Secondary Markets in Turbulent Times:
Distortions, Disruptions and Bailouts

Fernando Broner* Aitor Erce^ Alberto Martin* Jaume Ventura*

*CREI, UPF and Barcelona GSE ^Bank of Spain

April 2013
Motivation

- In 2006, Portugal, Ireland, Italy, Greece, and Spain looked very solid
 - growth: 3.7% (Germany and France 2.8%)
 - fiscal deficit/GDP: 1.8% (Germany and France 2.0%)
 - sovereign spreads: 0.15%
 - public debt/GDP: 77% (Germany and France 71%)
 - maturity: 6.4 years (Germany and France 6.6 years)

- By 2010, PIIGS were facing
 - major sovereign debt problems
 - deep recessions

- What happened?
Motivation

• Explanations
 – ignored problems: fiscal in Greece, low growth in Portugal and Italy, bubbles in Ireland and Spain
 * ex-post rationalization? why ignored for so long?
 – rollover/liquidity crises
 * but debts were long term and there is funding from official creditors
Motivation

- Explanations
 - ignored problems: fiscal in Greece, low growth in Portugal and Italy, bubbles in Ireland and Spain
 * ex-post rationalization? why ignored for so long?
 - rollover/liquidity crises
 * but debts were long term and there is funding from official creditors

- This paper
 - secondary markets and multiple equilibria
 - foreigners become pessimistic → sell bonds to domestics → crowds out investment →
 → lower growth → lower cost of default → default more likely → validates pessimism
Motivation

- Explanations
 - ignored problems: fiscal in Greece, low growth in Portugal and Italy, bubbles in Ireland and Spain
 * ex-post rationalization? why ignored for so long?
 - rollover/liquidity crises
 * but debts were long term and there is funding from official creditors

- This paper
 - secondary markets and multiple equilibria
 - foreigners become pessimistic → sell bonds to domestics → crowds out investment →
 → lower growth → lower cost of default → default more likely → validates pessimism

- Crucial assumptions
 - governments sometimes discriminate in favor of domestic residents
 - cost of default depends on size of economy
 - secondary markets
Related literature

- Self-fulfilling debt crises

- Secondary markets and sovereign risk

- Sovereign defaults and economic activity

- Gross capital flows during crises
Some facts

- Dynamics of Debt-GDP ratios
 - sources: OECD’s Economic Outlook Database, Eurostat
 - in PIIGS driven by high spreads, low growth, and high cyclical deficits, despite low structural deficits
 - in Germany driven bank recapitalization
Debts and Deficits: Germany vs. Spain

Germany

![Graph showing Germany's structural and cyclical primary deficits, interest payments, growth, and other adjustments over time, with public debt data on the right-hand side (RHS).]

Spain

![Graph showing Spain's structural and cyclical primary deficits, interest payments, growth, and other adjustments over time, with public debt data on the right-hand side (RHS).]
Some facts

- Dynamics of Debt-GDP ratios
 - sources: OECD’s Economic Outlook Database, Eurostat
 - in PIIGS driven by high spreads, low growth, and high cyclical deficits, despite low structural deficits
 - in Germany driven by bank recapitalization

- Domestic credit allocation
 - sources: National Central Banks’ Monetary Surveys and Financial Accounts, Datastream
 - in PIIGS credit to government increased while credit to corporations and households decreased
 - in Germany they have been flat
Sectorial credit: Germany vs. Spain
Public credit, private credit & sovereign spreads

Germany

Spain

- Public sector credit over private sector credit
- Spread (RHS)
Some facts

- **Dynamics of Debt-GDP ratios**
 - sources: OECD’s Economic Outlook Database, Eurostat
 - in PIIGS driven by high spreads, low growth, and high cyclical deficits, despite low structural deficits
 - in Germany driven by bank recapitalization

- **Domestic credit allocation**
 - sources: National Central Banks’ Monetary Surveys and Financial Accounts, Datastream
 - in PIIGS credit to government increased while credit to corporations and households decreased
 - in Germany they have been flat

- **Patterns of public debt holdings**
 - sources: National Treasuries and Central Banks
 - in PIIGS sovereign debt holdings shifted from foreigners to domestic residents as spreads rose
 - in Germany they continued shifting to foreigners
Sovereign debt holders: Germany vs. Spain

Germany

Spain

bps

Residents
Non-residents

spread (RHS)
Italy

Greece

Portugal

Ireland

Residents

Non-residents

spread (RHS)
Some facts

- Dynamics of Debt-GDP ratios
 - sources: OECD’s Economic Outlook Database, Eurostat
 - in PIIGS driven by high spreads, low growth, and high cyclical deficits, despite low structural deficits
 - in Germany driven by bank recapitalization

- Domestic credit allocation
 - sources: National Central Banks’ Monetary Surveys and Financial Accounts, Datastream
 - in PIIGS credit to government increased while credit to corporations and households decreased
 - in Germany they have been flat

- Patterns of public debt holdings
 - sources: National Treasuries and Central Banks
 - in PIIGS sovereign debt holdings shifted from foreigners to domestic residents as spreads rose
 - in Germany they continued shifting to foreigners

- Sovereign debt maturity
 - sources: OECD’s Economic Outlook Database
 - in both PIIGS and Germany maturity has been stable at 6-7 years
Average term to maturity

France	Germany	Greece	Ireland
Italy	Portugal	Spain
Presentation of the model

- Sovereign debt, risk, and growth
 - multiple steady states and poverty traps

- Endogenous cost of default
 - multiple equilibria and rollover crises

- Role of maturity (preliminary)
Model

- OLG: young and old, measure one

- Preferences: \(1 - \mu\) consume when young and \(\mu\) maximizes expected consumption when old
 \[U_t = E_t \{c_{t+1}\} \]

- Labor: young supplies one unit of labor inelastically

- Technology: Cobb-Douglas production function
 \[f(k_t) = k_t^\alpha \]
 where \(\alpha \in (0, 1)\) and capital depreciates at rate \(\delta \in (0, 1)\)

- Factor markets: competitive
 \[w_t = (1 - \alpha) \cdot k_t^\alpha \]
 \[r_t = \alpha \cdot k_t^{\alpha-1} + 1 - \delta \]

- Young save fraction \(s \equiv \mu \cdot (1 - \alpha)\) of output
Model

- Small open economy
 - international financial market (IFM) willing to borrow and lend at expected rate ρ
 - domestic residents save in capital and borrow from or lend to IFM
- Financial markets: domestic residents can pledge fraction $\phi \in (0, \rho)$ of capital stock
 \[f_t \leq \frac{\phi \cdot k_{t+1}}{\rho} \]
 where f_t denotes financing (assume $\phi = 0$ in this presentation)
- Government follows these rules of behavior
 - (i) issues only one-period debt
 - (ii) taxes old enough to keep debt burden constant at $d_t = d$
 - (iii) never defaults on debt held by domestic residents
Model

- Government debt is traded in secondary markets
- Key question for evolution of economy: Who buys this debt?
 - depends on whether foreigners expect to be repaid or not
- Foreigners are repaid if secondary markets remain open when government debt matures
 - government might have incentives to impose capital controls
Equilibrium

- If foreigners are repaid with probability 1
 - foreigners buy all government debt
 \[R_{t+1} = \rho \]
 - young invest solely in domestic capital
 \[k_{t+1} = k^1_t(k_t) \equiv \min \left\{ s \cdot k_t^\alpha, \left(\frac{\alpha}{\rho + \delta - 1} \right)^{\frac{1}{1-\alpha}} \right\} \]
 - old receive return on capital, are taxed to pay government debt, and consume
Equilibrium

- If foreigners are repaid with probability 1
 - foreigners buy all government debt
 \[R_{t+1} = \rho \]
 - young invest solely in domestic capital
 \[k_{t+1} = k^1(k_t) \equiv \min \left\{ s \cdot k_t^\alpha, \left(\frac{\alpha}{\rho + \delta - 1} \right)^{\frac{1}{1-\alpha}} \right\} \]
 - old receive return on capital, are taxed to pay government debt, and consume

- If foreigners are repaid with probability 0
 - foreigners do not buy any government debt
 - young invest in both domestic capital and government debt
 \[k_{t+1} = k^0(k_t) \equiv \min \left\{ s \cdot k_t^\alpha - d, \left(\frac{\alpha}{\rho + \delta - 1} \right)^{\frac{1}{1-\alpha}} \right\} \]
 \[R_{t+1} = \max \left\{ \alpha \cdot k_{t+1}^{\alpha-1} + 1 - \delta, \rho \right\} \geq \rho \]
 - old receive return on capital and government debt, are taxed to pay government debt, and consume
The extreme laws of motion

k_t

k_{t+1}

No default

Certain default
Model with probabilistic default

- Foreigners are repaid with probability $\pi \in (0, 1)$
 - our interpretation: government can impose capital controls with probability $1 - \pi$
Model with probabilistic default

- Foreigners are repaid with probability $\pi \in (0, 1)$

 - our interpretation: government can impose capital controls with probability $1 - \pi$

- Contractual interest rate depends on identity of marginal buyer

 - foreigners hold government debt if compensated for risk of default

 $$R_t \geq \frac{\rho}{\pi}$$

 - domestic residents hold government debt if compensated for foregone investment

 $$R_t \geq \max \{ \alpha \cdot k_{t+1}^{\alpha-1} + 1 - \delta, \rho \}$$

- Identity of marginal buyer depends on capital stock

- Secondary markets ex-ante imply that government cannot choose who to borrow from

 - debt is purchased by agents that value it more
Model with probabilistic default

- Law of motion $k_t^{\pi}(k_t)$ characterized by three regions

- Region I: k_t is low and its return high
 - domestic residents invest only in capital
 - all debt is purchased by IFM
 - $k_{t+1} = k_t^{1}(k_t)$

- Region II: k_t and its return are intermediate
 - domestic residents invest in capital until return is equalized with (their) return on debt
 - some debt is purchased by IFM
 - $k_{t+1} = \left(\frac{\alpha \cdot \pi}{\rho - (1 - \delta) \cdot \pi} \right)^{\frac{1}{1-\alpha}}$

- Region III: k_t is high and its return is low
 - domestic residents invest in capital and purchase all debt
 - no debt is purchased by IFM
 - $k_{t+1} = k_t^{0}(k_t)$
Law of motion with probabilistic default

\[k_t \rightarrow k_{t+1} \]

- No default
- Default with probability \(1 - \pi \)
Model with probabilistic default

- Government can discriminate ex post but not ex ante (can make it more symmetric)
 - ex-post discrimination means debt is more valuable if held by domestic residents
 - ex-ante non-discrimination means government cannot prevent crowding out

- Can have multiple steady states and poverty traps

- Changes in debt and risk of default can have unexpected consequences
An increase in debt

\[k_t \rightarrow k_{t+1} \]

Low debt
High debt

\[k_t \]

\[k_{t+1} \]
An increase in default probability

\(k_t\) vs \(k_{t+1}\)

- Low default probability
- High default probability
Model with cost of default

- Until now there was no cost of default
 - in reality: loss of reputation, sanctions, disruption of financial markets
- We now introduce cost of default
 - if government defaults on foreigners, old generation suffers a loss
- Deadweight loss
 - increases with capital stock: disruptions are more costly in absolute terms in a larger economy
 - increases with size of default: more effort undertaken to impose penalty
- In particular, we assume
 \[
 \text{cost of default} = \lambda \cdot R_{t+1} \cdot d_{t+1}^F \cdot k_{t+1}
 \]
Model with cost of default

- Cost of default may sustain “optimistic equilibrium”
 \[\lambda \cdot R_{t+1} \cdot d_{F_{t+1}} \cdot k_{t+1} \geq R_{t+1} \cdot d_{F_{t+1}} \iff k_{t+1} \geq 1/\lambda \] government repays foreigners

- If repayment is expected with probability 1
 \[R_{t+1} = \rho \quad \text{and} \quad d_{F_{t+1}} = d \]
 \[k_{t+1} = k^{1}(k_{t}) \]

and expectations are validated if

\[k_{t} \geq k^{O} \equiv \min_{k} \\{ k : k^{1}(k) = 1/\lambda \} \quad \text{if } \lambda \geq 1/k^{*} \]
\[= \infty \quad \text{if } \lambda < 1/k^{*} \]
where

\[k^{*} = \left(\frac{\alpha}{\rho + \delta - 1} \right)^{\frac{1}{1-\alpha}} \]
Model with cost of default

- Cost of default may sustain “optimistic equilibrium”

\[\text{if } \lambda \cdot R_{t+1} \cdot d_{t+1}^{F} \cdot k_{t+1} \geq R_{t+1} \cdot d_{t+1}^{F} \Leftrightarrow k_{t+1} \geq 1/\lambda \text{ government repays foreigners} \]

- If repayment is expected with probability 1

\[R_{t+1} = \rho \text{ and } d_{t+1}^{F} = d \]
\[k_{t+1} = k^{1}(k_{t}) \]

and expectations are validated if

\[k_{t} \geq \bar{k}^{O} \equiv \begin{cases} \min_{k} \{k : k^{1}(k) = 1/\lambda\} & \text{if } \lambda \geq 1/k^{*} \\ \infty & \text{if } \lambda < 1/k^{*} \end{cases} \text{ where } k^{*} = \left(\frac{\alpha}{\rho + \delta - 1}\right)^{\frac{1}{1-\alpha}} \]

- In this equilibrium

\[\to \text{ expect repayment } \rightarrow \text{ debt not attractive to domestic residents } \rightarrow \text{ high investment } \rightarrow \]
\[\to \text{ high capital stock } \rightarrow \text{ repayment takes place} \]
Figure 13: Optimistic and pessimistic laws of motion

Optimistic law of motion

Pessimistic law of motion

k_t vs. k_{t+1}
Model with cost of default

- Despite cost of default there may be a “pessimistic equilibrium”

\[- \text{ if } \lambda \cdot R_{t+1} \cdot d_{t+1}^F \cdot k_{t+1} \leq R_{t+1} \cdot d_{t+1}^F \iff k_{t+1} \leq 1/\lambda \text{ government defaults on foreigners}\]

- If repayment is expected with probability \(\pi \)

\[
R_{t+1} \in \left[\rho, \frac{\rho}{\pi} \right] \quad \text{and} \quad d_{t+1}^F \in [0, d]
\]

\[
k_{t+1} = k^\pi (k_t)
\]

and expectations are validated if

\[
k_t \leq k^P \equiv \begin{cases}
\max \{ k : k^\pi (k) = 1/\lambda \} & \text{if } \lambda \geq 1/k^* \\
\infty & \text{if } \lambda < 1/k^*
\end{cases}
\]

where \(k^* = \left(\frac{\alpha}{\rho + \delta - 1} \right)^{\frac{1}{1-\alpha}} \)
Model with cost of default

- Despite cost of default there may be a “pessimistic equilibrium”
 \[\text{if } \lambda \cdot R_{t+1} \cdot d_{t+1} \cdot k_{t+1} \leq R_{t+1} \cdot d_{t+1} \implies k_{t+1} \leq 1/\lambda \text{ government defaults on foreigners} \]

- If repayment is expected with probability \(\pi \)
 \[R_{t+1} \in \left[\rho, \frac{\rho}{\pi} \right] \text{ and } d_{t+1}^F \in [0, d] \]
 \[k_{t+1} = k^\pi (k_t) \]

 and expectations are validated if
 \[k_t \leq \bar{k} = \left\{ \begin{array}{ll}
 \max \{ k : k^\pi (k) = 1/\lambda \} & \text{if } \lambda \geq 1/k^* \\
 \infty & \text{if } \lambda < 1/k^*
 \end{array} \right. \]

 where \(k^* = \left(\frac{\alpha}{\rho + \delta - 1} \right)^{1/\alpha} \)

- In this equilibrium
 - expect default \(\rightarrow \) debt attractive to domestic residents \(\rightarrow \) low investment \(\rightarrow \)
 - low capital stock \(\rightarrow \) default takes place
Figure 13: Optimistic and pessimistic laws of motion
Model with cost of default

- Since \(k^\pi(k) \leq k^1(k) \) for all \(k \), it follows that
 \[\bar{k}^P \geq \bar{k}^O \]

- Both optimistic and pessimistic equilibria exist if
 \[k_t \in [\bar{k}^O, \bar{k}^P] \]

- A self-fulfilling crisis leads to
 - higher sovereign spreads
 - fraction of debt held domestically increases
 - domestic resources shift from investment to government debt
 - lower investment and growth
Maturity structure (preliminary discussion)

- Now government can issue debt of any maturity
- Assume
 - with probability $1 - \pi$ government can default on all outstanding debt held by foreigners
 - cost of default is proportional to market value of defaulted debt at end of previous period
- Conjecture: maturity structure makes no difference
 - optimistic and pessimistic equilibria exist for same values of k_t as with one-period debt
 - laws of motion in both equilibria are the same as with one-period debt
Maturity structure (preliminary discussion)

- Now government can issue debt of any maturity
- Assume
 - with probability $1 - \pi$ government can default on all outstanding debt held by foreigners
 - cost of default is proportional to market value of defaulted debt at end of previous period
- Conjecture: maturity structure makes no difference
 - optimistic and pessimistic equilibria exist for same values of k_t as with one-period debt
 - laws of motion in both equilibria are the same as with one-period debt
- Why?
 - with secondary markets foreigners can sell both maturing and non-maturing debt to domestic residents
 - size of “run” is independent of maturity structure
 - secondary markets make long-term debt effectively short-term with respect to rollover crises
Conclusions

- Facts of recent European crisis
 - higher spreads
 - sovereign debt holdings shifted from foreigners to domestic residents
 - bank credit shifted from corporate and consumers to government
 - debt dynamics driven by higher spreads and lower growth

- Portfolio reallocation
 - might seem puzzling and contrary to logic of optimal diversification
 - but is natural in models of sovereign risk with secondary markets

- In this paper, crisis triggered by
 - higher debt
 - higher probability of capital controls
 - multiple equilibria

- Secondary markets constrain governments. If they operate
 - at time of maturity: negative but ex-ante positive (reduce sovereign risk)
 - before maturity: negative (prevent market segmentation and lead to investment crowding out)

- Next,
 - formal analysis of maturity structure, contagion, and bailouts