solution to this system of FOC is for all zi (µ) to be equal (and

note that the maximum is achieved at an interior point since at zi (µ) = hstat (µ, {zi(µ)}) the LHS

is zero and the RHS is positive; and as zi (µ) goes to −∞ the LHS goes to +∞ while the RHS is

bounded). This implies that example 3 which we discussed following the statement of the Lemma

also provides an upper bound. Recall that this lower bound was d
dµh

stat (µ, {zi(µ)}) ≥ 1. The lower

bound can be concluded in a similar way by observing that if we want to minimize the slope we

will again choose the same zi (µ) for all i, and therefore our example provides also a lower bound

which is d
dµh

stat (µ, {zi(µ)}) ≤ 2− z′i (µ).

QED

Proof of Claim 3

The case of h1 (x, 1) has been proved right bellow Claim 3 in the main text. We analyze the

cases of h2 (x, 2) and h2 (x, 1) bellow.

We first analyze h2 (x, 2).

When an agent discloses x > x∗ at t = 2 investors know that τx = 2 (otherwise the agent would

have disclosed x at t = 1). Investors’beliefs about the manager’s other signal at t = 2 is set as

a weighted average of three scenarios: τy = 1, τy = 2 and τy > 2. We start by describing the

disclosure thresholds conditional on each of the three scenarios.

(i) If τy > 2 the agent cannot disclose y and therefore the disclosure threshold is not relevant.

In the pricing of the firm conditional on τy > 2 investors use E (y|x) which equals β1x.

21Since zi (x) ≤ h (x, {zi(·)}) also h (x, {zi(·)}) ≤ E [x|y] = β1x.
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(ii) If τy = 2 investors know that y < h2 (x, 2) and also that y < x. We need to distinguish

between the binding case and the non-binding case. In the non-binding case, where h2 (x, 2) ≤ x,

investors know that y < h2 (x, 2), so conditional on τy = 2 investors set their beliefs as if the manager

follows a disclosure threshold of h2 (x, 2). In the binding case, where h2 (x, 2) > x, investors know

that y < x, so it is equivalent to a disclosure threshold of x.

(iii) If τy = 1 investors know that y < x∗ (where x∗ ≤ x) and also y < h2 (x, 2). Here again we

should distinguish between a non-binding case, in which h2 (x, 2) < x∗ (if such case exists), and a

binding case in which h2 (x, 2) > x∗. In the non-binding case the disclosure threshold is h2 (x, 2).

In the binding case the disclosure threshold is x∗, which is independent of x.

The next Lemma provides an upper and lower bound for ∂
∂xh2 (x, 2). The proof of the Lemma,

uses the disclosure thresholds for each of the three scenarios above. This Lemma holds not only for

h2 (x, 2) but also for h2 (x, 1).

Lemma 6 For p < 0.95

∂

∂x
h2 (x, 2) ,

∂

∂x
h2 (x, 1) ∈ (2β1 − 1, 2β1) .

Proof of Lemma 6

We first prove the case of h2 (x, 2) > x∗.

In this proof we use a slightly different notation, as part of the proof is more general than our

setting. Note that the first part of this proof is quite similar to the proof of Lemma 5.

Suppose that x and y have joint normal distribution and the agent is informed about y with

probability p and uninformed with probability 1 − p. Conditional on being informed the agent’s

disclosure strategy is assumed to be as follows: with probability λi, i ∈ {1, ..,K} , he discloses if

his type is above zi (x), where the various zi (x) are determined exogenously such that zi (x) ≤

h (x, {zi(x)}) for all i (which always holds in our setting). Note that
∑K

i=1 λi = p. Let’s denote the

conditional expectation of y given x and given the disclosure thresholds, zi (x), by h (x, {zi(x)}).

By applying Bayes role, h (x, {zi(x)}) is given by:

h (x, {zi(x)}) =
(1− p)E [y|x] +

∑K
i=1 λi

∫ zi(x)
−∞ yφ (y|x) dy

(1− p) +
∑K

i=1 λiΦ (zi (x) |x)
.

Taking the derivative of h (x, {zi(x)}) with respect to x and applying some algebraic manipu-
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lation (recall that ∂E[y|x]
∂x = β1) yields:

h′ (x, {zi(x)}) = β1 +

∑K
i=1 λi (z′i (x)− β1)φ (zi (x) |x) (zi (x)− h (x, {zi(x)}))

(1− p) +
∑K

i=1 λiΦ (zi (x) |x)
. (8)

We start by proving the supremum of h′ (x, {zi(x)}).

Given that z′i (x) ≥ 0 and (zi (x)− h (x, {zi(x)})) ≤ 0 for all i ∈ {1, ..,K} we have

h′ (x, {zi(x)}) ≤ β1 +
β1
∑K

i=1 λiφ (zi (x) |x) (h (x, {zi(x)})− zi (x))

(1− p) +
∑K

i=1 λiΦ (zi (x) |x)

≤ β1 + max
zi≤h(x)
i∈{1,...,K}

β1
∑K

i=1 λiφ (zi|x) (h (x, {zi(x)})− zi)
(1− p) +

∑K
i=1 λiΦ (zi|x)

Due to symmetry, for all i ∈ {1, ..,K} the maximum is achieved at zi (x) = z∗ (x). To see this, note

that the FOC of the maximization with respect to zi (x) is

0 =
(
φ′ (zi (x) |x) (h (x, {zi(x)})− zi (x))− φ (zi (x) |x)

)(
(1− p) +

K∑
i=1

λiΦ (zi (x) |x)

)

−
(

K∑
i=1

λiφ (zi (x) |x) (h (x, {zi(x)})− zi (x))

)
φ (zi (x) |x) .

Since φ′ (zi (x) |x) = −α (zi (x)− β1x)φ (zi (x) |x) (for some constant α > 0), this simplifies to

−α (zi (x)− β1x) (h (x, {zi(x)})− zi (x)) =

∑K
i=1 λiφ (zi (x) |x) (h (x, {zi(x)})− zi (x))

(1− p) +
∑K

i=1 λiΦ (zi (x) |x)
+ 1.

In the range zi (x) ≤ h (x, {zi(x)}) ≤ β1x, the LHS is decreasing in zi (x).22 The RHS is the same

for all i. Therefore, the unique solution to this system of FOC is for all zi (x) to be equal (and note

that the maximum is achieved at an interior point since at zi (x) = h (x, {zi(x)}) the LHS is zero

and the RHS is positive; and as zi (x) goes to −∞ the LHS goes to +∞ while the RHS is bounded).

Let z∗ (x) be the maximizing value. Then

h′ (x, {zi(x)}) ≤ β1 +
β1
∑K

i=1 λiφ (z∗ (x) |x) (h (x, {zi(x)})− z∗ (x))

(1− p) + pΦ (z∗ (x) |x)

= β1 +
pβ1φ (z∗ (x) |x) (h (x, {zi(x)})− z∗ (x))

(1− p) + pΦ (z∗ (x) |x)
.

The right hand side of the above inequality is identical to the slope in a Dye setting with

exogenous disclosure threshold with probability of being uninformed (1− p) and an exogenously

determined disclosure threshold of z∗ (x), where the disclosure threshold does not change in x. In

22Since zi (x) ≤ h (x, {zi(·)}) also h (x, {zi(·)}) ≤ E [x|y] = β1x.
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such a setting, we can think of the effect of a marginal increase in x as the sum of two effects. The

first effect is a shift by β1 in both the distribution and the disclosure threshold. This will increase

h (x) by β1. The second effect is a decrease in the disclosure threshold by β1 (as the disclosure

threshold does not change in x). Since z∗ (x) < β1x we are in the decreasing part of the beliefs

about y given no disclosure (to the left of the minimum beliefs). Therefore, the decrease in the

disclosure threshold increases the beliefs about y by the change in the disclosure threshold times

the slope of the beliefs about y given no disclosure. Since for p < 0.95 the slope of the beliefs about

y given no disclosure is greater than −1, the latter effect increases the beliefs about y by less than

β1. The overall effect is therefore smaller than 2β1.

Next we prove the infimum of h′ (x, {zi(x)}).

Equation (8) capture a general case with any number of potential disclosure strategies. In our

particular case K = 1 where i = 1 represents the case of τy = 1 and i = 2 represents the case of

τy = 2. So, in our setting equation (8) can be written as

h′ (x, {zi(x)}) = β1 +
λ1 (z′1 (x)− β1)φ (z1 (x) |x) (z1 (x)− h (x, {zi(x)}))

(1− p) +
∑2

i=1 λiΦ (zi (x) |x)

+
λ2 (z′2 (x)− β1)φ (z2 (x) |x) (z2 (x)− h (x, {zi(x)}))

(1− p) +
∑2

i=1 λiΦ (zi (x) |x)

When calculating h2 (x, 2) and h1 (x, 1) in our setting, the disclosure threshold, zi (x), in any

possible scenario (the binding and non-binding case for both τy = 1 and τy = 2) takes one of

the following three values: hi (x, ·) , x or x∗. Note that whenever zi (x) = h (x, {zi(x)}) we have
(z′i(x)−β1)φ(zi(x)|x)(zi(x)−h(x,{zi(x)}))

(1−p)+
∑K
i=1 λiΦ(zi(x)|x)

= 0.

For the remaining two cases (zi (x) = x and zi (x) = x∗), for all i ∈ {1, 2} we have z′i (x) ≤ 1

and (zi (x)− h (x, {zi(x)})) ≤ 0. This implies

h′ (x) ≥ β1 −
(1− β1)

∑K
i=1 λiφ (zi (x) |x) (h (x, {zi(x)})− zi (x))

(1− p) +
∑K

i=1 λiΦ (zi (x) |x)
.

Using the same symmetry argument for the first order condition as before, h′ (x, {zi(x)}) is mini-

mized for some zmin (x) and hence

h′ (x, {zi(x)}) ≥ β1 +
p (1− β1)φ

(
zmin (x) |x

) (
h (x, {zi(x)})− zmin (x)

)
(1− p) + pΦ (zmin (x) |x)

.

The right hand side of the above inequality is identical to the slope in a Dye setting with exoge-

nous disclosure threshold in which: the probability of being uninformed is (1− p), the exogenously
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determined disclosure threshold is zmin (x) and ∂
∂xz

min (x) = 1. In such a setting, we can think of

the effect of a marginal increase in x as the sum of two effects. The first is a shift by β1 in both the

distribution and the disclosure threshold. This will increase h (x) by β1. The second effect is an

increase in the disclosure threshold by (1− β1) (as the disclosure threshold increases by 1). Since

zmin (x) < β1x we are in the decreasing part of the beliefs about y given no disclosure (to the left

of the minimum beliefs). Therefore, the increase in the disclosure threshold decreases the beliefs

about y by the change in the disclosure threshold, (1− β1), times the slope of the beliefs about y

given no disclosure. Since for p < 0.95 the slope of the beliefs about y given no disclosure is greater

than −1 the latter effect decreases the beliefs about y by less than (1− β1). The overall effect is

therefore greater than β1 − (1− β1) = 2β1 − 1.

QED Lemma 6

Finally, we analyze h2 (x, 1)

Recall that Lemma 6 applies also to h2 (x, 1). However, for h2 (x, 1) we can show tighter bounds.

We first show that for the case where h2 (x, 1) < x we have h′2 (x, 1) = β1.

If h2 (x, 1) < x (the non-binding case) then when pricing the firm at t = 2 investors know that

if the agent learned y (at either t = 1 or t = 2) then y < h2 (x, 1). If the agent did not learn y

then investors use in their pricing E (y|x) = β1x. So, the beliefs about y are a weighted average of

E (y|y < h2 (x, 1)) and E (y|x) = β1x. This is similar to a Dye (1985) and Jung and Kwon (1988)

setting, and therefore, in equilibrium we have h′2 (x, 1) = β1.

Next we show that for x such that h2 (x, 1) > x (if such case exists) h′2 (x, 1) ∈ (2β1 − 1, β1).

The argument is similar to the one we made in the proof that h′1 (x, 1) ∈ (2β1 − 1, β1) for x such

that h1 (x, 1) > x. First note that for h2 (x, 1) > x investors’beliefs about y conditional on that

the agent has learned y are independent of whether he learned y at t = 1 or at t = 2. Moreover,

given that τy ≤ 2 investors know that y < x. So, from investors’perspective, it doesn’t matter if

the agent learned y at t = 1 or at t = 2. Their pricing, h2 (x, 1), will reflect a weighted average

between E (y|y < x) and E (y|τy > 2, x) = β1x. From here on the proof is qualitatively the same

as in the proof for h′1 (x, 1) ∈ (2β1 − 1, β1), where the only quantitative difference is the probability

that the agent learned y.

Next, we show that for the particular case in which h2 (x, 2) < x∗ (if such case exists) h′2 (x, 2) =

β1.
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h2 (x, 2) is a weighted average of the beliefs about y over the three scenarios τy = 1, τy = 2 and

τy > 2. That is, we can write

h2 (x, 2) = λ1h1 + λ2h3 + (1− λ1 − λ2)h3,

where λi = Pr (τy = i|NDy) and hi = E (y|τy = i,NDy) for i = 1, 2, 3 where i = 3 represents the

case of τy > 2. NDy stands for No-Disclosure of y (where x was disclosed at t = 2). Since h2 (x, 2) <

x∗ the disclosure threshold for both τy = 2 and τy = 1 is h2 (x, 2). Assume by contradiction

that ∂
∂xh2 (x, 2) > β1. Then, an increase in x increases h2 (x, 2) by more than the increase in

the expectation of y (which is β1) and therefore, the probability of obtaining a signal below the

disclosure threshold increases for both the first and the second period. This implies that both λ1

and λ2 increase. In addition, note that the increase in h1 and in h2 is lower than ∂
∂xh2 (x, 2) and the

increase in h3 is β1 - which is also lower than ∂
∂xh2 (x, 2). The fact that both h1 and h2 are lower

than h3 leads to a contradiction, since an increase in x put more weight on the lower values (λ1

and λ2 increase) and in addition all the values h1, h2, h3 increase at a rate weakly lower than the

assumed increase in h2 (x, 2). A symmetric argument can be made when assuming by contradiction

that ∂
∂xh2 (x, 2) < β1. The case of ∂

∂xh2 (x, 2) = β1 does not lead to a contradiction, as an increase

in x does not affect the probabilities λ1, λ2 and the derivatives of h1 and h2 and h3 are all equal

to β1.

QED Claim 3

Proof of Proposition 1

We first prove the existence of a threshold equilibrium and then show that there exists an x′

such that P2 (x, 2) > P2 (x, 1) for any x ≥ x′.

In proving the existence of a threshold equilibrium, we first consider partially informed agents

that learn a single signal, x, at t = 1 (τx = 1, τy 6= 1) and then we consider fully informed agents

that learn both signals at t = 1. For each of these cases we show that: (i) for suffi ciently high (low)

realizations of x the agent discloses (does not disclose) x at t = 1; and (ii) On the equilibrium path,

the difference between the agent’s expected payoff if he discloses only x at t = 1 and if he does not

disclose at t = 1 is increasing in x.

Partially Informed Agents (τx = 1, τy 6= 1)
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For suffi ciently low realizations of x the agent is always better off not disclosing it at t = 1,

as he can “hide”behind uninformed agents. We next establish that an agent that learns a single

signal, x, at t = 1 and this signal is suffi ciently high will disclose it at t = 1.

Lemma 7 Consider an agent that learns a single signal, x, at t = 1. In a threshold equilibrium,

the difference between the agent’s expected payoff (as calculated at t = 1) from disclosing his signal

at t = 1 and from not disclosing it at t = 1 is increasing in x. That is,

∂

∂x
(E (U |τx = 1, τy 6= 1, tx = 1)− E (U |τx = 1, τy 6= 1, tx 6= 1)) > 0

Proof. For simplicity of exposition, we partition the support of x into two cases: realizations of x

for which β2 (x+ h2 (x, 2)) ≥ P2 (∅) and for which β2 (x+ h2 (x, 2)) < P2 (∅).23

Case I - β2 (x+ h2 (x, 2)) ≥ P2 (∅)

Rewriting E (U |τx = 1, τy 6= 1, tx = 1, x)− E (U |τx = 1, τy 6= 1, tx 6= 1) yields:

β2 [x+ h1 (x, 1) + h2 (x, 1)− h2 (x, 2)]− P1 (∅)

+ pβ2

[∫ ∞
h2(x,1)

(y − h2 (x, 1)) f (y|x) dy −
∫ ∞
h2(x,2)

(y − h2 (x, 2)) f (y|x) dy −
∫ ∞
yH(x)

(h2 (y, 2)− x) f (y|x) dy

]
.

The derivative of this expression with respect to x has the same sign as

D = 1 +
∂

∂x
(h1 (x, 1) + h2 (x, 1)− h2 (x, 2)) + p [A+B + C] , (9)

where

A =
∂

∂x

∫ ∞
h2(x,1)

(y − h2 (x, 1)) f (y|x) dy

B = − ∂

∂x

∫ ∞
h2(x,2)

(y − h2 (x, 2)) f (y|x) dy

C = − ∂

∂x

∫ ∞
yH(x)

(h2 (y, 2)− x) f (y|x) dy.

To evaluate this derivative we use the following, easy to obtain, equations:

∂

∂x
f (y|x) = −β1

∂

∂y
f (y|x) ,

∂

∂x
(F (y (x) |x)) = f (y (x) |x)

(
∂

∂x
y (x)− β1

)
.

23Note that on the equilibrium path we are always in case I, i.e., β2 (x+ h2 (x, 2)) ≥ P2 (∅).
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Next, we analyze the three terms A,B, and C. Note that the derivative with respect to the

limits of integrals for A, B and C is zero.

A = −∂h2 (x, 1)

∂x
(1− F (h2 (x, 1) |x))− β1

∫ ∞
h2(x,1)

(y − h2 (x, 1))
∂

∂y
f (y|x) dy.

Integrating by parts (w.r.t. y) the term
∫∞
h2(x,1) (y − h2 (x, 1)) ∂

∂yf (y|x) dy yields:∫ ∞
h2(x,1)

(y − h2 (x, 1))
∂

∂y
f (y|x) dy

= − (h2 (x, 1)− h2 (x, 1)) f (h2 (x, 1) |x)−
∫ ∞
h2(x,1)

f (y|x) dy = − (1− F (h2 (x, 1) |x)) .

Plugging it back to A we get

A = −
(
∂h2 (x, 1)

∂x
− β1

)
(1− F (h2 (x, 1) |x)) .

Next, we calculate B:

B =

∫ ∞
h2(x,2)

h2 (x, 2)

∂x
f (y|x) dy + β1

∫ ∞
h2(x,2)

(y − h2 (x, 2))
∂

∂y
f (y|x) dy

=

(
∂h2 (x, 2)

∂x
− β1

)
(1− F (h2 (x, 2) |x)) .

Finally,

C =
(
1− F

(
yH (x) |x

))
+ β1

∫ ∞
yH(x)

(h2 (y, 2)− x)
∂

∂y
f (y|x) dy

=
(
1− F

(
yH (x) |x

))
− β1

∫ ∞
yH(x)

∂h2 (y, 2)

∂y
f (y|x) dy.

Substituting A, B and C back to (9) and re-arranging terms yields:

D = 1 +
∂

∂x
(h1 (x, 1) + h2 (x, 1)− h2 (x, 2))

− p

 (∂h2(x,1)
∂x − β1

)
(1− F (h2 (x, 1) |x)) +

(
∂h2(x,2)

∂x − β1

)
(1− F (h2 (x, 2) |x)) +(

1− F
(
yH (x) |x

))
− β1

∫∞
yH(x)

∂h2(y,2)
∂y f (y|x) dy


= (1− p)

(
1 +

∂

∂x
(h1 (x, 1) + h2 (x, 1)− h2 (x, 2))

)
+ p

[
1 + ∂h1(x,1)

∂x + ∂h2(x,1)
∂x F (h2 (x, 1) |x) + β1 (1− F (h2 (x, 1) |x))− ∂h2(x,2)

∂x F (h2 (x, 2) |x)

−β1 (1− F (h2 (x, 2) |x)) + 1− F
(
yH (x) |x

)
− β1

∫∞
yH(x)

∂h2(y,2)
∂y f (y|x) dy

]

= (1− p)
(

1 +
∂

∂x
(h1 (x, 1) + h2 (x, 1)− h2 (x, 2))

)
+ p

[
1 + ∂h1(x,1)

∂x + ∂h2(x,1)
∂x F (h2 (x, 1) |x)− F (h2 (x, 1) |x)β1 − ∂h2(x,2)

∂x F (h2 (x, 2) |x)

+F (h2 (x, 2) |x)β1 +
(
1− F

(
yH (x) |x

))
− β1

∫∞
yH(x)

∂h2(y,2)
∂y f (y|x) dy

]
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Additional rearranging yields:

D = (1− p)
(

1 +
∂

∂x
(h1 (x, 1) + h2 (x, 1)− h2 (x, 2))

)
+ p

[
1 +

∂h1 (x, 1)

∂x
+

(
∂h2 (x, 1)

∂x
− β1

)
F (h2 (x, 1) |x)−

(
∂h2 (x, 2)

∂x
− β1

)
F (h2 (x, 2) |x)

]
+ pβ1

∫ ∞
yH(x)

1

β1
− ∂h2 (y, 2)

∂y
f (y|x) dy.

Since ∂h2(x,1)
∂x ≤ β1 (see Claim 3) and F (h2 (x, 2) |x) ≥ F (h2 (x, 1) |x) we have

D ≥ (1− p)
(

1 +
∂

∂x
(h1 (x, 1) + h2 (x, 1)− h2 (x, 2))

)
+ p

[
1 +

∂h1 (x, 1)

∂x
+

(
∂h2 (x, 1)

∂x
− ∂h2 (x, 2)

∂x

)
F (h2 (x, 2) |x)

]
+ pβ1

∫ ∞
yH(x)

1

β1
− ∂h2 (y, 2)

∂y
f (y|x) dy

= (1− p (1− F (h2 (x, 2) |x)))

(
1 +

∂

∂x
(h1 (x, 1) + h2 (x, 1)− h2 (x, 2))

)
+

+ p (1− F (h2 (x, 2) |x))

(
1 +

∂h1 (x, 1)

∂x

)
+ pβ1

∫ ∞
yH(x)

1

β1
− ∂h2 (y, 2)

∂y
f (y|x) dy

= (1− p (1− F (h2 (x, 2) |x)))

(
1 +

∂

∂x
(h1 (x, 1) + h2 (x, 1)− h2 (x, 2))

)
+ p

∫ ∞
h2(x,2)

(
1 +

∂h1 (x, 1)

∂x

)
f (y|x) dy + p

∫ ∞
yH(x)

1− β1
∂h2 (y, 2)

∂y
f (y|x) dy

= (1− p (1− F (h2 (x, 2) |x)))

(
1 +

∂

∂x
(h1 (x, 1) + h2 (x, 1)− h2 (x, 2))

)
+

+ p

∫ yH(x)

h2(x,2)

(
1 +

∂h1 (x, 1)

∂x

)
f (y|x) dy + p

∫ ∞
yH(x)

2 +
∂h1 (x, 1)

∂x
− β1

∂h2 (y, 2)

∂y
f (y|x) dy

≥ (1− p (1− F (h2 (x, 2) |x)))

(
1 +

∂

∂x
(h1 (x, 1) + h2 (x, 1)− h2 (x, 2))

)
+ p

∫ ∞
yH(x)

2 +
∂h1 (x, 1)

∂x
− β1

∂h2 (y, 2)

∂y
f (y|x) dy

So, the following two conditions are suffi cient for the proof of Case I.

For all x:

1. ∂
∂xh1 (x, 1) + ∂

∂xh2 (x, 1) ≥ ∂
∂xh2 (x, 2)− 1

2. ∂h2(y,2)
∂y ≤

(
2 + ∂h1(x,1)

∂x

)
1
β1
for any y > x

Case II -β2 (x+ h2 (x, 2)) < P2 (∅)
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The analysis of Case I was for generic bounds of the integrals h2 (x, 1) and yH (x). The difference

between Case I and Case II is that the price at t = 2 given no disclosure of y (which occurs when

the agent does not obtain a signal y or obtains a low realization of y) is P2 (∅) in Case II and

β2 (x+ h2 (x, 2)) in Case I. Therefore, the expected payoff of the agent in Case II is less sensitive

to x than in Case I. As a result, the fact that for values of x for which β2 (x+ h2 (x, 2)) ≥ P2 (∅)

(in Case I) ∂
∂x(E (U |τx = 1, τy 6= 1, tx = 1) − E (U |τx = 1, τy 6= 1, tx 6= 1)) > 0 implies that it also

holds for β2 (x+ h2 (x, 2)) < P2 (∅).

To summarize the analysis of Partially Informed Agents, conditions 1 and 2 above are suffi cient

for both Case I and Case II. Claim 3 established that condition 2 above holds.

So, it is only left to show that also condition 1 holds. For any β1 >
1
2 , it is immediate to see

that condition 1 holds since the LHS of condition 1 is greater than 2 (2β1 − 1) > 0 and the RHS is

less than 2β1 − 1. We defer the case of β1 <
1
2 to later in the proof.

Fully Informed Agent (τx = τy = 1)

We next discuss the case of an agent that learns both signals at t = 1 (such that x > y). If the

signal y is suffi ciently high, such that it will be disclosed at t = 2 if it was not disclosed at t = 1,

then it is straightforward that ∂
∂x(E (U |τx = 1, τy = 1, tx = 1) − E (U |τx = 1, τy = 1, tx 6= 1)) > 0.

The reason is that the price at t = 2 will be P (x, y) regardless of the disclosure decision at t = 1.

The only case we still haven’t analyzed is a fully informed agent (τx = τy = 1) whose signal y

is suffi ciently low such that it will not be disclosed at t = 2 if it was not disclosed at t = 1. The

Lemma bellow shows that such an agent with a suffi ciently high signal x will disclose at least one

signal at t = 1 and that for such an agent the difference between disclosing and not disclosing x at

t = 1 is increasing in x.

Lemma 8 Assume an agent that learned both signals at t = 1 and the realization of y is suffi ciently

low such that it will not be disclosed. Then

(i) For suffi ciently high realizations of x the agent prefers to disclose x at t = 1 over not disclosing

x at t = 1.

(ii) ∂
∂x(E (U |τx = 1, τy = 1, tx = 1)− E (U |τx = 1, τy = 1, tx 6= 1)) > 0.

Proof.

(i) We need to show that

β2 [x+ h1 (x, 1)] + β2 [x+ h2 (x, 1)] > P1 (∅) + β2 [x+ h2 (x, 2)] .
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Rearranging yields

β2 [x+ h2 (x, 1)]− P1 (∅) > β2 [h2 (x, 2)− h1 (x, 1)] .

Since h2 (x, 1) is not decreasing for suffi ciently high x the LHS of the above inequality, β2 [x+ h2 (x, 1)]−

P1 (∅), goes to infinity as x goes to infinity. Therefore, it is suffi cient to show that h2 (x, 2) −

h1 (x, 1) is bounded from above. Both h2 (x, 2) and h1 (x, 1) are lower than β2x. From the Gen-

eralized Minimum Principle (Lemma 1) we know that h1 (x, 1) is higher than the price given no

disclosure in a Dye (1985), Jung and Kwon (1988) setting where y ∼ N (β1x, V ar (y|x)). The price

given no disclosure in such a setting is β1x − Cons, so h1 (x, 1) > β1x − Cons. Hence, given that

h2 (x, 2) < β1x we have h2 (x, 2)− h1 (x, 1) < Const.

(ii) We need to show that

∂

∂x
(β2 [x+ h1 (x, 1)] + β2 [x+ h2 (x, 1)]− P1 (∅)− β2 [x+ h2 (x, 2)]) > 0,

which is identical to condition 2 in the proof of Lemma 7.

QED

The following Lemma establishes the last part of Proposition 1.

Lemma 9 There exists an x′ ≥ x∗ such that P2 (x, 2) > P2 (x, 1) for any x ≥ x′.

Proof. In Theorem 1 we have shown that P2 (x, 2) ≥ P2 (x, 1) for any x, which implies in the

setting of section 4 that h2 (x, 2) ≥ h2 (x, 1).

As established in section 3, given disclosure of the signal x the manager behaves myopically

in the sense that he discloses the signal y (when he learned y) if and only if it increases the price

relative to the price when y is not disclosed. This holds for both t = 1 and t = 2. We can now

introduce the equilibrium inference on the sets B1
1 , B

2
1 , B

1
2 and B

2
2 that were defined in section 3.

In particular, we adjust the set Bj
i by taking into account also the equilibrium disclosure strategy

when defining the potential disclosures and denote it by bji . The sets b
j
i for i, j = 1, 2 are given by:

b11 = {(y, τy)|τy = 1, tx = 1 and y ≤ min {x, h1 (x, 1) , h2 (x, 1)}}

b21 = {(y, τy)|τy = 2, tx = 1 and y ≤ h2 (x, 2)}

b12 = {(y, τy)|τy = 1, tx = 2 and y ≤ min {x∗, h2 (x, 2)}}

b22 = {(y, τy)|τy = 2, tx = 2 and y ≤ min {x, h2 (x, 2)}}
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Note that h1 (x, 1) > h2 (x, 1) so b11 can be written as b
1
1 = {(y, τy)|τy = 1, tx = 1 and y ≤ min {x, h2 (x, 1)}}.

We next show that h2 (x, 2) > h2 (x, 1) for all x such that h2 (x, 2) > x∗. From section 3

we know that h2 (x, 2) ≥ h2 (x, 1) so we only need to preclude h2 (x, 2) = h2 (x, 1). Assume by

contradiction that h2 (x, 2) = h2 (x, 1). Since x > x∗ we have b12 ⊂ b11 and b
2
2 ⊆ b21. Moreover,

any y ∈ (x∗, h2 (x, 2)) is strictly lower than h2 (x, 2) which equals E [y|y ∈ SA,b2 ]. From part (i)

of the Generalized Minimum Principle (Lemma 1) we have h2 (x, 2) > h2 (x, 1) which leads to a

contradiction. Therefore, for all values of x such that h2 (x, 2) > x∗ we have h2 (x, 2) > h2 (x, 1).

The last thing to be shown is that there exists an x′ such that h2 (x, 2) > x∗ for any x ≥ x′.

This is immediate given that ∂
∂xh2 (x, 2) = β1 (> 0) for value of x such that h2 (x, 2) < x∗ (see

Claim 3). Note that x′ can be, but is not necessarily, grater than x∗.

QED

The last thing we still need show in order to establish the existence of a threshold equilibrium is

that Condition 1 in the proof of Lemma 7, i.e. that ∂
∂xh1 (x, 1)+ ∂

∂xh2 (x, 1) ≥ ∂
∂xh2 (x, 2)−1, holds

also for the case of β1 <
1
2 . In the upper and lower bounds for the slopes of the various prices derived

in Claim 3, there is a lot of slack that can still be used. However, the simplest way to prove the

last part of Proposition 1 is not to use this slack, but rather to show the existence of a threshold

equilibrium in which x∗ is such that h2 (x∗, 1) ≤ x∗. For such x∗ we know from Claim 3 that

∂
∂xh2 (x, 1) = β1. Substituting this into condition 1 above yields ∂

∂xh1 (x, 1) + β1 ≥ ∂
∂xh2 (x, 2)− 1

which given Claim 3 is always satisfied.24

QED Proposition 1.

24Since ∂
∂x
h2 (x, 1) ≤ β1 there exists an x such that h2 (x, 1) ≤ x for all higher values of x. Using adequate

off-equilibrium beliefs, as discussed in section 4.2, we can always set x∗ to satisfy h2 (x∗, 1) ≤ x∗.
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