Decomposing Euro-Area Sovereign Spreads: Credit and Liquidity Risks

A. Monfort1 and J.-P. Renne2

5th Volatility Institute Conference, NYU Stern, April 26th, 2013

1CREST, Banque de France and Maastricht University.
2Banque de France. The views expressed in the following are those of the authors and do not necessarily reflect those of the Banque de France.
Introduction
Credit and / vs Liquidity

Source: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
Introduction
Credit and / vs Liquidity

Google searches

"Liquidity crisis"
"Credit crisis"

Introduction
Motivations

1. Are euro-area sovereign yields affected by liquidity-pricing effects (and to what extent)?

2. Interactions between credit-related and liquidity-related risk factors?

3. How to extract probabilities of default (PDs) from bond prices?

4. Do the default compensations include risk premia? [credit-spread puzzle, Huang and Huang 2012, Chen et al. 2009]
Disentangling credit and liquidity risks: what for?

- **Policy implications** of a rise in spreads depend on the source:
 - Liquidity problems \Rightarrow improve market functioning
 - Credit concerns \Rightarrow enhance the solvency of the debtors (Codogno, Favero and Missale, 2003)

- **Investment decisions** (Longstaff, 2009):
 - Buy-and-hold investors seek bonds whose price is low because of poor liquidity
 - Bond A and Bond B have the same credit quality but A is less liquid \Rightarrow buy-and-hold investors buy A because less expensive than B for the same final payoff distribution
Introduction
Overview of connected literature

- **Disentangling credit/liquidity risks**: (using spreads that are known to be liquidity-driven)

 Spreads between bonds of the same maturity but different ages (Fontaine and Garcia, 2012), between T-bill rates and repo rates (Liu, Longstaff and Mandel, 2006), between govies and swaps (Feldhütter and Lando, 2008)

- **Extraction of PDs from market prices**: Litterman and Iben (1991)

- **Sovereign risk premia**: Borri and Verdelhan (2012), Longstaff et al. (2011), Ang and Longstaff (2011)
Introduction

Outline

1. Model
2. Data and estimation
3. Results
 1. Credit/liquidity decomposition
 2. Probabilities of default
4. Concluding remarks
Model

Variables

- **N** debtors (countries) that issue defaultable and illiquid bonds
- **Credit risk**: Debtors may default
 - Default variable: \(d_t^{(n)} = 1 \) if in debtor \(n \) in default at \(t \) (0 otherwise)
 - Default intensity: \(\lambda_{c,t}^{(n)} \)
 - Fractional loss given default (LGD): \(1 - \zeta \)
- **Liquidity risk**: Bondholders may have to liquidate hastily [Ericsson and Renault (2006)]
 - Liquidity-shock variable: \(\ell_t \)
 - Liquidity-shock intensity: \(\lambda_{\ell,t} \)
 - Fractional loss given liquidation (LGL): \(1 - \theta^{(n)} \)
- \(r_t \): risk-free short-term rate
- \(z_t \): crisis-regime variable
Credit risk: Fractional-loss credit intensity $\lambda^{(n)}_{fc,t}$:

$$\lambda^{(n)}_{fc,t} = (1 - \zeta) \times \lambda^{(n)}_{c,t}$$

fractional LGD \hspace{1cm} default intensity

Liquidity risk: Fractional-loss liquidity intensity $\lambda^{(n)}_{f\ell,t}$:

$$\lambda^{(n)}_{f\ell,t} = (1 - \theta^{(n)}) \times \lambda_{\ell,t}$$

fractional loss \hspace{1cm} liq.-shock intensity
Model
Historical dynamics of the regimes

- Liquidity-related stress: $z_{\ell,t}$
- Credit-related stress: $z_{c,t}$
- For i in $\{\ell, c\}$, three stress levels:

 $$
 z_{i,t} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} : \text{low stress} \\
 z_{i,t} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} : \text{distress} \\
 z_{i,t} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} : \text{severe stress}
 $$

- 9 unobserved regimes $z_t = z_{\ell,t} \otimes z_{c,t}$
- The two chains ($z_{\ell,t}$ and $z_{c,t}$) cause each other:

 $$
 \begin{cases}
 P(Z_{\ell,t} | Z_{\ell,t-1}) \neq P(Z_{\ell,t} | Z_{\ell,t-1}, Z_{c,t-1}) \\
 P(Z_{c,t} | Z_{c,t-1}) \neq P(Z_{c,t} | Z_{\ell,t-1}, Z_{c,t-1})
 \end{cases}
 $$
Model

Historical dynamics of the intensities

Generic process followed by the intensities (the $\lambda_{c,t}^{(n)}$'s and $\lambda_{l,t}$):

$$\lambda_t = \mu' z_t + \rho \lambda_{t-1} + \sigma \epsilon_t$$

Simulated example:

with $\mu = [0.01 \ 0.03 \ 0.10]$, $P = \begin{bmatrix} 0.98 & 0.02 & 0 \\ 0.05 & 0.90 & 0.05 \\ 0 & 0.30 & 0.70 \end{bmatrix}$, and $\epsilon_t \sim \text{i.i.d. } \mathcal{N}(0, 0.01^2)$.

Light grey: crisis regime ($z_t = [0, 1, 0]'$), Dark grey: severe crisis regime ($z_t = [0, 0, 1]'$)
Stochastic discount factor (s.d.f.) between $t - 1$ and t:

$$M_{t-1,t} = \exp \left[-r_{t-1} - \frac{1}{2} \nu_t \nu_t' + \nu_t' \varepsilon_t + (\delta z_{t-1})' z_t \right]$$

The risk-sensitivity matrix δ and the vectors ν_t respectively price the regimes z_t and the (standardized) Gaussian innovations ε_t of λ_t.

Under Q:

- z_t follows a time-homogenous Markovian chain whose dynamics is described by transition probabilities π_{ij}^* (given by $\pi_{ij} \exp \delta_{ij}$)
- The intensities follow:

$$\lambda_{i,t} = \mu_i^* z_t + \rho_i^* \lambda_{i,t-1} + \sigma_i \varepsilon_{i,t}^*$$

where $\varepsilon_{i,t}^* \sim \mathcal{N}^Q(0,1)$, $\mu_i^* = \mu_i + \sigma_i \nu_{z,i}'$ and $\rho_i^* = \rho_i + \sigma_i \nu_{\lambda,i}$

($\nu_{i,t} = \nu_{\lambda,i} \lambda_{i,t-1} + \nu_{z,i}' z_t$)
Model
Risk-neutral dynamics of d_t and ℓ_t

P and Q intensities in this framework

- The conditional distributions of d_t and ℓ_t, given $(\lambda_{c,t}, \lambda_{\ell,t}, W_{t-1})$, are the same functions of $\lambda_{c,t}$ and $\lambda_{\ell,t}$ under \mathbb{P} and \mathbb{Q}.
- The default and liquidity intensities are the same process in both worlds.

- This stems from the fact that the variables d_t and ℓ_t do not enter the s.d.f.
Model

Risk-neutral dynamics of d_t and ℓ_t

\mathbb{P} and \mathbb{Q} intensities in this framework

- The conditional distributions of d_t and ℓ_t, given $(\lambda_{c,t}, \lambda_{\ell,t}, W_{t-1})$, are the same functions of $\lambda_{c,t}$ and $\lambda_{\ell,t}$ under \mathbb{P} and \mathbb{Q}.
- The default and liquidity intensities are the same process in both worlds.

- This stems from the fact that the variables d_t and ℓ_t do not enter the s.d.f.
- The intensities are the same processes under both measures but their \mathbb{Q}- and \mathbb{P}-dynamics are different. (Hence \mathbb{Q}- and \mathbb{P}-PDs are different.)
Model

Markov-switching State-space model

Bond spreads formulas

\[y_{t,h}^{(n)} - r_{t,h} = -\frac{1}{h} \ln E_t^Q \exp \left(-\lambda_{fc, t+1}^{(n)} - \ldots - \lambda_{fc, t+h}^{(n)} - \lambda_{f\ell, t+1}^{(n)} - \ldots - \lambda_{f\ell, t+h}^{(n)} \right) \]

\[= a_h^{(n)'} z_t + b_h^{(n)'} \lambda_t \]

where the \(a_h^{(n)} \)'s and the \(b_h^{(n)} \)'s are computed recursively.

- Model in state-space form (\(S_t \): vector of spreads):

\[
\begin{align*}
\lambda_t &= \mu' z_t + \Phi \lambda_{t-1} + \Sigma \varepsilon_t \\
S_t &= A z_t + B \lambda_t + \xi_{S,t}
\end{align*}
\]
Model

Markov-switching State-space model

Bond spreads formulas

\[
y_{t,h}^{(n)} - r_t = \frac{1}{h} \ln E_t^\mathbb{Q} \exp \left(-\lambda_{fc,t+1}^{(n)} - \ldots - \lambda_{fc,t+h}^{(n)} - \lambda_{f\ell,t+1}^{(n)} - \ldots - \lambda_{f\ell,t+h}^{(n)} \right) \\
= a_h^{(n)'} z_t + b_h^{(n)'} \lambda_t
\]

where the \(a_h^{(n)}\)'s and the \(b_h^{(n)}\)'s are computed recursively.

- Model in state-space form (\(S_t\): vector of spreads):

\[
\begin{align*}
\lambda_t &= \mu' z_t + \Phi \lambda_{t-1} + \Sigma \varepsilon_t \\
CF_t &= A_{CF} z_t + B_{CF} \lambda_t + \xi_{CF,t} \\
S_t &= A z_t + B \lambda_t + \xi_{S,t}
\end{align*}
\]

⇒ Small-sample persistence bias problem: survey-based forecast are introduced [Kim and Orphanides, 2012]
Weekly data July 2006 – February 2013

Eight euro-area countries: Austria, Belgium, Finland, France, Germany, Italy, the Netherlands and Spain

Riskfree yields $r_{t,h}$:

$$r_{t,h} = \text{German yields} - \text{German CDS}$$

12-month-ahead forecasts of 10-year sovereign yields (France, Germany, Italy, Netherlands and Spain) are exploited

MLE estimation: Log-likelihood of the Markov-Switching State-Space model computed by means of Kim’s (1994) algorithm

Liquidity-factor identification: KfW bonds feature the same credit quality as Germany but are less liquid
Data and estimation
Liquidity factor: spreads between gov-guaranteed bonds and goovies

Panel A – KfW–Bund spreads across maturities

Panel B – Liquidity spreads across countries
Data and estimation
Liquidity factor $\lambda_{\ell,t}$

- - - - Liquidity factor
- - - - Bid–ask spread on 10-year French–government benchmark bond

Data and estimation

Estimated crisis regimes
Data and estimation

Transition probabilities

<table>
<thead>
<tr>
<th></th>
<th>Under \mathbb{P}</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NL_{t+1}</td>
<td>L_{t+1}</td>
<td>LL_{t+1}</td>
</tr>
<tr>
<td>NC_t</td>
<td>0.999***</td>
<td>0.00106</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(0.0011)</td>
<td>(0.0011)</td>
<td>-</td>
</tr>
<tr>
<td>NL_t</td>
<td>0.96***</td>
<td>0.043***</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(0.012)</td>
<td>(0.012)</td>
<td>-</td>
</tr>
<tr>
<td>C/CC_t</td>
<td>0.037***</td>
<td>0.85***</td>
<td>0.109***</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.042)</td>
<td>(0.042)</td>
</tr>
<tr>
<td>L_t</td>
<td>0.0061</td>
<td>0.89***</td>
<td>0.105***</td>
</tr>
<tr>
<td></td>
<td>(0.0055)</td>
<td>(0.034)</td>
<td>(0.034)</td>
</tr>
<tr>
<td>LL_t</td>
<td>-</td>
<td>0.69***</td>
<td>0.31***</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>(0.092)</td>
<td>(0.092)</td>
</tr>
</tbody>
</table>
Data and estimation

Transition probabilities

<table>
<thead>
<tr>
<th></th>
<th>Under \mathbb{Q}</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NL_{t+1}</td>
<td>L_{t+1}</td>
<td>LL_{t+1}</td>
<td></td>
</tr>
<tr>
<td>NC_t</td>
<td>0.999***</td>
<td>0.0015***</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>NL_t</td>
<td>(0.00035)</td>
<td>(0.00035)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>C/CC_t</td>
<td>0.98***</td>
<td>0.021***</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0056)</td>
<td>(0.0056)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>NC_t</td>
<td>0.019***</td>
<td>0.000049</td>
<td>0.98***</td>
<td></td>
</tr>
<tr>
<td>L_t</td>
<td>(0.004)</td>
<td>(0.12)</td>
<td>(0.11)</td>
<td></td>
</tr>
<tr>
<td>C/CC_t</td>
<td>0.000048</td>
<td>0.00004</td>
<td>0.9999***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0046)</td>
<td>(0.13)</td>
<td>(0.13)</td>
<td></td>
</tr>
<tr>
<td>LL_t</td>
<td>-</td>
<td>1***</td>
<td>0.000049</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.088)</td>
</tr>
</tbody>
</table>
Credit/Liquidity Risk Premia Analysis (5-year maturity)

<table>
<thead>
<tr>
<th></th>
<th>Expectation part of the spreads</th>
<th>Risk premiums</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Credit</td>
<td>Liquidity</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
</tr>
<tr>
<td>Austria</td>
<td>0.06</td>
<td>0.09</td>
</tr>
<tr>
<td>Belgium</td>
<td>0.17</td>
<td>0.26</td>
</tr>
<tr>
<td>Finland</td>
<td>0.03</td>
<td>0.05</td>
</tr>
<tr>
<td>France</td>
<td>0.11</td>
<td>0.16</td>
</tr>
<tr>
<td>Germany</td>
<td>0.04</td>
<td>0.05</td>
</tr>
<tr>
<td>Italy</td>
<td>0.49</td>
<td>0.63</td>
</tr>
<tr>
<td>Netherlands</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Spain</td>
<td>0.45</td>
<td>0.63</td>
</tr>
</tbody>
</table>
Credit/Liquidity
Risk Premia Analysis (5-year maturity)

![Graphs showing credit and liquidity premia for various countries over time](image-url)
Regression analysis suggests that the different parts of the spreads are related to macro-finance indicators:

<table>
<thead>
<tr>
<th></th>
<th>Expectation part</th>
<th>Risk premium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credit</td>
<td>VSTOXX, IBOR-OIS, BVOL</td>
<td>VSTOXX, EUROSTOXX, BVOL</td>
</tr>
<tr>
<td>Liquidity</td>
<td>EUROSTOXX</td>
<td>IBOR-OIS, EUROSTOXX</td>
</tr>
</tbody>
</table>
Credit/Liquidity
Extracting default probabilities

- Once the model is estimated, one can derive implicit default probabilities.
- In the spirit of Litterman and Iben (1991), various basic methodologies result in risk-neutral PDs (Chan-Lau, 2006).
- In our framework, we can compute both the risk-neutral and the actual (or real-world) PDs.

⇒ Results: significant differences between actual and risk-neutral PDs.
Credit/Liquidity
Extracting default probabilities

- The actual PD between time t and time $t + h$ is:

$$
\mathbb{P}_t \left(d_{t+h}^{(n)} = 1 \mid d_t^{(n)} = 0 \right),
$$

that is:

$$
1 - E_t^{\mathbb{P}} \left(\exp \left\{ \frac{1}{1 - \zeta} (-\lambda_{fc,t+1}^{(n)} - \ldots - \lambda_{fc,t+h}^{(n)}) \right\} \right)
$$

- We use a recovery rate of 50%
Credit/Liquidity
Extracting default probabilities (5-year PDs)
Credit/Liquidity

Extracting default probabilities (Term Structures of PDs)
Credit/Liquidity

Extracting default probabilities (5-year PDs)
Credit/Liquidity

Extracting default probabilities (5-year PDs)
Concluding remarks

- One of the few attempts to model simultaneously sovereign EA spreads in a no-arbitrage framework
- Innovative use of regime-switching features to model interactions between credit and liquidity pricing effects
- Empirical results:
 - Liquidity effects account for a substantial part of EA-spreads fluctuations, but credit aspects have dominated over the last two years
 - The existence of risk premia results in significant differentials between risk-neutral and actual PDs
Thank you for your attention.
Bid-Ask spreads: KfW vs Bund
Bid-Ask spreads: Euro-area sovereigns
The liquidity-related fractional-cost intensity: \(\lambda_{\ell,t}^{(n)} = (1 - \theta^{(n)}) \lambda_{\ell,t} \)

Fractional cost: \(1 - \theta^{(n)} \).

\(\ell_t = 1 \Rightarrow \) the investor has to exit by selling her bond holdings.

- This liquidation has to be done in a limited period of time, between \(t \) and \(t + \varepsilon \), say (where \(\varepsilon << 1 \)).
- Random number \(K \) of offers from traders, \(K \sim \mathcal{P}(\gamma^{(n)}) \),...
- ... each offer is a random fraction \(\omega_i \) (\(i \in \{1, \ldots, K\} \)) of \(B_{t,h}^{(n)} \), \(\omega_i \sim \mathcal{U}([0, 1]) \).

The selling price is: \(\max_{i \in \{1, \ldots, K\}} (\omega_i) B_{t,h}^{(n)} = \theta(\gamma^{(n)}) \times B_{t,h}^{(n)} \), where \(\theta \) is monotonically increasing and valued in \([0, 1]\).