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The Higher Moments of Future Return on Equity 

Abstract 

We use quantile regressions to evaluate the higher moments of future return on equity, ROE. 

First, we evaluate the in-sample relations between current firm-level attributes and the moments 

of lead ROE. We show that: (1) as current profitability increases lead ROE tends to increase, 

become more disperse, and more leptokurtic; (2) loss firms tend to have lower, more disperse, 

and more left-skewed lead ROE; (3) as accruals increase lead ROE tends to decrease and become 

more disperse; and, (4) firms with higher leverage and/or lower payout ratios tend to have greater 

dispersion in lead ROE. Second, we show that the in-sample relations generate reliable out-of-

sample estimates of the probability of a loss as well as the standard deviation, skewness, and 

kurtosis of lead ROE. Moreover, when compared to estimates obtained via alternative 

approaches, our out-of-sample estimates: (1) always contain incremental information content and 

(2) are typically more reliable. Finally, we evaluate the role that the higher moments of future 

ROE play in determining valuation multiples and credit ratings. 
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1. Introduction 

Return on equity, ROE, is a key economic variable. Hence, numerous studies in 

accounting and finance evaluate the relation between ROE and firm-level attributes; and, there is 

a large literature that evaluates different approaches for forecasting ROE.1 

A limitation of extant studies is that virtually all of them focus (implicitly or explicitly) 

on expected—i.e., the mean of—future ROE.2 Although the mean is an important moment of the 

distribution, higher moments are important too. For example, as the variance of future firm-level 

payoffs increases so does the likelihood of default (e.g., Merton [1974]); and, a number of 

theoretical asset-pricing models imply that equity prices depend on higher firm-level moments of 

future payoffs (e.g., Johnson [2004], Brunnermeier et al. [2007], Mitton and Vorkink [2007], and 

Barberis and Huang [2008]). 

As discussed above and in section two, a number of empirical questions can be asked 

about the economic relevance of the higher moments of future ROE. However, meaningful 

answers to these questions cannot be obtained unless there is a reliable approach for estimating 

higher moments. Hence, in this study, we focus on two more-fundamental questions. First, what 

are the in-sample relations between firm-level attributes and the higher moments of lead ROE? 

Second, can these in-sample relations be used to develop reliable out-of-sample estimates of the 

higher moments of lead ROE? 

We use a novel research design that is based on quantile regressions. As discussed in 

section three, quantile regressions are particularly appropriate in our setting for two reasons. 

                                                 
1 Examples of studies that focus on ROE or related earnings metrics include: Freeman et al. [1982], Fairfield and 
Yohn [2000], Fama and French [2000, 2006], Nissim and Penman [2001, 2003], Banker and Chen [2006], Hou and 
Robinson [2006], Soliman [2008], Fairfield et al., [2009], Esplin et al. [2011], Hou et al. [2012], Li and Mohanram 
[2012], Penman [2012], and Gerakos and Gramercy [2013]. This list is not exhaustive and we apologize in advance 
to the authors of the papers that are omitted. 
2 A recent study by Konstantinidi and Pope [2012], who evaluate the quantiles of return on assets, is a notable 
exception. We elaborate on the relative contributions of the two studies in section two. 
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First, as discussed in Buchinsky [1998], when a regression is estimated for the qth quantile, the 

coefficient on a particular regressor is a consistent estimate of the change in the qth conditional 

quantile of the dependent variable given a marginal change in the regressor of interest. Hence, 

we use the coefficients obtained from regressions estimated for a sequence of quantiles to infer 

the relation between firm-level attributes and the location and shape of the distribution of lead 

ROE. 

Second, the fitted value obtained from a regression estimated for the qth quantile is a 

consistent estimate of the qth conditional quantile of the dependent variable. Hence, for each 

firm-year in our sample we calculate out-of-sample estimates of the conditional quantiles of lead 

ROE for a sequence of quantiles. Next, we combine these estimates to form an estimate of the 

conditional cumulative distribution function, cdf, of lead ROE. Finally, we use the cdf to infer 

the conditional probability that lead ROE is negative—i.e., the probability of a future loss—as 

well as the conditional mean, standard deviation, skewness, and kurtosis of lead ROE. 

In our first set of analyses, we document the in-sample relations between the moments of 

lead ROE and firm-level attributes that fall into two categories: (1) attributes of current ROE and 

(2) attributes of current financial policy. Regarding the relations between lead ROE and the 

attributes of current ROE, three results are noteworthy. First, as current ROE increases lead ROE 

tends to increase, become more disperse, and more leptokurtic—i.e., fat-tailed. Hence, although 

higher current ROE implies higher expected lead ROE, it also implies riskier lead ROE. Second, 

loss firms tend to have lower, more disperse, and more left-skewed lead ROE; and, as current 

losses become larger in magnitude, lead ROE tends to decrease and become more disperse. 

Hence, current losses are associated with lower, riskier lead ROE. Finally, as accruals increase 
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lead ROE tends to decrease and become more disperse. This implies that accruals, which are a 

measure of growth, are positively associated with the riskiness of lead ROE. 

Regarding the relations between the moments of lead ROE and firms’ financial policies, 

we show that the distribution of lead ROE becomes more disperse and more leptokurtic as 

current leverage increases. This is consistent with the well-known result described in Modigliani 

and Miller [1958]: equity becomes riskier as leverage increases. We also show that dividend-

paying firms have distributions of lead ROE that are less disperse and less left-skewed. This 

supports results in Brav et al. [2005], who show that 70 percent of managers they surveyed view 

the “…stability and sustainability of future earnings” as a key determinant of payout-policy. It 

also supports the dividend-smoothing hypothesis described in Lintner [1956]. 

In our second set of analyses we evaluate whether the in-sample relations described 

above can be used to develop reliable out-of-sample predictions. We begin by conducting tests at 

the firm-year level in which we evaluate our estimates of the probability of a future loss, 

Q_PROB, and our estimates of the standard deviation of lead ROE, Q_STD. We show that 

Q_PROB and Q_STD are positively associated with future realized losses and future unsigned 

forecast errors, respectively. 3  These associations remain after controlling for alternative 

estimates.4 Moreover, our quantile-based estimate of the standard deviation of lead ROE is a 

more reliable predictor of future unsigned forecast errors than the alternative estimates that we 

evaluate. 

Next, we conduct tests at the industry-year level. We do this because industry attributes 

are relevant per se and because realized moments are not observable at the firm-year level. 

Hence, it is not possible to use firm-level tests to obtain direct evidence about reliability. 

                                                 
3 A firm’s unsigned forecast error in year t+h equals the absolute value of the difference between the firm’s realized 
ROE in year t+h and the year t estimate of the mean of the firm’s ROE in year t+h. 
4 We elaborate on our alternative estimates and how we calculate them in section six. 
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However, it is possible to use industry-level tests. In particular, as discussed in section six, we 

use the law of total moments described in Brillinger [1969] to construct estimates of industry-

year moments from contemporaneous estimates of firm-year moments. We then compare the 

industry-level estimates to the future realized industry-level moments. 

The results of the industry-level tests lead to the conclusion that the quantile-based 

estimates are reliable out-of-sample predictors. In particular, each of the estimated industry-level 

moments is positively associated with its future realized industry-level counterpart and these 

associations remain after controlling for alternative estimates. Moreover, with the exception of 

our estimate of the kurtosis of lead ROE, our quantile-based estimates of the moments of lead 

industry-level ROE are more reliable predictors of the future realized moments than any of the 

alternative estimates that we evaluate. 

Although our primary research objective is to document the in-sample relations described 

above and to show that they can be used to generate reliable out-of-sample estimates, we also 

provide initial evidence about the economic relevance of the higher moments of ROE. 

Specifically, in our final set of analyses we evaluate the relations between the higher moments of 

lead ROE and two important economic variables: (1) valuation multiples and (2) credit ratings.  

We show that the current, firm-level book-to-price and earnings-to-price ratios are both 

negatively associated with our quantile-based estimates of the standard deviation and skewness 

of lead ROE and positively associated with our quantile-based estimate of the kurtosis of lead 

ROE. These results remain after controlling for the moments of historical stock returns. Hence, 

we show that, ceteris paribus, investors place higher prices on securities with future payoffs that 

are relatively volatile, positively-skewed, and thin-tailed, which is consistent with extant 

analytical and empirical results (e.g., Johnson [2004], Ang et al. [2006, 2009], Brunnermeier et 



 

5 
 

al. [2007], Mitton and Vorkink [2007], Barberis and Huang [2008], Boyer et al. [2010], and 

Conrad et al. [2013]). 

In our analyses of credit ratings we show that, ceteris paribus, firms with worse credit 

ratings tend to have lead ROE that is relatively volatile, negatively-skewed, and fat-tailed. These 

results remain after controlling for other determinants of credit ratings and the moments of 

historical stock returns. The association between credit ratings and the standard deviation of lead 

ROE is consistent with results in Merton [1974], who shows that the probability of default is 

increasing in volatility. The results related to kurtosis (skewness) are consistent with arguments 

made in practice about the implications of tail risk for optimal bond-portfolio formation (e.g., see 

chapters 16 and 17 of Dynkin et al. [2007]). These results are also intuitive as they suggest that 

when extreme negative payoffs are more likely ratings agencies assume a higher expected loss. 

We make four contributions to the extant literature. First, we develop a general approach 

based on quantile regressions that can be used to study the economic relevance of the higher 

moments of future ROE as well as other variables. Second, we provide pertinent evidence about 

the relations between the higher moments of lead ROE and key firm-level attributes. Third, we 

show that our methodology yields reliable out-of-sample estimates of probability of a future loss 

as well as the standard deviation, skewness, and kurtosis of lead ROE. These are nontrivial 

results given the difficulty involved in predicting higher moments; and, the particular challenges 

related to predicting higher moments of ROE, which is a function of aggregate data that are 

reported fairly infrequently. Finally, we provide initial evidence about the relevance of the higher 

moments of future ROE within the context of equity and credit valuation. 
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2. Related Literature 

The higher moments of firm-level payoffs are potentially relevant in various economic 

contexts. Consider equity valuation, a number of extant analytical models suggest that firm-level 

moments matter. For example, Johnson [2004] shows that, for levered firms, the option value of 

equity is increasing in the volatility of future firm-level payoffs. On the other hand, Merton 

[1987] shows that, when incomplete information leads to market segmentation, equity prices are 

a decreasing function of firm-level volatility. The skewness of future firm-level payoffs may also 

affect equity prices. For instance, Brunnermeier et al. [2007] show that when optimistic 

“…investors hold beliefs that optimally trade off the ex ante benefits of anticipatory utility 

against the ex post costs of basing investment decisions on biased beliefs,” equity prices are 

increasing in firm-level skewness. A similar result is obtained by Barberis and Huang [2008], 

who assume that investors make decisions according to cumulative prospect theory. Finally, 

Mitton and Vorkink [2007] show that, when rational investors have heterogeneous preferences, 

equity prices are increasing in the skewness of future firm-level payoffs. 

Firm-level moments are also potentially relevant in the context of debt valuation. As 

shown in Merton [1974], debt values are decreasing in firm-level volatility. He obtains this result 

by assuming that asset returns are normally distributed; hence, higher moments do not matter in 

his model. However, if the assumption of normality is relaxed, higher moments are likely 

relevant (e.g., Dynkin et al. [2007]). In particular, given debt holders face relatively high 

exposure to downside risk while benefitting little from positive shocks, they should assign lower 

values to debt instruments issued by firms with future payoffs that exhibit negative skewness or 

positive kurtosis. 
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In addition to equity and credit valuation, there are numerous other contexts in which the 

higher moments of future firm-level or industry-level payoffs are potentially relevant. For 

example, Givoly and Hayn [2000] argue that the skewness of firm-level earnings relative to the 

skewness of firm-level cash flows is an indicator of conditional conservatism. Studies in the 

industrial organization literature (e.g., Klepper [1996]) evaluate the causes and consequences of 

industry-level entry, exit, growth and innovation, which are likely associated with the ex ante 

distribution of industry-level payoffs. 

The above implies there are a number of interesting empirical questions regarding the 

economic relevance of the higher moments of future ROE. Before these questions can be 

addressed, however, a reliable approach for estimating the higher moments of future ROE must 

be developed. Hence, our primary research objective is to develop an approach based on quantile 

regressions and to demonstrate that it yields reliable out-of-sample predictions. We also evaluate 

the in-sample relations between the estimated moments and observable firm-level attributes; and, 

we provide initial evidence about the relation between our out-of-sample estimates and two key 

economic variables: (1) valuation multiples and (2) credit ratings. 

Regarding our research objective, it bears mentioning that forecasting higher moments, 

especially moments higher than the variance, is difficult. The reason for this is that skewness and 

kurtosis relate to rare events. For example, a firm, or a set of similar firms, with high ex ante 

skewness (kurtosis) may have exhibited low historical skewness (kurtosis). Hence, out-of-

sample predictions of future skewness (kurtosis) obtained from historical data may be unreliable. 

Moreover, forecasting the higher moments of firm-level ROE presents additional challenges 

given that ROE is the ratio of two summary numbers that are reported fairly infrequently. 
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Consequently, whether we can develop reliable out-of-sample estimates of the moments of future 

firm-level ROE is an empirical question. 

Finally, it is important that we compare our study to an earlier study by Konstantinidi and 

Pope [2012] (KP hereafter). KP evaluate the quantiles of lead return on assets. The key 

difference between the two studies is that KP primarily focus on the extreme quantiles whereas 

we develop a general approach for evaluating and estimating the moments of the distribution. 

This is important for several reasons. First, the moments (as opposed to the extremes) of the 

distribution are the relevant economic constructs of interest. Moreover, different analytical 

assumptions lead to different predictions about which moments matter and how they matter. 

Second, and related to the first point, interpreting the extreme quantiles is difficult because they 

are a function of the variance, skewness, and kurtosis of the distribution. Finally, by estimating 

the moments we are able to draw clear-cut and in-depth inferences about the: (1) in-sample 

relations between current, firm-level attributes and the higher moments of future ROE and (2) 

reliability of our out-of-sample estimates. 

 

3. Research Design 

We begin by providing a general overview of quantile regressions and how to use them to 

evaluate and estimate the conditional moments of a random variable. Next, we provide details 

about how we model the relation between firm-level attributes and the higher moments of lead 

ROE. Please note that in this section we focus on providing an intuitive description of quantile 

regressions. We relegate the discussion of technical details to Appendix A. 
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3.1 General Overview of Quantile Regressions 

As discussed in Buchinsky [1998], the estimation of a quantile regression involves 

choosing the coefficient vector q
k

qq  ,,0   that solves the minimization problem shown in 

equation (1). 
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In equation (1), yi,t is the year t—i.e., the lead—value of the dependent variable for observation 

i  [1,N], xi,t-h,j is the year t-h—i.e., the current—value of the jth independent variable (j  [0,k]) 

for observation i, and q  (0,1) denotes the qth quantile. 

Equation (1) has a similar structure as the minimization problem underlying an ordinary 

least squares, OLS, regression. For example, the objective function involves choosing regression 

coefficients that minimize a function of the residuals. However, unlike the OLS minimization 

problem in which equal weight is put on each of the squared residuals, the estimation of a 

quantile regression involves assigning weights that depend on the sign of the residual. In 

particular, the weight put on a positive residual is q÷(1-q) orders of magnitude of the weight put 

on a negative residual. This implies that the coefficient vector q  is chosen so that for each 

positive residual there are q÷(1-q) negative residuals; and, consequently, (1-q)×100 (q×100) 

percent of the residuals will lie above (below) the fitted value, which equals 




k

j
jhti

q
j x

0
,, . Hence, 

similar to OLS regressions, which yield fitted values that are consistent estimates of the 
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conditional mean of yi,t, quantile regressions yield fitted values that are consistent estimates of 

the qth conditional quantile of yi,t, which we refer to as  |,tiq yQUANT .5 

The coefficients obtained from a quantile regression can also be interpreted in a similar 

manner as the coefficients obtained from an OLS regression. In particular, as discussed in 

Buchinsky [1998], q
j  is a consistent estimate of 

 
jhti

tiq

x

yQUANT

,,

, |




. Hence, the coefficients 

obtained from a quantile regression reflect marginal effects. However, unlike the coefficients 

obtained from an OLS regression, which equal the change in the conditional mean of yi,t given a 

marginal change in xi,t-h,j, coefficients obtained from a quantile regression equal the change in the 

qth conditional quantile of yi,t given a marginal change in xi,t-h,j. 

The facts described above have two important implications. First, the fact that the 

coefficients obtained from a quantile regression reflect marginal effects implies that we can use 

them to infer the association between xi,t-h,j and higher moments of yi,t. To do this we begin by 

solving the minimization problem shown in equation (1) for a sequence of Q quantiles.6 This 

yields Q estimates of q
j . Next, we evaluate how q

j  varies with q and we infer the effect of  

xi,t-h,j on the moments of yi,t. For example, suppose that 0 cq
j  for all q. This implies that as 

xi,t-h,j increases all of the quantiles shift to the right by an equal amount. Hence, xi,t-h,j is 

associated with the location, but not the shape, of the distribution of yi,t. On the other hand, 

suppose that for q
j  is positive for all q and an increasing function of q. Hence, although 

increases in xi,t-h,j lead to increases in all of the quantiles of yi,t, the upper quantiles increase by a 

larger amount. This implies that xi,t-h,j is positively associated with both the conditional mean and 

                                                 
5 A formal discussion of this result is provided in Buchinsky [1998]. 
6 Note that the solutions for the Q quantiles are estimated jointly. 
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conditional variance of yi,t—i.e., as xi,t-h,j increases the conditional distribution of yi,t shifts to the 

right and becomes more disperse. 

Second, the fact that quantile regressions yield fitted values that are consistent estimates 

of  |,tiq yQUANT  implies that we can use the fitted values to develop out-of-sample estimates 

of the moments of yi,t+h. To do this we begin by solving the minimization problem shown in 

equation (1) for a sequence of Q quantiles. This yields Q estimates of the coefficient vector Bq. 

These Q estimates reflect the in-sample relations between the conditional quantiles of the 

dependent variable measured at year t and the year t-h values of the independent variables. 

However, we want out-of-sample estimates of the year t+h quantiles. Hence, we combine the 

year t values of the independent variables with the estimated coefficient vector to predict the 

year t+h qth conditional quantile of the dependent variable—i.e.,   

 |,

^

1
,, htiq

k

j
jti

q yQUANTx
j

 . 

Next, we combine the Q predicted quantiles to arrive at a discrete estimate of the conditional cdf 

of yi,t+h. Finally, we use standard statistical formulas to impute the conditional moments of yi,t+h 

from the cdf. 

3.1 Modeling the Higher Moments of ROE 

For each estimation year EY we assume the following linear relation between the qth 

conditional quantile of ROE for year t and firm-level attributes measured at year t-h. We refer to 

year t as the lead year and we refer to year t-h as the current year. 
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 (2) 

The variables in equation (2) are described in the table shown below. 
 
 
 



 

12 
 

Variable 
Name 

 
Description 

ROEi,t Earnings of firm i during year t divided by firm i’s year t-h equity book value 
ROEi,t-h Earnings of firm i during year t-h divided by firm i’s year t-h equity book value 
LOSSi,t-h An indicator variable that equals one (zero) if ROEi,t-h < 0 (ROEi,t-h ≥ 0) 
ACCi,t-h Accruals reported by firm i during year t-h divided by firm i’s year t-h equity book 

value 
LEVi,t-h Total assets of firm i for year t-h divided by firm i’s year t-h equity book value 
PAYERi,t-h An indicator variable that equals one (zero) if PAYOUTi,t-h > 0 (PAYOUTi,t-h = 0) 
PAYOUTi,t-h Dividends paid by firm i during year t-h divided by firm i’s year t-h equity book 

value 
 

Our model is similar to the model used by Hou et al. [2012], who focus on forecasting the 

mean of ROE. However, there are two differences. First, Hou et al. [2012] do not deflate by 

equity book value. Second, Hou et al. [2012] do not include the interaction term ROEi,t-

h×LOSSi,t-h. 

The motivation for the independent variables in equation (2) is straightforward. First, it is 

well-known (e.g., Freeman et al. [1982]) that ROE is persistent; hence, we include ROEi,t-h in our 

model. Second, there is ample evidence (e.g., Basu [1997]) that losses follow a different time-

series process than profits; thus, we allow the coefficient on ROEi,t-h to vary with the sign of 

ROEi,t-h. Third, evidence provided by Sloan [1996] implies that accruals are less persistent that 

cash flows. Consequently, we control for the portion of year t-h ROE that is attributable to year 

t-h accruals, ACCi,t-h. Finally, well-known results in finance (e.g., Lintner [1956], Modigliani 

and Miller [1958], and Miller and Rock [1985]) show that firms’ capital structure and payout 

policies are associated with the level and dispersion of ROE. Hence, we include LEVi,t-h, 

PAYERi,t-h, and PAYOUTi,t-h in our model. 

In addition to being intuitively appealing and comparable to extant models such as that 

used by Hou et al. [2012], our model has two advantages. First, it is parsimonious and tractable. 

Second, it is superior to a number of more elaborate models. In particular, we evaluate models in 
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which we add the following variables to equation (2): the log of sales, SIZEi,t-h; an indicator for 

extreme ROE that equals one (zero) if ROEi,t-h is (is not) in the top or bottom tenth percentile of 

the annual distribution, XTRM_ROEi,t-h; the interaction between XTRM_ROEi,t-h and ROEi,t-h; 

the lagged change in earnings deflated by equity book value, ROEi,t-h; an indicator for extreme 

changes in ROE that equals one (zero) if ROEi,t-h is (is not) in the top or bottom tenth percentile 

of the annual distribution, XTRM_ROEi,t-h; the interaction between the XTRM_ROEi,t-h and 

ROEi,t-h; the interaction between XTRM_ROEi,t-h and ROEi,t-h; the measure of unconditional 

conservatism described in Penman and Zhang [2002], CONSi,t-h; the interaction between 

CONSi,t-h and ROEi,t-h; and, various combinations of these aforementioned variables. In a set of 

untabulated results we show that none of these models generate better out-of-sample estimates 

than the estimates derived from equation (2). Moreover, adding these additional variables to 

equation (2) does not change the tenor of our results regarding the in-sample relations between 

the independent variables shown in equation (2) and the higher moments of lead ROE. 

Our research design involves the following three steps. First, for each estimation year EY 

we obtain estimates of the coefficient vector q
EY

q
EY

q
EY ,7,0 ,,    for 150 different values of q  

(0,1).7 To obtain the coefficient vector for a particular value of q we solve the minimization 

problem shown in equation (1). When doing this we use a mix of time-series and cross-sectional 

data (i.e., panel data). We require that each panel contains at least five years of data; however, 

we never use more than ten years of data to construct a panel. For example, suppose the 

estimation year is 1990 (i.e., EY = 1990) and the forecast horizon is 3 (i.e., h = 3), we use values 

                                                 
7 The 150 coefficient vectors are estimated jointly. The 150 values of q are in sequential order and all the pairs of 
consecutive values of q are equidistant. The number 150 is a function of our sample size and number of covariates. 
It represents the maximum number of quantile regressions that we can estimate while guaranteeing that the 
numerical estimates converge. As shown in Appendix A, as the sample size increases and the number of quantile 
regressions increases, the estimates of the predicted moments converge in probability to the moments of lead ROE. 
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of the dependent variable that fall between 1981 and 1990 and we use values of the independent 

variables that fall between 1978 and 1987. We include a firm in the panel if it has at least one 

valid observation during the relevant time span. 

Second, we evaluate the in-sample relations between the higher moments of lead ROE 

and firm-level attributes. For each estimation year EY, value of q, and firm-level attribute j we 

obtain the relevant coefficient estimate (i.e., q
EYj , ) and we compute the average of q

EYj , , which 

we refer to as q
AVGj , . Next, assuming a lag length of ten, we calculate the Newey-West adjusted 

standard error of q
AVGj , ; and, we use the standard error to form a 95 percent confidence interval 

around q
AVGj , . We then graph q

AVGj ,  and its confidence interval on q. 

Finally, we develop our out-of-sample estimates. For a particular year t we obtain the 

contemporaneous (i.e., EY = t) estimated coefficient vector for each of the 150 values of q. We 

then predict the qth conditional quantile of ROEi,t+h by calculating the inner product of the 

coefficient vector and a vector containing the contemporaneous (i.e., year t) values of the 

independent variables for firm i. Next, we combine the 150 predicted conditional quantiles to 

form our estimate of the conditional distribution of ROEi,t+h, which we use to infer the 

conditional probability of a loss and the other conditional moments.8 

 

4. Overview of Samples and Descriptive Statistics 

In this section we briefly describe the estimation sample and prediction sample; and, we 

discuss descriptive statistics for the estimation sample. For additional details regarding our 

sample construction algorithm and variable definitions, please refer to Appendix B. 

                                                 

8 We define the conditional probability of a loss as the largest value of q for which   0|,

^

htiq ROEQUANT . 
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For each forecast horizon h  [1,5], we form two samples: (1) the estimation sample and 

(2) the prediction sample. The estimation sample contains observations that are used to estimate 

the coefficients shown in equation (2). The prediction sample contains observations for which we 

develop out-of-sample, firm-level predictions of the cdf of lead ROE. 

In Panel A of Table One we provide descriptive statistics for the estimation sample 

pertaining to a one-year forecast horizon (i.e., h = 1). Descriptive statistics for estimation 

samples pertaining to the other forecast horizons are available upon request. The mean (median) 

of ROEi,t is 0.031 (0.101). Twenty-four percent of the sample observations have negative  

ROEi,t-1. The mean (median) of ACCi,t-h is -0.059 (-0.054). LEVi,t-h has a mean (median) of 2.408 

(1.970), 43.8 percent of the observations pay dividends, and the average payout ratio is 0.024. 

Panel B of Table One contains the correlation structure of the variables shown in 

equation (2). Pearson (Spearman) correlations are shown above (below) the diagonal. The 

correlations shown in the table equal the average of the annual correlations. The t-statistics equal 

the average correlation divided by its temporal standard error. When calculating the temporal 

standard error we make the Newey-West adjustment assuming a ten-year lag length. We tabulate 

results for the estimation sample that pertains to a one-year forecast horizon. Results for 

estimation samples pertaining to the other forecast horizons are available upon request. 

Several correlations warrant discussion. First, the Pearson (Spearman) correlation 

between lead ROE (i.e., ROEi,t) and current ROE (i.e., ROEi,t-1) is 0.60 (0.70); hence, shocks to 

ROE have high persistence. Second, firms that are currently experiencing losses have lower lead 

ROE; in particular, the Pearson (Spearman) correlation between ROEi,t and LOSSi,t-1 is -0.42  

(-0.43). Third, the Pearson (Spearman) correlation between lead ROE and current accruals (i.e., 

ACCi,t-1) is 0.11 (0.12), which implies that accruals are less persistent than cash flows. Current 
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leverage (i.e., LEVi,t-1) is uncorrelated with lead ROEi,t. However, the Pearson (Spearman) 

correlation between lead ROE and PAYERi,t-1 is 0.20 (0.23); and, the Pearson (Spearman) 

correlation between the current payout ratio (i.e., PAYOUTi,t-1) and lead ROE is 0.22 (0.31). 

 

5. Analyses of In-sample Relations 

In this section we describe the relation between the independent variables shown in 

equation (2) and the moments of lead ROE. We use graphical evidence. In particular, for each 

estimation year EY, value of q, and firm-level attribute j we obtain the relevant coefficient 

estimate—i.e., q
EYj , . We then compute the average of q

EYj ,  across estimation years, which we 

refer to as q
AVGj , , and the temporal standard error of q

AVGj , . When calculating the temporal 

standard error we make the Newey-West adjustment assuming a ten-year lag length. Next, we 

use the standard error to calculate a 95 percent confidence interval around the average; and, we 

graph q
AVGj ,  and its confidence interval on q. For comparative purposes, we also graph the 

average coefficient, which we refer to as OLS
AVGj , , and the 95 percent confidence interval obtained 

from an OLS regression. We provide graphs of coefficients that relate to a one-year forecast 

horizon (i.e., h = 1). Graphs of coefficients that relate to other forecast horizons are available 

upon request. 

The graphs presented in this section are based on regressions that are estimated on “de-

medianed” independent variables. In particular, we set each of the independent variables equal to 

the difference between its raw value and its median value for the relevant panel. This de-

medianing makes it easier to interpret the coefficient on the constant term. In particular, when we 

use de-medianed independent variables the estimated constant for quantile q—i.e., q
EY,0 —equals 
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the conditional qth quantile for the “typical” observation. That is, the observation for which each 

of the independent variables is equal to the median of that variable for the panel. 

It is important to note that de-medianing only affects the estimate of the constant term 

and has no effect on the estimates of the slope coefficients. That is, the estimates of qq
71 ,,    

obtained from estimating equation (2) on the de-medianed data are identical to the estimates of 

qq
71 ,,    obtained from estimating equation (2) on the original data. It is also important to note 

that we only use the de-medianed data to generate the graphs presented in this section: Our out-

of-sample estimates are based on regressions estimated on the raw data. 

We show the graph of the constant term, q
AVG,0 , in Figure One. As discussed above, 

q
AVG,0  ( OLS

AVG,0 ) equals the conditional qth quantile (conditional mean) of lead ROE for the 

“typical” observation.9 As shown in Figure One, the typical observation has median (mean) lead 

ROE of 0.095 (0.069). Untabulated results show that the interquartile range of lead ROE for the 

typical observation is 0.126. Moreover, lead ROE for the typical observation is negative for all 

values of q that are less than 0.23—i.e., there is a 23 percent probability that the typical 

observation will experience a loss in year t+1. 

Figure Two contains the graph of q
AVG,1 , which is the coefficient on current ROE (i.e., 

ROEi,t-1). We provide an in-depth discussion of this graph so that we can: (1) discuss the specific 

relation between current ROE and the moments of lead ROE and (2) make some general points 

about how to interpret the graphs of the remaining coefficients. 

A natural starting point is to determine the relation between current ROE and the location 

of the distribution of lead ROE. To do this we evaluate the coefficient 50.0
,1 AVG  ( OLS

AVG,1 ), which 

                                                 
9 The graphs of q

AVG,0  and OLS
AVG,0  obtained from regressions estimated on the raw data are available upon request. 
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equals the change in the conditional median (mean) of lead ROE given a marginal change in 

current ROE. 50.0
,1 AVG  ( OLS

AVG,1 ) equals 1.01 (0.85); hence, there is a positive association between 

current ROE and the median (mean) of lead ROE. 

Second, we consider the relation between current ROE and the variance of lead ROE. As 

shown in Figure Two, q
AVG,1  is an increasing function of q (i.e., 0,1  qq

AVG ). This implies 

that as current ROE increases the higher quantiles of lead ROE increase by larger amounts than 

the lower quantiles—i.e., the distribution of lead ROE spreads out. Hence, there is a positive 

association between current ROE and the variance of lead ROE. 

Finally, we note that: (1) for values of q < 0.80 the relation between q
AVG,1  and q is 

concave (i.e., 0,1  qq
AVG ) but (2) for values of q > 0.80 the relation between q

AVG,1  and q 

is convex (i.e., 0,1  qq
AVG ). Hence, firms with higher current ROE are more likely to have 

extreme values of lead ROE. That is, these firms have more leptokurtic (i.e., fat-tailed) 

distributions of lead ROE. 

In light of the above, we conclude that firm’s with high current ROE tend to have higher 

lead ROE that is more volatile and more extreme. Hence, although higher current profitability is 

associated with higher future profitability it also implies greater risk. 

Figure Three contains the graph of q
AVG,2 , which is the coefficient on the loss indicator 

(i.e., LOSSi,t-1). The graph illustrates that, ceteris paribus, loss firms tend to have lower, more 

volatile lead ROE. In particular, 50.0
,2 AVG  ( OLS

AVG,2 ) equals -0.01 (-0.07) and q
AVG,2  is increasing in 

q. Loss firms are also more likely to experience extreme poor performance. Specifically, the 

relation between q
AVG,2  and q is a concave for most values of q. Hence, loss firms have lead 

ROE that is more left-skewed. 
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Figure Four contains the graph of  q
AVG

q
AVG ,3,11   .10 We are interested in the total 

relation between current losses and lead ROE; hence, we evaluate the sum of the coefficient on 

ROEi,t-1 (i.e., q
AVG,1 ) and the coefficient on the interaction of ROEi,t-1 and LOSSi,t-1 (i.e., q

AVG,3 ). 

We multiply the coefficients by negative one so that the graph shows the relation between larger 

losses (i.e., more negative ROE) and the quantiles of lead ROE. The graph illustrates that firms 

with higher current losses tend to have lower lead ROE. In particular,  50.0
,3

50.0
,11 AVGAVG    

(  OLS
AVG

OLS
AVG ,3,11   ) equals -0.52 (-0.44). In addition,  q

AVG
q

AVG ,3,11    is increasing in q, 

which implies the magnitude of the current loss is positively associated with the variance of lead 

ROE. 

In Figure Five we graph the relation between the coefficient on current accruals, q
AVG,4 , 

and q. The results shown on the graph suggest that higher current accruals are associated with 

lower, riskier lead ROE. In particular, 50.0
,4 AVG  ( OLS

AVG,4 ) equals -0.03 (-0.06): and, q
AVG,4  is 

increasing in q. 

Figure Six contains the graph of q
AVG,5 , which is the coefficient on current leverage (i.e., 

LEVi,t-1). As the graph shows, current leverage is not associated with the median (mean) of lead 

ROE. q
AVG,5  is an increasing function of q, however; hence, current leverage is positively 

associated with the variance of lead ROE. Moreover, for the lower quantiles of q, the relation 

between q
AVG,5  and q is concave; however, for values of q > 0.80 the relation is convex. Thus, 

firms with high current leverage have more leptokurtic (i.e., fat-tailed) distributions of lead ROE. 

                                                 
10 The confidence intervals shown in Figure Four relate to the standard error of the average of  q

EY
q
EY ,3,11    

and the average of  OLS
EY

OLS
EY ,3,11   . That is, we use the standard error of the average of the sum not the sum of 

the standard errors of the averages. 
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These results are consistent with fundamental theorems in classical finance (i.e., Modigliani and 

Miller [1958]) that show that equity becomes riskier as leverage increases. 

In Figure Seven we show the graph of q
AVG,6 , which is the coefficient on the dividend 

indicator (i.e., PAYERi,t-1). First, OLS
AVG,6  equals 0.04 and 50.0

,6 AVG  equals 0.01. Hence, dividend-

paying firms tend to have higher lead ROE; however, the effect primarily relates to the mean. 

Second, q
AVG,6  is a decreasing function of q, which implies that dividend-paying firms have less 

volatile lead ROE. Finally, for most values of q, the relation between q
AVG,6  and q is convex. 

This implies that dividend-paying firms are less likely to exhibit extreme poor performance—

i.e., the distribution of lead ROE is less left-skewed. 

Figure Eight contains the graph of q
AVG,7 , which is the coefficient on PAYOUTi,t-1. The 

graph illustrates that there is a complex relation between current payout ratios and the moments 

of lead ROE. First, regarding the location of lead ROE, higher current payout implies higher 

mean but lower median lead ROE. In particular, 50.0
,7 AVG  ( OLS

AVG,7 ) equals 

-0.03 (0.09). Second, for values of q between 0.10 and 0.90, q
AVG,7  is a decreasing function of q; 

however, for values of q  {(0,0.10)  (0.90,1.00)}, q
AVG,7  is an increasing function of q. 

Hence, as the current payout ratio increases the middle 80 percent of the distribution of lead 

ROE clusters together but the extreme quantiles become more spread out. This implies that firms 

with high payout ratios tend to exhibit either relatively small or relatively large deviations from 

the mean of lead ROE. However, these firms rarely exhibit moderate deviations from the mean 

of lead ROE. 

Finally, in Figure Nine we show the pseudo r-squared from each of the quantile 

regressions and the r-squared from the OLS regression. The pseudo r-squared of a quantile 
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regression measures the impact of the covariates on the ability of the quantile regression to 

explain the weighted sum of the absolute deviations.11  (The weighted sum of the absolute 

deviations is the value of the objective function minimized in equation (1).) The pseudo r-

squared is equal to zero if the model’s explanatory variables do not explain more of the weighted 

absolute deviations than a model that contains only a constant term. On the other hand, the 

pseudo r-squared is equal to one if the model’s predictions do not deviate from the realizations. 

The OLS r-squared is calculated in the usual way; and, it equals the fraction of the variance of 

ROE explained by the independent variables. The pseudo r-squared and the OLS r-squared are 

not directly comparable. 

The results shown on the graph imply that the covariates significantly improve the 

model’s fit. The lowest pseudo r-squared is approximately 27 percent. The model’s fit is better 

for the smallest quantiles (i.e. for values of q below 0.50). 

 

6. Analyses of Out-of-sample Estimates 

In this section we evaluate our out-of-sample estimates of the moments of lead ROE. We 

begin by discussing descriptive statistics and correlations. Next, we evaluate the reliability of our 

firm-year estimates of the probability of a future loss and the standard deviation of lead ROE. 

Finally, we evaluate our predictions of the frequency of losses within an industry and the within-

industry-year standard deviation, skewness, and kurtosis of lead ROE. All of the analyses 

described in this section are based on observations drawn from the prediction sample. Results 

reported in the tables relate to the out-of-sample forecasts made in year t of the moments of firm-

level ROE in year t+1. Untabulated results for forecast horizons (i.e., values of h) between two 

and five are qualitatively similar and available upon request. 

                                                 
11 The pseudo r-squared shown in Figure Nine is the standard statistic reported by Stata. 
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It is important to note that all of the estimates described in this section are out-of-sample. 

In particular, we develop a year t estimate of a variable in year t+h by combining regression 

coefficients with firm-specific values of the independent variables. The regression coefficients 

are obtained from regressions estimated on data that were available on or before the end of year 

t; and, the firm-specific values of the independent variables are measured at the end of year t. 

6.1 Descriptive Statistics and Correlations 

We provide descriptive statistics and correlations for the variables shown below. 

Variable Name Description 
Q_MEANi,t,t+h Year t estimate of the mean of ROEi,t+h 

Q_PROBi,t,t+h Year t estimate of the probability that ROEi,t+h < 0 

Q_STDi,t,t+h Year t estimate of the standard deviation of ROEi,t+h 

Q_SKEWi,t,t+h Year t estimate of the skewness of ROEi,t+h 

Q_KURTi,t,t+h Year t estimate of the excess kurtosis of ROEi,t+h 

 
As discussed in section three, the variables shown above are inferred from our out-of-sample, 

firm-level estimates of   |,

^

htiq ROEQUANT . Specifically, for firm i in year t we obtain the 

predicted values of   |,

^

htiq ROEQUANT  for all 150 values of q. Next, we calculate the sample 

mean, standard deviation, skewness, and kurtosis for this “sample” of 150 values; and, we set 

Q_PROBi,t,t+h equal to the largest value of q for which   0|,

^

htiq ROEQUANT . 

We define skewness as the ratio of the third central moment to the third power of 

Q_STDi,t,t+h; and, we calculate kurtosis by subtracting three from the ratio of the fourth central 

moment to the fourth power of Q_STDi,t,t+h. Hence, we evaluate standardized skewness and 

excess, standardized kurtosis. We do this for two reasons. First, by standardizing we eliminate 

the possibility that our measures of skewness and kurtosis are simply redundant measures of the 

variance. For example, if the standard deviation is high, non-standardized kurtosis will also be 
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high even if the distribution is not leptokurtic. Second, the excess kurtosis of a normally 

distributed random variable is zero; hence, by providing descriptive statistics about excess 

kurtosis we can evaluate the extent to which our predicted cdf’s differ from the normal 

distribution. 

Panel A of Table Two contains descriptive statistics. Several comments are warranted. 

First, the average (typical) firm has positive Q_MEANi,t,t+1; in particular, the mean (median) of 

Q_MEANi,t,t+1 is 0.042 (0.097). However, Q_MEANi,t,t+1 varies considerably across 

observations; for example, the standard deviation (interquartile range) of Q_MEANi,t,t+1 is 0.237 

(0.210). Moreover, untabulated results show that 27.8 percent of the observations have negative 

Q_MEANi,t,t+1. 

Second, there is also considerable within-sample variation in Q_PROBi,t,t+1. Although the 

sample average of Q_PROBi,t,t+1 is 25.1 percent, the predicted probability of a loss in year t+1 for 

the typical firm is only 9.3 percent. Moreover, untabulated results show that 29.9 percent of the 

sample observations are predicted to be profitable with probability one (i.e., Q_PROBi,t,t+1 = 0). 

On the other hand, untabulated results show that 26.3 percent of the observations are more likely 

to suffer a loss than realize a profit (i.e., Q_PROBi,t,t+1 > 0.50). 

Third, Q_STDi,t,t+1 is large, which implies there is considerable uncertainty about future 

ROE. To understand the magnitude of Q_STDi,t,t+1 better we evaluate the coefficient of variation, 

Q_CVi,t,t+1, which equals the ratio of Q_STDi,t,t+1 to |Q_MEANi,t,t+1|. The mean (median) of 

Q_CVi,t,t+1 is 2.366 (0.716). Hence, for the average (typical) observation, the standard deviation 

of lead ROE is more than twice as large as (70 percent of) the mean of lead ROE. Moreover, 

untabulated results show that the coefficient of variation for 62.4 percent of the observations 
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exceeds 0.50. There is also considerable variation in the degree of uncertainty. For example, the 

interquartile range of Q_CVi,t,t+1 is 0.975. 

Finally, the median of Q_SKEWi,t,t+1 (Q_KURTi,t,t+1) is -0.590 (1.748). Moreover, 

untabulated results show that 65.2 percent of the observations have distributions of lead ROE 

that are negatively skewed; and, 82.7 percent of the observations have distributions of lead ROE 

that are leptokurtic (i.e., fat-tailed). Hence, the typical observation in our sample has lead ROE 

that is drawn from a fat-tailed distribution with a long left tail. This implies that extreme 

deviations from the mean occur relatively often and that these deviations are more likely to be 

negative. 

In Panel B of Table Two we show the correlation structure of the variables. The 

correlations shown in the table equal the average of the annual cross-sectional correlations. The 

t-statistics equal the ratio of the average correlation to its temporal standard error. When 

calculating the temporal standard error we make the Newey-West adjustment assuming a ten-

year lag length. We discuss the Pearson correlations but the Spearman correlations lead to 

similar inferences. 

Several comments are warranted. First, the Pearson correlations between Q_MEANi,t,t+1 

and Q_PROBi,t,t+1, Q_STDi,t,t+1, Q_SKEWi,t,t+1, and Q_KURTi,t,t+1 are -0.80, -0.62, 0.20, and 

0.27, respectively. Hence, firms with high mean lead ROE are less likely to experience a loss, 

have less volatile earnings, are more likely to experience an extreme deviation from the mean 

(i.e., lead ROE is more leptokurtic), and positive extreme deviations are more likely than 

negative extreme deviations (i.e., lead ROE is more positively skewed). 

Second, when the probability of experiencing a loss is high, lead ROE is more volatile, 

the likelihood of experiencing an extreme deviation from the mean is greater, and negative 
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extreme deviations are more likely than positive extreme deviations. In particular, the Pearson 

correlations between Q_PROBi,t,t+1 and Q_STDi,t,t+1, Q_SKEWi,t,t+1, and Q_KURTi,t,t+1 are 0.69,  

-0.33, and -0.45, respectively. 

Third, the Pearson correlation between Q_STDi,t,t+1 and Q_SKEWi,t,t+1 is -0.26; and, the 

correlation between Q_STDi,t,t+1 and Q_KURTi,t,t+1 is -0.38. Taken together, these two facts 

imply that as the variance of lead ROE increases the distribution becomes more (less) negatively 

(positively) skewed. Finally, the Pearson correlation between Q_SKEWi,t,t+1 and Q_KURTi,t,t+1 is 

0.67. Hence, when extreme deviations from the mean are likely, extreme positive deviations are 

more likely than extreme negative deviations. 

6.2 Reliability of Firm-year Estimates 

In this section we evaluate the construct validity of our firm-level, out-of-sample 

estimates of the probability of a future loss and the standard deviation of future ROE. To do this 

we regress realized future losses, LOSSi,t+h, on Q_PROBi,t,t+h and realized unsigned future 

forecast errors |FERRi,t+h| on Q_STDi,t,t+h. We also compare each of the quantile-based estimates 

to one or more alternative estimates. These comparisons are based on results of Vuong [1989] 

tests and results obtained from multiple regressions.12 

Regarding the probability of future losses, we consider an alternative estimate that equals 

the predicted value from a Logit regression of a loss indicator on the same set of independent 

variables that we include in our quantile regression. We estimate the Logit regressions and 

compute the out-of-sample Logit predictions using the same data and a similar algorithm as we 

                                                 
12 All reported regression coefficients equal the average of the coefficients obtained from annual cross-sectional 
regressions. All reported t-statistics equal the average coefficient divided by its temporal standard error. Vuong 
statistics are obtained by computing the average of the annual slope coefficients obtained from the regression 
described on p. 318 of Vuong [1989], and then dividing the average by the temporal standard error of the 
coefficients. All temporal standard errors reflect the Newey-West adjustment assuming a ten-year lag length. We 
also estimate pooled cross-sectional regressions in which we include annual fixed effects and calculate clustered 
standard errors (annual clusters). The results of these regressions, which are available upon request, lead to similar 
inferences as the results shown in the tables. 
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use to obtain Q_PROBi,t,t+h. Logit regression results and descriptive statistics regarding the Logit 

estimates are untabulated but available upon request. 

We consider two alternative approaches for estimating the standard deviation of lead 

ROE. In the first approach we set our year t estimate of the standard deviation of firm i’s ROE in 

year t+h equal to the standard deviation of firm i’s ROE during years t-9 to t. We refer to this as 

the historical firm-level approach. We refer to the second approach as the historical matched-

sample approach. In this approach, which is based on the approach described in Larson and 

Resutek [2013], we match firm-year i,t to a sample of firms drawn from years t-4 to t. We match 

on three characteristics: size, return on equity, and the change in return on equity. Next, we 

calculate the standard deviation of ROE for the matched sample and use this as our year t 

estimate of the standard deviation of firm i’s ROE in year t+h. We elaborate on the historical 

firm-year approach and the historical matched-sample approach in Appendix B. 

The results shown in Table Three imply that Q_PROBi,t,t+1 is a reliable predictor of future 

losses. In columns (1) and (2) we show results of univariate regressions and Vuong tests. These 

results show that both the quantile-based estimate and the Logit-based estimate have a positive 

and statistically significant association with future losses. Moreover, per the r-squareds, both 

explain roughly 32 percent of the variation in LOSSi,t+1; and, per the Vuong statistic, neither 

estimate is more reliable than the other. However, as shown in column (3) both estimates are 

incrementally informative about future losses. 

In Table Four we report the results of tests of the reliability of Q_STDi,t,t+1. The results 

shown in the first (last) three columns relate to our comparison of Q_STDi,t,t+1 to the estimate 

obtained from the historical firm-year (matched-sample) approach. Q_STDi,t,t+1 is reliable both 

on an absolute and relative basis. As shown in columns (1) and (4) it has a positive and 



 

27 
 

significant relation with realized unsigned forecast errors; and, as shown in columns (3) and (6) it 

contains incremental information content vis-à-vis both of the alternative estimates. Moreover, 

per the Vuong test results, Q_STDi,t,t+1 is a more reliable predictor of |FERRi,t+1| than either of the 

alternative estimates. In particular, Q_STDi,t,t+1 explains 21 percent of the variation in |FERRi,t+1| 

whereas the estimate obtained from the historical firm-year (matched-sample) approach explains 

none (nine percent) of the variation. 

6.3 Reliability of Industry-year Estimates 

In this section we develop and evaluate out-of-sample predictions of the frequency of 

losses within an industry-year and the within-industry-year standard deviation, skewness, and 

kurtosis of lead ROE. We assign all firms in the prediction sample to industry-years on the basis 

of their two-digit Standard Industrial Classification codes. We delete industry-years for which 

the number of industry members is less than ten. 

Industry-level tests are relevant for two reasons. First, industry-level attributes are 

interesting per se. For example, a number of studies of industrial organization focus on the 

causes and consequences of industry differences; and, more generally, industry membership is a 

common way of characterizing firms, identifying peers, etc. Second, the realized distribution 

(moments) of ROE is (are) not observable at the firm-year level. Hence, direct tests of reliability 

cannot be conducted using firm-level data. However, the realized cross-sectional distribution is 

observable at the industry-year level. Hence, as discussed in section 6.3.2, results of industry-

level tests provide evidence about the reliability of our firm-level estimates. 
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6.3.1 Reliability of Predictions of the Industry-year-level Risk of Future Losses 

In Table Five we show results obtained from regressions of the realized frequency of 

losses for industry IND in year t+1, LOSSIND,t+1, on the industry average of the predicted 

probability in year t of a loss in year t+h obtained from: (1) our quantile regressions and (2) the 

Logit regressions described on p. 26.13 The quantile-based estimate, Q_PROBIND,t,t+h is reliable. 

As shown in column (1) it has a positive, significant association with LOSSIND,t+1; and, as shown 

in column (3), this association remains after controlling for the industry average of the predicted 

probabilities implied by the Logit model. Moreover, although both the quantile-based and Logit-

based predictors explain more than 50 percent of the variation in industry-level loss frequency, 

the Vuong-test results imply that the quantile-based predictor explains the underlying data-

generating process better. 

6.3.2 Reliability of Predictions of within-industry-year Moments 

We use the law of total moments to develop year t predictions of the within-industry-year 

standard deviation, skewness, and kurtosis of ROE in year t+h. Per the discussion in Section 6.1, 

we predict standardized skewness and excess, standardized kurtosis; however, for ease of 

discussion we refer to these two variables as simply skewness and kurtosis. 

In this section we describe how we use the law of total variance to predict the standard 

deviation of lead ROE for a particular industry-year. The manner in which we predict skewness 

and kurtosis is similar; however, the underlying formulas are more complicated. Hence, we 

relegate the technical details related to how we arrive at these predictions to Appendix A. 

                                                 
13 LOSSIND,t+1 is the industry average of LOSSi,t+1. When calculating LOSSIND,t+1 we exclude firms for which we are 
unable to develop a prediction in year t of the probability of a loss in year t+1. For example, a firm that came into 
existence in year t+1 will not have observable attributes in year t; hence, we cannot estimate the probability of a loss 
for that firm. Consequently, we do not consider this firm when we compute LOSSIND,t+1. 
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The law of total variance implies that the within-group standard deviation of lead ROE 

can be expressed in the following manner. 

         || ,,, htitthtitthtit ROEVAREROEEVARROEVAR     (3) 

In the above equation,  tVAR  denotes the variance estimated in year t and  tE  is the year t 

expected value. 

With equation (3) in mind, we do the following. First, for each firm i, year t, and forecast 

horizon h we obtain the estimates of the mean and variance of ROEi,t+h, respectively. We obtain 

estimates from our quantile-based approach as well as the historical firm-level and historical 

matched-sample approaches. Next, for each industry-year and each estimation approach, we 

predict the within-industry standard deviation of ROEi,t,t+h. We do this by taking the square root 

of the sum of: (1) the within-industry variance of the estimate of the mean of ROEi,t+h and (2) the 

industry mean of the estimate of the variance of ROEi,t+h. Finally, we calculate the realized cross-

sectional standard deviation of ROE in year t+h. We refer to the quantile-based year t prediction 

of the standard deviation of industry IND’s ROE in year t+h as Q_STDIND,t,t+h; and, we refer to 

the realized standard deviation as R_SDIND,t+h. We use similar notation for predicted and realized 

values of skewness and kurtosis. 14 

In Table Six we show the results of regressing realized moments on predicted moments. 

Panels A, B, and C relate to regressions involving realized standard deviation, skewness, and 

kurtosis, respectively. Columns (1) through (3) show comparisons of our quantile-based 

predictions to predictions obtained from the historical firm-level approach; and, columns (4) 

through (6) show comparisons of our quantile-based predictions to predictions obtained from the 

                                                 
14 When calculating realized moments for industry IND in year t+1 we exclude firms for which we are unable to 
develop a prediction in year t. For example, a firm that came into existence in year t+1 will not have observable 
attributes in year t; hence, we do not have estimates of the year t+1 moments for that firm. Consequently, we do not 
consider this firm when we compute the realized moments in year t+1. 
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historical matched-sample approach. As discussed above, these predictions are obtained via the 

law of total moments. We also evaluate an approach that does not rely on the law of total 

moments. We refer to it as the historical industry-level approach because it involves setting the 

year t prediction of a particular moment in year t+h equal to the historical industry-level moment 

for year t.15 Comparisons of this approach to our quantile-based approach are shown in columns 

(7) through (9). 

As shown in Panel A the Q_STDIND,t,t+1 is a reliable predictor on both an absolute and 

relative basis. As shown in columns (1), (4) and (7), it has a significantly positive association 

with R_SDIND,t+1 and it explains roughly 30 percent of the cross-sectional variation in 

R_SDIND,t+1. Per columns (3), (6) and (9), these associations remain after controlling for the 

predictions obtained from the historical firm-level, historical matched-sample, and historical 

industry-level approaches. Moreover, Vuong-test results show that the Q_STDIND,t,t+1 is a better 

predictor than each of the other estimates. 

Results related to Q_SKEWIND,t,t+1 are similar to those for Q_STDIND,t,t+1. As shown in 

columns (1), (4) and (7) of Panel B, Q_SKEWIND,t,t+1 has a significant positive association with 

R_SKEWIND,t+1 and it explains approximately 14 percent of the cross-sectional variation in 

R_SKEWIND,t+1. Per columns (3), (6) and (9), these results remain after controlling for the 

predictions obtained from the historical firm-level, historical matched-sample, and historical 

industry-level approaches. Moreover, Vuong-test results show that Q_SKEWIND,t,t+1 is a better 

predictor than each of the other estimates. 

Finally, as shown in columns (1), (4) and (7) of Panel C, Q_KURTIND,t,t+1 is positively 

associated with R_KURTIND,t,t+1 and it explains more than 14 percent of the variation in 

                                                 
15 We also considered setting the year t prediction of a particular moment in year t+h equal to the historical industry-
level moment for years t-4 through t as well as years t-9 through t. Untabulated results using these alternative 
proxies, which are available upon request, are similar to the results shown in Table Six. 
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R_KURTIND,t,t+1. Moreover, as shown in columns (3), (6) and (9), these results remain after 

controlling for the predictions obtained from the historical firm-level, historical matched-sample, 

and historical industry-level approaches. However, Vuong-test comparing Q_KURTIND,t,t+1 to the 

remaining estimates are mixed. Q_KURTIND,t,t+1 is neither more nor less reliable than the other 

three estimates. 

6.4 Summary 

The results described in sections 6.2 and 6.3 lead us to conclude that our methodology 

generates reliable ex ante estimates of the probability of future loss and the higher moments of 

future ROE. This fact is important for two reasons. First, given they relate to infrequent events, 

higher moments such as skewness and kurtosis are difficult to predict. Second, as discussed in 

section two, the higher moments of future ROE are potentially relevant in a number of different 

economic contexts. Although it is outside the scope of our study to provide in-depth evidence 

about these different contexts, we do provide some initial evidence in the next section. 

 

7. Analyses of Valuation Multiples and Credit Ratings 

In this section we evaluate the role that the higher moments of future ROE play in 

determining valuation multiples and credit ratings. 

Table Seven contains results obtained from regressions of year t valuation multiples on 

Q_MEANi,t,t+1, Q_STDi,t,t+1, Q_SKEWi,t,t+1 and Q_KURTi,t,t+1. The results in the first (last) two 

columns relate to regressions in which the earnings-to-price (book-to-price) ratio is the 

dependent variable. Earnings-to-price, EPi,t, (book-to-price, BPi,t) equals the ratio of firm i’s year 

t earnings (equity book value) to its equity market value at the end year t. Columns (1) and (3) 

relate to results in which the out-of-sample estimates of the moments of lead ROE are the only 
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independent variables. Columns (2) and (4) relate to results in which we include four control 

variables: (1) annual stock return for year t, RETi,t; (2) the volatility of market-model residuals, 

RET_VOLi,t; (3) the skewness of market-model residuals, RET_SKEWi,t; and, the kurtosis of 

market-model residuals, RET_KURTi,t.
16 We remove observations for which the value of any of 

the variables in the regression falls in either the top or bottom percentile of its annual 

distribution.17 

The results in Table Seven show that each of the out-of-sample estimates of the moments 

of future ROE is related to the earnings-to-price and book-to-price ratio. For example, firms with 

higher ex ante standard deviation and skewness of ROE have higher prices. These results are 

consistent with the analytical models developed by Johnson [2004], Brunnermeier et al. [2007], 

Mitton and Vorkink [2007], and Barberis and Huang [2008] as well as empirical results shown in 

Ang et al. [2006, 2009], Boyer et al. [2010], and Conrad et al. [2013]. On the other hand, equity 

prices are decreasing in ex ante firm-level kurtosis. This result is consistent with results shown in 

Dittmar [2004]; however, he considers co-kurtosis rather than raw kurtosis. 

In Table Eight we show results obtained from regressions of year t long-term credit 

ratings on Q_MEANi,t,t+1, Q_STDi,t,t+1, Q_SKEWi,t,t+1 and Q_KURTi,t,t+1. Credit ratings are 

obtained from Standard and Poors. They range between 2 and 23. Higher ratings reflect worse 

credit quality; for example, a rating of 2 (23) implies a letter rating of AAA (D). In column (1) 

we show results in which we include the out-of-sample estimates of the moments of ROE and 

five control variables: (1) the natural log of the ratio of firm i’s year t equity market to the sum of 

                                                 
16 RETi,t is measured over the 12-month period beginning on the fourth month of fiscal-year t-1 and ending on the 
third month of fiscal-year t. Market-model residuals are obtained from regressions of firm-level monthly returns on 
the contemporaneous return on the market portfolio. We use monthly returns drawn from a 12-month period ending 
three months after the last month of fiscal-year t. We then use the residuals to calculate RET_VOLi,t, RET_SKEWi,t, 
and RET_KURTi,t. This approach is similar to the approach described in Beaver et al. [2012] and Correia et al. 
[2012]. 
17 We also estimate rank regressions using the entire sample. Results of these regressions, which are available upon 
request, are similar to the results shown in Table Seven. 
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all firm’s contemporaneous equity market values, LN_SIZEi,t; (2) the ratio of firm i’s year t 

liabilities to its year t assets, LIAB_ASSTi,t; (3) the ratio of firm i’s year t earnings before 

interest, taxes, depreciation, and amortization to its year t liabilities, EBITDA_LIABi,t; (4) 

RETi,t; and, (5) RET_VOLi,t. The control variables are based on the default prediction model 

described in Beaver et al. [2012].18 In column (2) we show results in which we add the control 

variables RET_SKEW,t and RET_KURTi,t. 

The results in Table Eight show that each of the out-of-sample estimates of the moments 

of future ROE is related to contemporaneous credit ratings; and, the relations are intuitive. For 

instance, firms with higher ex ante standard deviation of ROE have worse credit ratings, which is 

consistent with analytical results in Merton [1974]. However, consistent with practitioner articles 

(e.g, Dynkin et al. [2007]) firm-level skewness and kurtosis are also relevant. In particular, bonds 

are considered riskier when the ex ante skewness (kurtosis) of ROE is negative (positive). This is 

not surprising given that bondholders face relatively high exposure to downside risk while 

benefitting little from positive shocks. 

 

8. Conclusion 

We develop an empirical approach that yields reliable out-of-sample, firm-level estimates 

of the higher moments of future ROE. This is a nontrivial contribution for two reasons. First, 

higher moments such as skewness and kurtosis are difficult to predict; hence, the fact that our 

out-of-sample estimates are reliable is significant in and of itself. Second, and perhaps more 

importantly, the higher moments of future ROE are potentially relevant in a number of economic 

                                                 
18 Our results are not sensitive to the choice of controls. In untabulated results, which are available upon request, we 
consider a number of alternative control variables inspired by extant studies such as Kaplan and Urwitz [1979], 
Chava and Jarrow [2004], and Hann et al. [2007]. 
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contexts; hence, by developing a reliable approach for estimating these moments, we lay the 

necessary groundwork for evaluating their relevance. 

Our study suggests three paths for future research. First, the approach we develop can be 

used in other contexts such as the evaluation and prediction of the higher moments of return on 

invested capital, earnings growth, accruals, etc. Second, as discussed on pp. 12 and 13, our 

model is superior to a number of more elaborate models; nonetheless, the firm-level attributes we 

evaluate may not be exhaustive. Hence, future studies might focus on identifying other attributes 

that are related to the moments of lead ROE both in- and out-of-sample. Finally, we only provide 

initial evidence about the role that the higher moments of future ROE play in equity and credit 

valuation. Hence, further testing of these issues and others is clearly warranted. 
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Appendix A – Technical Details 

This appendix summarizes the theory and the implementation of our estimates of 

conditional quantiles and conditional moments. First, we present the properties of the estimate of 

the qth conditional quantile of the random variable yi,t. Second, we present our estimator of the 

quantile function, which is defined over q ∈	 (0,1). Third, we present an estimator of the 

conditional moment of yi,t using the estimator of the quantile function. Finally, we describe how 

we use the law of total moments to predict within-industry-year skewness and kurtosis. 

A.1 Prediction of the qth Conditional Quantile 

Observable covariates for observation i in year t-h are xi,t-h,1, …, xi,t-h,k and xi,t-h,1 = 1  i. 

F(yi,t) is the conditional distribution function of y for observation i in year t, and  

QUANTq(yi,t|xi,t-h,1,…,xi,t-h,k) = Fi,t
-1(q) is the qth conditional quantile of yi,t for observation i in year 

t. 

We are interested in estimating the conditional quantile function  

QUANTq(yi,t|xi,t-h,1,…,xi,t-h,k) for observation i in year t given the observed covariates  

xi,t-h,1,…, xi,t-h,k. We stack the observations of the k covariates into a single 1×k vector. When 

referring to this vector we use bold text (i.e., xi,t-h.is the value of the vector for observation i in 

year t-h). We also use bold text when referring to the k×1 vector of coefficients. 

As is standard in the quantile regression literature, we assume that there is a linear 

relationship between each conditional quantile and the observable covariates. 

Assumption 1: QUANTq(yi,t|xi,t-h) = xi,t-h`q. 

The estimator bq of q minimizes the objective function: 


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In equation (A.1), q(u) is the check function and is defined as q(u) = u(q-I(u<0)) (I(·) is the 

indicator function). 

Under the regularity conditions specified in Koenker and Bassett [1978], the estimator bq 

is a √N consistent and asymptotically normal estimator of q such that √N(bq -q)⟶N(0,V). The 

variance covariance matrix V is equal to , u(q) = yi,t – q, and 

fu(q)(0) is the density of u(q) at u(q) = 0. The estimate of the qth quantile of yi,t—i.e., 

  h-ti,x|,

^

tiq yQUANT  xi,t-h`bq—is also a consistent and asymptotically normal estimator of 

QUANTq(yi,t|xi,t-h). 

A.2 Prediction of the Quantile Function of yi,t 

The coefficients q and the estimates xi,t-h`q are computed for quantiles  

0 < q1 < q2 < … < qQ < 0. In practice, we form estimates for the largest value of Q such that the 

numerical estimates converge. We use these Q estimates of the coefficients to build an estimate 

of the quantile function QUANTq(yi,t|xi,t-h) for all values q in (0,1). This is defined as the 

following staircase function: 
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    (A.2) 

The estimator of the quantile QUANTq(yi,t|xi,t-h) is not in general monotonic in q. Following 

Chernozhukov, Fernandez-Val, and Galichon [2010], we define the rearranged quantile function 

QUANTq
*(yi,t|·) and the rearranged estimator of the quantile function  |,

^
*

tiq yQUANT . 
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Interestingly, as the number of quantiles Q and the number of observations goes to 

infinity, the estimate  |,

^
*

tiq yQUANT  of the quantile function converges point by point and 

uniformly to the quantile function QUANTq
*(yi,t|·) for any compact subset of (0,1). 

In particular, consider a sequence 0  q1
n  q2

n  ...  q
Qn

n 1 that satisfies 

0||max 1  
n
s

n
ss qq as n—i.e., the ‘step’ between quantile estimates goes to 0 as the 

number of quantile estimates goes to infinity. We assume that the lowest (highest) quantile goes 

to zero (one) as the sample size goes to infinity. For each quantile qs
n  the estimator sqb  is 

defined as in (A.1). 

 

Proposition 1. For any compact subset   (0,1), the rearranged estimator  |,

^
*

tiq yQUANT  of 

the quantile function converges uniformly in probability to the rearranged quantile function 

QUANTq
*(yi,t|·) on . 

 

Proof. This follows from Corollary 3 of Proposition 5 of Chernozhukov, Fernandez-Val, and 

Galichon (2010).� 

 

A.3 Prediction of the Conditional Moments of yi,t 

Expected variance, expected skewness, and expected kurtosis are entirely determined by 

the expected second, third, and fourth moments of yi,t. The jth raw moment of yi,t is the expected 

mean of the jth power of yi,t. 

   
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jj
ti ,,          (A.3) 
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The unknown term here is the distribution function fi,t(y). Although equation (A.3) is the standard 

textbook formula, an equivalent formula involves the quantile function  

QUANTq(yi,t|xi,t-h). In particular, note that the qth quantile is the cumulative distribution function 

of yi,t at q—i.e., QUANTq(yi,t|xi,t-h) = F-1(q). Consequently, the change in variables implies F-1(q) 

= y, which, in turn, implies QUANTq(yi,t|xi,t-h)j = yj and dq = fi,t+h(y)dy. Finally the jth moment is: 

    
1

0

, dq|yQUANTyE j
i,tq

j
ti hti,x         (A.4) 

Using the analogy principle of Manski [1988], an estimator of the jth moment of yi,t is 

provided by equation (A.4), substituting the estimator of the quantile function for the quantile 

function: 


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The bounds of the integral are set to  and  instead of 0 and 1. 

 

Proposition 2. The estimator )(yE j
ti,

^

 is a consistent estimator of )E(y j
ti,  as the sample size  

(i.e., N) goes to infinity and the number of steps (i.e., n) goes to infinity. 

Proof. To prove consistency, choose two arbitrary numbers > 0 and > 0. 

Take N, a number such that, if n > N, then: 
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Using Proposition 1, the estimate of the quantile function converges uniformly in probability to 

the quantile function. Hence, there exists N* (depending on n) such that, if the number of 

observations is greater than N*, then: 
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The consistency of the estimate of the moment follows from these two inequalities�. 

 

A.4 Estimating the Firm-year Conditional Mean, Standard Deviation, Skewness, and Kurtosis 

The conditional moments of yi,t+h are estimated in the following manner. First, one 

quantile regression at each quantile qs provides the estimator sqb . We set qs equal to s÷(1+Q) for 

s = 1, 2, …, Q and we use the Stata software package qreg. Second, we store all coefficient 

vectors sqb  in a single data set that contains one observation for each quantile and one column 

for each covariate; hence, the dataset contains Q rows and k columns: Third, given the covariates 

xi,t the data set is augmented by an additional variable that we refer to as PREDICTION. 

PREDICTION equals the cross product of the covariates with the coefficients for the qth 

quantile; and, it represents the estimate of the qth quantile conditional on xi,t. Finally, the estimate 

the jth moment of yi,t+h is the jth moment of PREDITION. The estimated conditional variance, 

skewness, and kurtosis are obtained by typing the Stata commands: summarize PREDICTION 

detail. 

A.5 Predicting Within-industry-year Skewness and Kurtosis 

As shown in Klugman, Panjer, and Willmot [1998], the law of total moments implies that 

the within-group third central moment of lead ROE can be expressed in the following manner. 



 

40 
 

         
  







|

|,|3|

,
3

,,,
3

,
3

htitt

htithtitthtitthtit

ROEEM

ROEVARROEECOVROEMEROEM
  (A.6) 

In the above equation,  3
tM  denotes the third central moment estimated in year t and  ,tCOV  

is the covariance estimated in year t. 

With equation (A.6) in mind, we do the following. First, for each firm i, year t, forecast 

horizon h, and estimation approach—i.e, quantile, historical firm-level, and historical matched-

sample—we form estimates of the mean, variance, and third central moment of ROEi,t+h. Second, 

for a particular industry and year t we identify all firms with non-missing values of the 

aforementioned estimates. Third, we predict the within-industry third moment of ROEi,t,t+h by 

summing: (1) the within-industry mean of the firm-level estimates of the third central moment; 

(2) three times the within-industry covariance of the firm-level estimates of the variance and the 

mean; and, (3) the within-industry third moment of the firm-level estimates of the mean. Finally, 

we compute predicted, industry-level skewness by dividing the aforementioned sum by the third 

power of the predicted industry-level standard deviation. 

We base our prediction of the fourth central moment on the equation shown below 

(Klugman, Panjer, and Willmot [1998]). 
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In the above equation,  4
tM  denotes the fourth central moment estimated in year t and 

  ,,tCOSKEW  is the non-standardized coskewness estimated in year t. 

With equation (A.7) in mind, we do the following. First, for each firm i, year t, forecast 

horizon h, and estimation approach—i.e, quantile, historical firm-level, and historical matched-
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sample—we form estimates of the mean, variance, third central moment, and fourth central 

moment of ROEi,t+h. Second, for a particular industry and year t we identify all firms with non-

missing values of the aforementioned estimates. Third, we predict the within-industry fourth 

moment of ROEi,t,t+h by summing: (1) the within-industry mean of the firm-level estimates of the 

fourth central moment; (2) four times the within-industry covariance of the firm-level estimates 

of the third central moment and the mean; (3) six times the within-industry coskewness of the 

firm-level estimates of the variance, mean, and mean; (4) six times the product of the within-

industry mean of the firm-level estimates of the variance and the mean; and, (5) the within-

industry fourth central moment of the firm-level estimates of the mean. Finally, we compute the 

predicted, conditional skewness by dividing the aforementioned sum by the fourth power of the 

predicted industry-level standard deviation. 
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Appendix B – Sample Construction and Related Issues 

In this appendix we provide a detailed description of how we construct the various 

samples underlying our in-sample estimates, out-of-sample predictions, tests of reliability, and 

analyses of valuation multiples and credit ratings. 

B.1 Construction of Estimation and Prediction Samples 

For each forecast horizon h  [1,5], we form two samples: (1) the estimation sample and 

(2) the prediction sample. The estimation sample contains observations that are used to estimate 

the coefficients shown in equation (2). The prediction sample contains observations for which we 

develop out-of-sample, firm-level predictions of the cdf of lead ROE. 

We obtain our data from the Compustat North America Annual file. We use the 

Compustat variable IB, Income Before Extraordinary Items, as our measure of earnings. The 

Compustat variable CEQ, Common/Ordinary Equity - Total, is our measure of equity book 

value. We use the balance sheet approach described in Sloan [1996] to estimate accruals. Total 

assets equals Compustat variable AT, Assets - Total; and, dividends equals Compustat variable 

DVPSX_F, Dividends per Share - Ex-Date - Fiscal. 

To form the estimation sample we identify all observations that have non-missing values 

of the variables shown in equation (2) and positive values of equity book value in year t-h. Next, 

we delete extreme observations, which we define as observations for which: |ROEi,t| > 2, 

|ROEi,t-h| > 2, |ACCi,t-h| > 2, LEVi,t-h  [1,20], and PAYOUTi,t-h  [0,1]. When h equals 1 (i.e., a 

one-year forecast horizon), the estimation sample contains 174,215 firm-years with independent 

(dependent) variables drawn from the time-period spanning 1963 to 2010 (1964 to 2011). The 

sample size decreases as h increases; for example, when h equals 5, the estimation sample 
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contains 122,935 firm-years with independent (dependent) variables drawn from the time-period 

spanning 1963 to 2006 (1968 to 2011). 

To form our prediction sample we identify all firm-years with positive equity book value 

in year t and non-missing values of ROEi,t = IBi,t÷CEQi,t, LOSSi,t, ROEi,t×LOSSi,t, ACCi,t, LEVi,t, 

PAYERi,t, and PAYOUTi,t. We do not remove extreme observations nor do we remove 

observations with missing values of lead ROE. We limit our prediction sample to firm-years 

drawn from 1973 to 2011. The prediction sample contains 170,522 firm-years. However, because 

some of our tests involve comparing ex ante predictions to ex post realizations, the number of 

observations underlying the results shown in Tables Three through Eight is lower. In particular, 

as shown in Table Three (Five) there are 156,973 (2,056) firm-years (industry-years) for which 

we have both an out-of-sample estimate of Q_PROBi,t,t+1 (Q_PROBIND,t,t+1) and a non-missing 

value of LOSSi,t+1 (LOSSIND,t+1). Finally, as discussed below, sample sizes underlying our tests 

also vary because some of our tests involve: (1) comparing our quantile-based estimates to 

alternative estimates that cannot be calculated for all the observations in the prediction sample or 

(2) market multiples or credit ratings that are missing for some of the observations in the 

prediction sample. 

B.2 Alternative Out-of-sample Estimates of Higher Moments 

We compare our quantile-based estimates of the standard deviation of lead ROE to three 

alternatives: (1) historical firm-level estimates; (2) historical matched-sample estimates; and (3) 

historical industry-level estimates. 

To calculate the historical firm-level estimate for firm-year i,t we use firm i’s ROE in 

years t-9 through t. If firm i,t has missing ROE for any year between year t-9 and t, we set the 

estimated moment equal to the median of the historical firm-level estimates for the remaining 
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firms in the industry. If there are no firms from the industry with non-missing ROE in all the 

years between years t-9 and t, we code the observation as missing. As shown in Table Four, 

134,552 of the firm-years in the prediction sample have a non-missing value of |FERRi,t+1| and a 

non-missing historical firm-level estimate. As shown in Table Six, there are 1,960 industry-years 

for which: (1) the realized industry-level moment in year t+1 is non-missing and (2) there are ten 

observations in the prediction sample with non-missing historical firm-level estimates that can be 

used to construct industry-level estimates via the law of total moments. 

To calculate the historical matched-sample estimate for firm-year i,t we use the algorithm 

described in Larson and Resutek [2013]. First, we select all firms with non-missing ROE and 

ROE during years t-4 through t. Next, we eliminate from this group the firms that are not in the 

same NYSE size decile (size refers to total assets) as firm-year i,t. Finally, within this set of 

firms we select those firms with similar ROE and ROE. We first define similar as ROE 

(ROE) that is within plus or minus 0.50 percentage points of firm i’s ROE (ROE) in year t. 

However, if the number of firms meeting this criterion is less than five, we define similar as 

ROE (ROE) that is between 80 percent and 120 percent of firm i’s ROE (ROE) in year t. As 

shown in Table Four, 85,142 of the firm-years in the prediction sample have a non-missing value 

of |FERRi,t+1| and a non-missing historical matched-sample estimate. As shown in Table Six, 

there are 1,579 industry-years for which: (1) the realized industry-level moment in year t+1 is 

non-missing and (2) there are ten observations in the prediction sample with non-missing 

historical matched-sample estimates that can be used to construct industry-level estimates via the 

law of total moments. 

To calculate the historical industry-level estimate for industry-year IND,t we identify all 

observations from industry IND with non-missing ROE in year t. If there are less than ten 
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observations meeting this criterion, we code the historical industry-level estimate as missing. If 

there are ten or more non-missing values, we set the historical industry-level estimate of a 

particular moment equal to the sample moment for this group of firms. As shown in Table Six, 

there are there are 2,056 industry-years for which: (1) the realized industry-level moment in year 

t+1 is non-missing; (2) there are ten observations in the prediction sample; and, (3) there are ten 

non-missing values of ROE that can be used to calculate the historical industry-year estimate. 

B.2 Analyses of Market Multiples and Credit Ratings 

In our regressions that use market multiples as the dependent variable we use all 

observations from the prediction sample with non-missing values of the variables used in the 

regression. However, we remove extreme observations, which we define as those for which any 

of the variables used in the regression is in either the top or bottom one percent of its annual 

distribution. After applying these criteria there are 155,025 (125,468) observations available for 

estimating the regression that excludes (includes) the independent variables RETi,t, RET_VOLi,t, 

RET_SKEWi,t, and RET_KURTi,t. 

In our regressions that use credit ratings as the dependent variable we use all observations 

from the prediction sample with non-missing values of the variables in the regression. However, 

we remove extreme observations, which we define as those for which any of the independent 

variables in the regression is in either the top or bottom one percent of its annual distribution. 

After applying these criteria there are 20,937 (20,148) observations available for estimating the 

regression that excludes (includes) the independent variables RET_SKEWi,t and RET_KURTi,t. 

The sample size for these tests is relatively small because credit ratings are not available prior to 

1985 and some firms do not have debt that is rated by Standard and Poors. 
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Figure One – Graph of q
AVG,0  on q 
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q
AVG,0  is the average coefficient on the constant term. Quantiles are shown on the x-axis and 

values of the constant are shown on the y-axis. The solid line is the average across estimation 
years of the estimates of the constant. Dashed lines equal the average ± 1.96 multiplied by the 
standard error of the average. We use Newey-West adjusted standard errors assuming a lag-
length of ten years. 
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Figure Two – Graph of q
AVG,1  on q 
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q
AVG,1  is the average coefficient on ROEi,t-1. Quantiles are shown on the x-axis and values of the 

coefficient are shown on the y-axis. The solid line is the average across estimation years of the 
estimates of the coefficient. Dashed lines equal the average ± 1.96 multiplied by the standard 
error of the average. We use Newey-West adjusted standard errors assuming a lag-length of ten 
years. 
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Figure Three – Graph of q
AVG,2  on q 
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q
AVG,2  is the average coefficient on LOSSi,t-1. Quantiles are shown on the x-axis and values of 

the coefficient are shown on the y-axis. The solid line is the average across estimation years of 
the estimates of the coefficient. Dashed lines equal the average ± 1.96 multiplied by the standard 
error of the average. We use Newey-West adjusted standard errors assuming a lag-length of ten 
years. 
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Figure Four – Graph of  q
AVG

q
AVG ,3,1    on q 
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q
AVG,1  is the average coefficient on ROEi,t-1 and q

AVG,3  is the average coefficient on  

LOSSi,t-1×ROEi,t-1. Quantiles are shown on the x-axis and values of the coefficient are shown on 
the y-axis. The solid line is the average across estimation years of the estimates of the coefficient. 
Dashed lines equal the average ± 1.96 multiplied by the standard error of the temporal averages 
of  q

EY
q
EY ,3,11    and  OLS

EY
OLS
EY ,3,11   —i.e., we use the standard error of the average of 

the sum not the sum of the standard errors of the averages. We use Newey-West adjusted 
standard errors assuming a lag-length of ten years. 
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Figure Five - Graph of q
AVG,4  on q 
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q
AVG,4  is the average coefficient on ACCi,t-1. Quantiles are shown on the x-axis and values of the 

coefficient are shown on the y-axis. The solid line is the average across estimation years of the 
estimates of the coefficient. Dashed lines equal the average ± 1.96 multiplied by the standard 
error of the average. We use Newey-West adjusted standard errors assuming a lag-length of ten 
years. 
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Figure Six - Graph of q
AVG,5  on q 
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q
AVG,5  is the average coefficient on LEVi,t-1. Quantiles are shown on the x-axis and values of the 

coefficient are shown on the y-axis. The solid line is the average across estimation years of the 
estimates of the coefficient. Dashed lines equal the average ± 1.96 multiplied by the standard 
error of the average. We use Newey-West adjusted standard errors assuming a lag-length of ten 
years. 
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Figure Seven - Graph of q
AVG,6  on q 
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q
AVG,6  is the average coefficient on PAYERi,t-1. Quantiles are shown on the x-axis and values of 

the coefficient are shown on the y-axis. The solid line is the average across estimation years of 
the estimates of the coefficient. Dashed lines equal the average ± 1.96 multiplied by the standard 
error of the average. We use Newey-West adjusted standard errors assuming a lag-length of ten 
years. 
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Figure Eight - Graph of q
AVG,7  on q 
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q
AVG,7  is the average coefficient on PAYOUTi,t-1. Quantiles are shown on the x-axis and values 

of the coefficient are shown on the y-axis. The solid line is the average across estimation years of 
the estimates of the coefficient. Dashed lines equal the average ± 1.96 multiplied by the standard 
error of the average. We use Newey-West adjusted standard errors assuming a lag-length of ten 
years. 
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Figure Nine - Quantile Regression Pseudo R-squared and OLS R-squared 
 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 7 14 21 27 34 40 47 54 60 67 74 80 87 93

OLS

Quantile

 
 
Quantiles are shown on the x-axis and values of the r-squareds are shown on the y-axis. 
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Table One – Descriptive Statistics for the Estimation Sample 
 
Panel A – Descriptive Statistics for the Estimation Sample Pertaining to a One-year Forecast Horizon 
 

Mean
Standard
Deviation Minimum p1 p10 p25 p50 p75 p90 p99 Maximum N

ROEi,t 0.031 0.331 -2.000 -1.308 -0.328 -0.015 0.101 0.178 0.273 0.698 1.994 174,215

ROEi,t-1 0.024 0.301 -2.000 -1.310 -0.265 0.006 0.096 0.155 0.222 0.511 1.977 174,215

LOSSi,t-1 0.240 0.427 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1.000 1.000 174,215

ROEi,t-1×LOSSi,t-1 -0.084 0.244 -2.000 -1.310 -0.265 0.000 0.000 0.000 0.000 0.000 0.000 174,215

ACCi,t-1 -0.059 0.312 -1.997 -1.122 -0.345 -0.165 -0.054 0.060 0.234 0.837 1.984 174,215

LEVi,t-1 2.408 1.598 1.000 1.053 1.224 1.471 1.970 2.783 3.876 9.242 19.996 174,215

PAYERi,t-1 0.438 0.496 0.000 0.000 0.000 0.000 0.000 1.000 1.000 1.000 1.000 174,215

PAYOUTi,t-1 0.024 0.049 0.000 0.000 0.000 0.000 0.000 0.037 0.072 0.192 0.994 174,215  
 
ROEi,t is earnings of firm i during year t divided by firm i’s year t-1 equity book value. ROEi,t-1 is earnings of firm i during year t-1 
divided by firm i’s year t-1 equity book value. LOSSi,t-1 is an indicator variable that equals one (zero) if ROEi,t-1 < 0 (ROEi,t-1 ≥ 0). 
ACCi,t-1 is accruals reported by firm i during year t-1 divided by firm i’s year t-1 equity book value. LEVi,t-1 is total assets of firm i for 
year t-1 divided by firm i’s year t-1 equity book value. PAYERi,t-1 is an indicator variable that equals one (zero) if PAYOUTi,t-1 > 0 
(PAYOUTi,t-1 = 0). PAYOUTi,t-1 is dividends paid by firm i during year t-1 divided by firm i’s year t-1 equity book value. 
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Panel B – Cross-sectional Correlations 
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ROEi,t 0.60 -0.42 0.42 0.11 0.01 0.20 0.22

(30.41) (-10.00) (6.70) (5.83) (0.43) (5.92) (20.48)

ROEi,t-1 0.70 -0.65 0.85 0.28 -0.06 0.25 0.27

(35.42) (-23.04) (15.6) (10.55) (-1.89) (13.08) (9.75)

LOSSi,t-1 -0.43 -0.63 -0.61 -0.20 0.08 -0.30 -0.19

(-7.79) (-7.58) (-68.54) (-10.31) (2.83) (-19.52) (-16.46)

ROEi,t-1×LOSSi,t-1 0.44 0.65 -0.99 0.26 -0.15 0.22 0.13

(7.47) (7.38) (-199.46) (11.92) (-5.64) (14.11) (13.84)

ACCi,t-1 0.12 0.22 -0.20 0.21 -0.16 -0.03 -0.06

(5.25) (9.93) (-10.08) (10.33) (-3.59) (-2.16) (-4.80)

LEVi,t-1 0.08 0.05 0.01 -0.02 -0.21 -0.01 0.08

(2.65) (1.81) (0.34) (-0.64) (-8.29) (-0.22) (1.79)

PAYERi,t-1 0.23 0.28 -0.30 0.31 -0.06 0.07 0.58

(6.52) (9.29) (-19.52) (18.53) (-3.27) (1.02) (27.91)

PAYOUTi,t-1 0.31 0.36 -0.29 0.29 -0.09 0.11 0.88

(21.23) (23.72) (-13.2) (12.85) (-5.41) (2.00) (18.21)  
 
Pearson product moment (Spearman rank order) correlations are shown above (below) the 
diagonal. Correlations are calculated as the means of annual the correlations. t-statistics are 
shown in parentheses. A particular t-statistic equals the mean of the annual correlation divided 
by its standard error. We use Newey-West adjusted standard errors assuming a lag-length of ten 
years. 
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Table Two – Descriptive Statistics for Quantile-based Out-of-sample Forecasts 
 
Panel A – Descriptive Statistics for One-year Forecasts Horizon 
 

Mean
Standard
Deviation Minimum p1 p10 p25 p50 p75 p90 p99 Maximum N

Q_MEANi,t,t+1 0.042 0.237 -1.334 -0.845 -0.231 -0.043 0.097 0.166 0.233 0.520 2.047 170,522

Q_PROBi,t,t+1 0.251 0.317 0.000 0.000 0.000 0.000 0.093 0.553 0.807 0.927 1.000 170,522

Q_STDi,t,t+1 0.123 0.131 0.002 0.006 0.023 0.042 0.076 0.159 0.279 0.655 1.231 170,522

Q_CVi,t,t+1 2.366 221.964 0.012 0.039 0.138 0.292 0.716 1.267 2.240 13.000 90,342.540 170,522

Q_SKEWi,t,t+1 0.192 2.032 -8.423 -4.147 -1.376 -0.881 -0.590 0.586 3.780 5.226 8.103 170,522

Q_KURTi,t,t+1 6.243 9.215 -1.572 -1.036 -0.599 0.662 1.748 8.993 20.703 36.374 85.842 170,522  
 
Q_MEANi,t,t+1 is the year t estimate of the mean of ROEi,t+1. Q_PROBi,t,t+1 is the year t estimate of the probability that ROEi,t+1 < 0. 
Q_STDi,t,t+1 is the year t estimate of the standard deviation of ROEi,t+1. Q_CVi,t,t+1 = Q_STDi,t,t+h ÷ |Q_MEANi,t,t+h|. Q_SKEWi,t,t+1 is 
the year t estimate of the skewness of ROEi,t+1. Q_KURTi,t,t+1 is the year t estimate of the excess kurtosis of ROEi,t+1. 
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Panel B – Cross-sectional Correlations 
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Q_MEANi,t,t+1 -0.80 -0.62 0.20 0.27

(-30.58) (-9.97) (6.56) (3.96)

Q_PROBi,t,t+1 -0.81 0.69 -0.33 -0.45

(-13.57) (67.26) (-6.12) (-9.08)

Q_STDi,t,t+1 -0.47 0.78 -0.26 -0.38

(-6.90) (58.01) (-9.50) (-14.06)

Q_SKEWi,t,t+1 0.21 -0.41 -0.34 0.67

(3.70) (-7.79) (-9.03) (4.21)

Q_KURTi,t,t+1 0.38 -0.57 -0.63 0.14

(2.83) (-4.60) (-7.93) (1.24)  
 
Pearson product moment (Spearman rank order) correlations are shown above (below) the 
diagonal. Correlations are calculated as the means of annual the correlations. t-statistics are 
shown in parentheses. A particular t-statistic equals the mean of the annual correlation divided 
by its standard error. We use Newey-West adjusted standard errors assuming a lag-length of ten 
years. 
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Table Three – Regressions of LOSSi,t+1 on Q_PROBi,t,t+1 and the Logit-based Estimate 
 

Q_PROBi,t,t+1 0.88 *** 0.43 ***

(39.30) (9.91)

A_PROBi,t,t+1 1.03 *** 0.54 ***

(54.70) (8.59)
Intercept 0.08 *** 0.01 0.04 ***

(8.14) (0.99) (8.79)

R-squared 0.32 0.32 0.33
Vuong
Firm-years
Years

156,973

A = Logit
(1) (2) (3)

-0.99

38  
 
LOSSi,t+1 is the dependent variable. It is an indicator variable that equals one (zero) if ROEi,t+1 < 
0 (ROEi,t+1 ≥ 0). Q_PROBi,t,t+1 is the quantile-based year t estimate of the probability that 
ROEi,t+1 < 0. A_PROBi,t,t+1 is Logit-based year t estimate of the probability that ROEi,t+1 < 0. 
 
Reported regression coefficients equal the average of the coefficients obtained from annual 
cross-sectional regressions. t-statistics are shown in parentheses. t-statistics equal the average 
coefficient divided by its temporal standard error. Vuong statistics are obtained by computing the 
average of the annual slope coefficients obtained from the regression described on p. 318 of 
Vuong [1989], and then dividing the average by the temporal standard error of the coefficients. 
All temporal standard errors reflect the Newey-West adjustment assuming a ten-year lag length. 
*,** and *** represent rejection of a two-sided test at the five percent level, one percent level 
and 0.50 percent level, respectively. 
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Table Four – Regressions of |FERRi,t+1| on Q_STDi,t,t+1 and Alternative Estimates 
 

Q_STDi,t,t+1 1.27 *** 1.27 *** 1.26 *** 1.13 ***

(22.21) (21.97) (19.71) (20.73)

A_STDi,t,t+1 0.09 0.02 * 2.90 *** 0.85 ***

(1.74) (2.28) (16.22) (11.16)
Intercept 0.01 *** 0.15 *** 0.01 *** 0.01 0.10 *** 0.01 *

(4.57) (6.92) (4.41) (1.29) (6.39) (2.09)

R-squared 0.21 0.00 0.21 0.21 0.09 0.21
Vuong *** ***
Firm-years
Years 38

A = Historical Firm-level A = Historical Matched-sample

38
134,552 85,142

(1) (2) (3) (4) (5) (6)

16.73 16.40

 
 
|FERRi,t+1| is the dependent variable. It equals the absolute value of the difference between 
ROEi,t+1 and Q_MEANi,t+1 (Q_MEANi,t,t+1 is the year t estimate of the mean of ROEi,t+1). 
Q_STDi,t,t+1 is the quantile-based year t estimate of the standard deviation of ROEi,t+1. In columns 
(2) and (3) A_STDi,t,t+1 is the estimate of the standard deviation of ROEi,t+1 obtained from the 
historical firm-level approach. In columns (5) and (6) A_STDi,t,t+1 is the estimate of the standard 
deviation of ROEi,t+1 obtained from the historical matched-sample approach. The historical firm-
level and historical matched-sample approaches are described on p. 26 and pp. 43-44 of 
Appendix B. 
 
Reported regression coefficients equal the average of the coefficients obtained from annual 
cross-sectional regressions. t-statistics are shown in parentheses. t-statistics equal the average 
coefficient divided by its temporal standard error. Vuong statistics are obtained by computing the 
average of the annual slope coefficients obtained from the regression described on p. 318 of 
Vuong [1989], and then dividing the average by the temporal standard error of the coefficients. 
All temporal standard errors reflect the Newey-West adjustment assuming a ten-year lag length. 
*,** and *** represent rejection of a two-sided test at the five percent level, one percent level 
and 0.50 percent level, respectively. 
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Table Five – Regressions of LOSSIND,t+1 on Q_PROBIND,t,t+1 and Logit-based Estimates 
 

Q_PROBIND,t,t+1 1.09 *** 0.92 ***

(18.96) (7.71)

A_PROBIND,t,t+1 1.20 *** 0.18

(19.60) (1.02)
Intercept 0.03 *** -0.04 * 0.02

(3.93) (-2.18) (1.19)

R-squared 0.54 0.53 0.54
Vuong ***
Industry-years
Years 38

2,056

A = Logit
(1) (2) (3)

3.70

 
 
LOSSIND,t+1 is the dependent variable. It equals the industry average of LOSSi,t+1, which is an 
indicator variable that equals one (zero) if ROEi,t+1 < 0 (ROEi,t+1 ≥ 0). Q_PROBIND,t,t+1 is the 
industry average of Q_PROBi,t,t+1, which is the quantile-based year t estimate of the probability 
that ROEi,t+1 < 0. A_PROBIND,t,t+1 is the industry average of A_PROBi,t,t+1, which is the Logit-
based year t estimate of the probability that ROEi,t+1 < 0. 
 
Reported regression coefficients equal the average of the coefficients obtained from annual 
cross-sectional regressions. t-statistics are shown in parentheses. t-statistics equal the average 
coefficient divided by its temporal standard error. Vuong statistics are obtained by computing the 
average of the annual slope coefficients obtained from the regression described on p. 318 of 
Vuong [1989], and then dividing the average by the temporal standard error of the coefficients. 
All temporal standard errors reflect the Newey-West adjustment assuming a ten-year lag length. 
*,** and *** represent rejection of a two-sided test at the five percent level, one percent level 
and 0.50 percent level, respectively. 
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Table Six – Regressions of Realized Industry-level Year t+1 Moments on the Year t Out-of Sample Estimates 
 
Panel A – Regressions of R_STDIND,t+1 on Q_STDIND,t,t+1 and Alternative Estimates 
 

Q_STDIND,t,t+1 1.41 *** 1.39 *** 1.49 *** 1.33 *** 2.20 *** 2.15 ***

(16.39) (14.56) (18.46) (11.53) (3.99) (3.67)

A_STDIND,t,t+1 0.13 -0.01 0.62 *** 0.14 0.08 * 0.03 **

(1.87) (-0.23) (6.56) (1.76) (2.15) (2.72)
Intercept 0.01 0.31 *** 0.01 -0.01 0.17 *** -0.01 -0.14 0.41 *** -0.14

(1.04) (7.63) (1.50) (-0.52) (4.47) (-1.17) (-1.27) (4.39) (-1.23)

R-squared 0.29 0.04 0.31 0.33 0.22 0.37 0.25 0.06 0.27
Vuong *** *** ***
Industry-years
Years

A = Historical Firm-level A = Historical Matched-sample A = Historical Industry-level

1,960 1,579 2,056

(6) (7) (8) (9)

5.68 4.27 6.13

(1) (2) (3) (4) (5)

38 38 38  
 
R_STDIND,t+1 is the dependent variable. It equals the realized within-industry standard deviation of ROEi,t+1. Q_STDIND,t+1 is 
calculated by applying the law of total variance to the year t quantile-based estimates of the mean and variance of ROEi,t+1. In columns 
(2) and (3) A_STDi,t,t+1 is calculated by applying the law of total variance to the year t historical firm-level estimates of the mean and 
variance of ROEi,t+1. In columns (5) and (6) A_STDi,t,t+1 is calculated by applying the law of total variance to the year t historical 
matched-sample estimates of the mean and variance of ROEi,t+1. In columns (8) and (9) A_STDi,t,t+1 equals the within-industry 
standard deviation of ROEi,t. The historical firm-level and historical matched-sample approaches are described on p. 26 and pp. 43-44 
of Appendix B. The historical industry-level approach is described on p. 30 and pp. 44-45 of Appendix B. The law of total variance is 
described on p. 29. 
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Panel B – Regressions of R_SKEWIND,t+1 on Q_SKEWIND,t,t+1 and Alternative Estimates 
 

Q_SKEWIND,t,t+1 0.56 *** 0.56 *** 0.56 *** 0.53 *** 0.51 *** 0.49 ***

(14.70) (14.88) (7.19) (7.47) (17.06) (13.40)

A_SKEWIND,t,t+1 0.01 0.00 0.28 *** 0.08 *** 0.11 ** 0.05 ***

(1.61) (-0.10) (13.18) (3.62) (3.28) (4.41)
Intercept -0.51 *** -1.43 *** -0.50 *** -0.30 *** -1.14 *** -0.27 *** -0.68 *** -1.50 *** -0.69 ***

(-4.42) (-7.19) (-4.42) (-5.47) (-9.02) (-6.41) (-4.51) (-8.56) (-4.98)

R-squared 0.14 0.00 0.15 0.16 0.08 0.18 0.13 0.03 0.14
Vuong *** ** ***
Industry-years
Years

A = Historical Firm-level A = Historical Matched-sample A = Historical Industry-level

1,960 1,579 2,056

(6) (7) (8) (9)

10.77 2.86 7.48

(1) (2) (3) (4) (5)

38 38 38  
 
R_SKEWIND,t+1 is the dependent variable. It equals the realized within-industry skewness of ROEi,t+1. Q_SKEWIND,t+1 is calculated by 
applying the law of total moments to the year t quantile-based estimates of the mean, variance and third central moment of ROEi,t+1. In 
columns (2) and (3) A_SKEWi,t,t+1 is calculated by applying the law of total moments to the year t historical firm-level estimates of the 
mean, variance and third central moment of ROEi,t+1. In columns (5) and (6) A_SKEWi,t,t+1 is calculated by applying the law of total 
moments to the year t historical matched-sample estimates of the mean, variance and third central moment of ROEi,t+1. In columns (8) 
and (9) A_SKEWi,t,t+1 equals the within-industry skewness of ROEi,t. The historical firm-level and historical matched-sample 
approaches are described on p. 26 and pp. 43-44 of Appendix B. The historical industry-level approach is described on p. 30 and pp. 
44-45 of Appendix B. The law of total moments is described on pp. 39-41 of Appendix A. 
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Panel C – Regressions of R_KURTIND,t+1 on Q_KURTIND,t,t+1 and Alternative Estimates 
 

Q_KURTIND,t,t+1 0.67 *** 0.64 *** 0.41 *** 0.25 ** 0.54 ** 0.49 ***

(4.43) (4.54) (4.64) (3.09) (3.07) (3.63)

A_KURTIND,t,t+1 0.03 * 0.03 * 0.46 *** 0.40 *** 0.22 *** 0.19 ***

(2.06) (2.03) (6.35) (5.34) (4.93) (4.91)
Intercept 3.77 *** 10.92 *** 2.80 ** 4.91 *** 5.94 *** 3.40 *** 6.52 * 8.83 *** 2.55 *

(3.66) (17.97) (2.82) (5.41) (10.18) (4.13) (2.32) (20.22) (2.20)

R-squared 0.17 0.08 0.24 0.17 0.18 0.25 0.14 0.18 0.28
Vuong
Industry-years
Years

A = Historical Firm-level A = Historical Matched-sample A = Historical Industry-level

1,960 1,579 2,056

(6) (7) (8) (9)

1.17 0.17 -0.61

(1) (2) (3) (4) (5)

38 38 38  
 
R_KURTIND,t+1 is the dependent variable. It equals the realized within-industry kurtosis of ROEi,t+1. Q_KURTIND,t+1 is calculated by 
applying the law of total moments to the year t quantile-based estimates of the mean, variance, third central moment and fourth central 
moment of ROEi,t+1. In columns (2) and (3) A_KURTi,t,t+1 is calculated by applying the law of total moments to the year t historical 
firm-level estimates of the mean, variance, third central moment and fourth central moment of ROEi,t+1. In columns (5) and (6) 
A_KURTi,t,t+1 is calculated by applying the law of total moments to the year t historical matched-sample estimates of the mean, 
variance, third central moment and fourth central moment of ROEi,t+1. In columns (8) and (9) A_SKEWi,t,t+1 equals the within-industry 
kurtosis of ROEi,t. The historical firm-level and historical matched-sample approaches are described on p. 26 and pp. 43-44 of 
Appendix B. The historical industry-level approach is described on p. 29-30 and pp. 44-45 of Appendix B. The law of total moments 
is described on pp. 39-41 of Appendix A. 
 
Reported regression coefficients equal the average of the coefficients obtained from annual cross-sectional regressions. t-statistics are 
shown in parentheses. t-statistics equal the average coefficient divided by its temporal standard error. Vuong statistics are obtained by 
computing the average of the annual slope coefficients obtained from the regression described on p. 318 of Vuong [1989], and then 
dividing the average by the temporal standard error of the coefficients. All temporal standard errors reflect the Newey-West 
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adjustment assuming a ten-year lag length. *,** and *** represent rejection of a two-sided test at the five percent level, one percent 
level and 0.50 percent level, respectively. 
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Table Seven – Regressions of Valuation Multiples on Quantile-based Out-of Sample 
Estimates 
 

Q_MEANi,t,t+1 0.57 *** 0.53 *** -2.11 ** -2.09 **

(10.46) (9.96) (-2.85) (-2.77)

Q_STDi,t,t+1 -0.51 *** -0.50 *** -1.91 *** -1.93 ***

(-4.78) (-4.93) (-6.89) (-10.18)

Q_SKEWi,t,t+1 -0.03 *** -0.03 *** -0.07 *** -0.06 ***

(-5.1) (-5.1) (-4.71) (-6.16)

Q_KURTi,t,t+1 0.01 *** 0.01 *** 0.02 * 0.01 *

(4.14) (4.12) (2.33) (2.47)

RETi,t 0.01 *** -0.16 ***

(3.85) (-4.5)

RET_VOLi,t -0.07 -0.18
(-1.83) (-0.55)

RET_SKEWi,t 0.01 *** 0.04 ***

(4.33) (5.19)

RET_KURTi,t 0.00 0.02 ***

(-0.47) (3.77)
Intercept -0.02 0.00 1.13 *** 1.10 ***

(-1.43) (-0.33) (4.94) (4.81)

R-squared
Firm-years
Years

Earnings-to-price Book-to-price
(1) (2) (1) (2)

39 39

0.58 0.58 0.14 0.21
155,025 125,468 155,025 125,468

 
 
Earnings-to-price (book-to-price) is the dependent variable. Earnings-to-price (book-to-price) 
equals the ratio of firm i’s year t earnings (equity book value) to its equity market value at the 
end year t. Q_MEANi,t,t+1 is the year t quantile-based estimate of the mean of ROEi,t+1. 
Q_STDi,t,t+1 is the year t quantile-based estimate of the standard deviation of ROEi,t+1. 
Q_SKEWi,t,t+1 is the year t quantile-based estimate of the skewness of ROEi,t+1. Q_KURTi,t,t+1 is 
the year t quantile-based estimate of the excess kurtosis of ROEi,t+1. RETi,t is the annual stock 
return of firm i in year t. RET_VOLi,t the volatility of historical market-model residuals for firm 
i. RET_SKEWi,t is the skewness of historical market-model residuals for firm i. RET_KURTi,t.is 
the kurtosis of historical market-model residuals for firm i. 
 
Reported regression coefficients equal the average of the coefficients obtained from annual 
cross-sectional regressions. t-statistics are shown in parentheses. t-statistics equal the average 
coefficient divided by its temporal standard error. Vuong statistics are obtained by computing the 
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average of the annual slope coefficients obtained from the regression described on p. 318 of 
Vuong [1989], and then dividing the average by the temporal standard error of the coefficients. 
All temporal standard errors reflect the Newey-West adjustment assuming a ten-year lag length. 
*,** and *** represent rejection of a two-sided test at the five percent level, one percent level 
and 0.50 percent level, respectively. 
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Table Eight – Regressions of Credit Ratings on Quantile-based Out-of Sample Estimates 
 

Q_MEANi,t,t+1 -1.40 *** -1.48 ***

(-5.94) (-7.98)

Q_STDi,t,t+1 1.17 * 1.09 *

(2.61) (2.29)

Q_SKEWi,t,t+1 -1.11 *** -1.10 ***

(-11.97) (-11.72)

Q_KURTi,t,t+1 0.18 *** 0.18 ***

(4.82) (4.78)

LN_SIZEi,t -0.74 *** -0.74 ***

(-11.31) (-11.59)

LIAB_ASSTi,t 1.08 * 1.16 *

(2.65) (2.52)

EBITDA_LIABi,t -2.95 *** -2.93 ***

(-11.39) (-13.29)

RETi,t 0.60 *** 0.64 ***

(14.35) (12.66)

RET_VOLi,t 21.47 *** 22.80 ***

(16.94) (15.06)

RET_SKEWi,t -0.10 ***

(-5.15)

RET_KURTi,t -0.09 ***

(-3.7)
Intercept 2.10 * 2.23 **

(2.75) (2.95)

R-squared
Firm-years
Years 27

(1) (2)

0.64 0.64
20,937 20,148

 
 
Credit ratings are the dependent variable. They are obtained from Standard and Poors. They 
range between 2 and 23. Higher ratings reflect worse credit quality; for example, a rating of 2 
(23) implies a letter rating of AAA (D). Q_MEANi,t,t+1 is the year t quantile-based estimate of the 
mean of ROEi,t+1. Q_STDi,t,t+1 is the year t quantile-based estimate of the standard deviation of 
ROEi,t+1. Q_SKEWi,t,t+1 is the year t quantile-based estimate of the skewness of ROEi,t+1. 
Q_KURTi,t,t+1 is the year t quantile-based estimate of the excess kurtosis of ROEi,t+1. LN_SIZEi,t 
is the natural log of the ratio of firm i’s year t equity market to the sum of all firm’s 
contemporaneous equity market values. LIAB_ASSTi,t is the ratio of firm i’s year t liabilities to 
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its year t assets. EBITDA_LIABi,t is the ratio of firm i’s year t earnings before interest, taxes, 
depreciation, and amortization to its year t liabilities. RETi,t is the annual stock return of firm i in 
year t. RET_VOLi,t the volatility of historical market-model residuals for firm i. RET_SKEWi,t is 
the skewness of historical market-model residuals for firm i. RET_KURTi,t.is the kurtosis of 
historical market-model residuals for firm i. 
 
Reported regression coefficients equal the average of the coefficients obtained from annual 
cross-sectional regressions. t-statistics are shown in parentheses. t-statistics equal the average 
coefficient divided by its temporal standard error. Vuong statistics are obtained by computing the 
average of the annual slope coefficients obtained from the regression described on p. 318 of 
Vuong [1989], and then dividing the average by the temporal standard error of the coefficients. 
All temporal standard errors reflect the Newey-West adjustment assuming a ten-year lag length. 
*,** and *** represent rejection of a two-sided test at the five percent level, one percent level 
and 0.50 percent level, respectively. 


