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Market Power and Capital Flexibility: A New

Perspective on the Pricing of Technology Shocks

Abstract

In this paper we show that firms’ market power and flexibility in the utilization of capital cru-
cially affect how investment-specific technology (IST) shocks impact asset prices. We develop
a two-sector general equilibrium model in which households have recursive preferences and ob-
tain three main results. First, the equilibrium price of risk for IST shocks changes sign from
negative, under fixed capital utilization, to positive, when firms are allowed to optimally choose
the intensity of capital utilization. Variable capital utilization provides flexible capital service
input in the production of the consumption good and hence alters the intertemporal trade-off
between current and future consumption (“discount rate effect”). Second, the firms’ equilib-
rium IST loadings change sign from negative, for perfectly competitive firms, to positive, for
monopolistically competitive firms. Market power allows firms to benefit from the reduction in
capital investment costs induced by a positive technology shock (“cash flow effect”). Finally,
preference for early resolution of uncertainty, together with flexible capital utilization and high
market power, can generate simultaneously positive price of risk and positive risk premium for
IST shocks. These results indicate that variable capital utilization and market power are critical
ingredients for production-based models that rely on IST shocks to explain observed properties
of both asset prices and macroeconomic quantities.
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1 Introduction

Technological innovations are important determinants of business cycle fluctuations and eco-

nomic growth. Macroeconomists refer to such innovations as investment-specific technological

(IST) shocks, i.e., investment shocks that affect the price of new capital goods.1 A growing

macro finance literature relies on these type of shocks to overcome the well known difficulties of

production-based models in generating the level of market risk premia observed in the data.2 In

these models, a positive IST shock, by reducing the marginal cost of new capital goods, affects

asset prices through two main channels: (i) it spurs investment at the expense of consumption,

and (ii) it reduces the value of firms’ capital. The risk premium the market demands for holding

an asset exposed to IST shocks is the product of the market price of IST risk and the asset’s

exposure, or loading, to IST risk. High risk premia are hence achieved by a combination of a

negative market price of IST risk (marginal utility increases following a positive IST shock) and

a negative loading on IST risk (firm value drops after a positive IST shock). Although successful

in obtaining high level of risk premia, both channels are at odds with macro data. Specifically,

the first channel is at odds with the pro-cyclicality of consumption and investment, a salient

fact of business cycles. The second channel is at odds with the fact that existing firms are the

major source of technological innovation.

In this paper we show that one can overcome the above shortcomings within a tractable

general equilibrium model with production and IST shocks whose implications are consistent

with observed properties of both asset prices and macroeconomic quantities. Our argument rests

on two key observations. The first observation is that the countercyclical nature of consumption

and investment in existing asset pricing models with IST shocks is a consequence of ignoring

flexibility in the utilization of capital in response to technology shocks. The second observation

is that the negative impact of IST shocks on firms’ value is the consequence of assuming that

firms operate in a perfectly competitive environment. We show that relaxing both assumptions,

i.e., allowing for both capital flexibility and firms’ market power, can generate simultaneously a

positive price of IST risk and a positive firm value loading on such risk. These two effects, jointly,
1IST shocks were originally introduced in the macroeconomics literature to capture the Keynesian idea that

variations in “investment efficiency,” as opposed to Total Factor Productivity (TFP), could act as a driver of the
business cycle.

2We review the literature in Section 2.
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help generate higher aggregate risk premia in an economy where consumption and investment

are procyclical, and existing firms benefit from technological progress. We now elaborate more

on these two specific channels.

In existing asset pricing models, IST shocks affect the accumulation of new capital stock,

implying that higher future consumption is achieved at the expense of lower current consumption.

This mechanism, however, ignores the fact that IST shocks also alter the intensity of utilization of

the old capital stock. If, in response to a positive IST shock, capital becomes cheaper to replace,

there is an incentive to utilize existing capital more intensively. Hence, under flexible capital

utilization, it may no longer be the case that higher future consumption can only be achieved at

the expense of lower current consumption. By affecting the trade-off between current and future

consumption, capital flexibility is therefore an important “discount rate” channel through which

technological innovations may affect asset prices.3

Another important channel through which IST shocks could affect asset prices is the firm’s

competitive environment. In perfectly competitive markets, positive IST shocks reduce the value

of the marginal unit of existing capital, and therefore firms’ market value. In a micro-founded

model of technological innovation, the assumption of perfectly competitive markets would be

hard to reconcile with the empirical fact that large part of innovating activity originates within

incumbent firms.4 If firms retain some degree of market power in the product market, then a

positive IST shock can have a positive impact on firm value because the rents originating from

reduced investment costs are not fully eroded by competition. The degree of firms’ market power

is therefore a potentially important “cash flow” channel through which technological innovations

may affect asset prices.

We develop a two-sector general equilibrium model with IST shocks in which capital utiliza-

tion is determined endogenously and firms retain some degree of market power in their respective

sector. The two sectors, labeled ‘consumption’ and ‘investment’, produce consumption and in-

vestment goods, respectively. These final goods are produced by combining intermediate goods

that are obtained from monopolistically competitive firms in the consumption and investment
3Capacity utilization rates are important indicators of economic activity and are commonly used by academics

and policymakers to explain the behavior of investment, inflation, productivity, profits, and output. See, e.g., the
Industrial Production and Capacity Utilization index utilized by the Federal Reserve.

4Recent research on disaggregated data shows that large part of new innovating activity is conducted by
existing firms. See for example, Bernard, Redding, and Schott (2010), and Broda and Weinstein (2010).
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sectors. Importantly, the final investment good is an input of production for intermediate good

producers in both sectors. We solve for an equilibrium allocation in this economy and derive

implications for the market price of risk of IST shocks, and for the risk premium demanded by

these shocks in sectoral and aggregate portfolios.

We begin our analysis by considering the standard case of exogenously fixed capital utiliza-

tion, time-separable CRRA preferences and perfectly competitive markets. In this case, the

market price of risk for IST shocks is negative, and the risk premia demanded by these shocks

in the sectoral and aggregate portfolios are positive. This happens because a positive IST shock

increases the productivity of the investment sector, which, in turn, increases the total labor

supply and diverts labor from the consumption to the investment sector. With fixed capital

utilization, the drop in labor in the consumption sector induces a drop in consumption. This,

in turn, leads to an increase in the household’s marginal utility and hence to a negative price

of risk for the IST shock. Furthermore, in perfectly competitive markets, firm values drop in

response to a positive IST shock, i.e., firm values load negatively on IST shocks. A negative

price of risk and negative loadings imply a positive risk premium for IST shocks.

Remaining within the class of CRRA preferences and perfectly competitive markets, we then

allow for capital utilization to be determined endogenously in equilibrium. In this case, we find

that, under a wide range of parameter values consistent with empirically observed variations in

capital utilization, the market price of risk for IST shocks is positive. This happens because,

with variable capital utilization, a positive IST shock makes capital cheaper to replace and hence

increases utilization of existing capital at the expense of faster capital depreciation. As in the

case of fixed capital utilization, labor supply in the consumption sector drops. But, this decline

in labor is counterbalanced by an increase in capital utilization. When capital utilization is

sufficiently responsive to IST shocks, the latter effect dominates, causing a net increase in

consumption, a decline in marginal utility, and hence a positive price of risk for IST shocks.

Because of perfectly competitive markets, portfolio returns load negatively on IST shocks. A

positive price of risk and negative loadings imply a negative risk premium for IST shocks.

In the most general version of the model we consider, we allow for endogenous capital uti-

lization in an equilibrium production economy where households have recursive preferences and

firms are monopolistically competitive in their respective sector as in Dixit and Stiglitz (1977).
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This allows us to highlight two other channels, besides flexible capital utilization, that are im-

portant for understanding the pricing implication of IST shocks: (i) firms market power, and

(ii) households’ attitudes towards the temporal resolution of uncertainty, i.e., the relationship

between their elasticity of intertemporal substitution (EIS) and their risk aversion. Firms’ mar-

ket power affects directly the sign of the risk premium associated with IST shocks. In the model,

under moderate degree of market power, i.e., moderate markups, the risk premium associated

with IST shock can be positive. This happens because, following a positive IST shock, the mo-

nopolistic rents originating from lower investment cost can more than compensate the decline

in value of installed capital. EIS affects both the market price of risk and the risk premium

of IST shocks because, with recursive utility, the stochastic discount factor depends both on

current consumption and on future utility. Following a positive IST shock, households with

high (low) EIS will value the uncertainty in future utility less (more) favorably, leading to lower

(higher) marginal utility and hence a positive (negative) price of risk for IST shocks. When

combined with firms’ market power and flexible capital utilization, we show that the risk pre-

mium demanded by IST shocks is positive in two cases: (1) households have a preference for

late resolution of uncertainty and firms cannot vary their capital utilization; or (2) households

have a preference for early resolution of uncertainty, firms can flexibly adjust their capital uti-

lization, and benefit from monopoly power.5 The first case has been emphasized by the existing

literature. The second case is a novel perspective on the asset pricing implications of technology

shocks.

It is important to emphasize that although both variable capital utilization and high EIS

can generate a positive price of risk for IST shocks, the two channels are conceptually quite

different: the former is a property of the production technology and has direct impact on

both macroeconomic quantities and asset prices, while the latter is a property of households’

preferences and mainly impacts asset prices. As our analysis shows, variable capital utilization

can “undo” part of the effect of EIS and generate a positive price of risk for IST shocks even

when the household have strong preference towards consumption smoothing across time (i.e.,
5The EIS effect is well known. For example, Papanikolaou (2011) shows that, with fixed capital utilization,

the sign of the price of risk for IST shocks depends on the preferences towards consumption smoothing. Low
(high) values of EIS induce household to attach high (low) values to securities that hedge against the drop in
consumption caused by an IST shock, thus leading to a negative (positive) price of risk for IST shock. EIS has
a similar qualitative effect on the aggregate risk premium in the long-run risk literature (see for example, Bansal
and Yaron (2004)). We emphasize the effect of EIS on risk premia through the market power channel, which is
absent in most existing studies.



5

low EIS). Furthermore, while the sign of the market price of risk depends on capital flexibility

and households’ EIS, the sign and magnitude of the risk premium is determined jointly by firms’

market power, capital flexibility, and households’ EIS. In summary, higher market power and

more flexible capital utilization, together with high EIS, can generate a positive risk premium

for IST shocks. The combination of these three channels provides therefore a mechanism that

can improve the ability of production-based models to match observed levels of the equity risk

premium, without generating counterfactual dynamics in aggregate macroeconomic quantities.

Our paper makes three contributions. First, we provide a new perspective to assess the

pricing implication of IST shocks. Specifically, we focus not only on the effect of IST shocks on

the accumulation of new capital, as is done in the existing literature, but also on the effect of these

shocks on the utilization of existing old capital. Second, we show that the firms’ competitive

environment is important in determining the impact of IST shocks on firm value and asset risk

premia. Third, we document that equilibrium models that allow for variable capital utilization

and firms’ market power generate theoretical implications on asset prices that are qualitatively

different from those obtained in models with fixed capital utilization and perfectly competitive

markets.

The rest of the paper proceeds as follows. In Section 2 we review the related literature. In

Section 3 we describe our two-sector general equilibrium model. We present the main results in

Section 4. In Section 5 we provide a qualitative analysis of the main mechanisms of the model.

Section 6 concludes. Appendix A contains details of the numerical procedure used to solve the

model.

2 Related literature

Our work is related to a large literature that studies the macroeconomic and asset pricing im-

plications of IST shocks. Since the work of Solow (1960), IST shocks have become an important

feature of the macroeconomic literature. Representative works in this area are Greenwood, Her-

cowitz, and Krusell (1997, 2000) and Fisher (2006), who show that IST shocks can account for

a large fraction of growth and variations in output, and Justiniano, Primiceri, and Tambalotti

(2010) who study the effect of investment shocks on business cycles. Greenwood, Hercowitz,
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and Huffman (1988) are the first to introduce capital utilization in a neoclassical real business

cycle model with IST shocks. They show how capacity utilization is important to avoid the

counterfactual negative correlation between consumption and investment. Jaimovich and Re-

belo (2009) use IST shocks and capital utilization in a two-sector economy similar to ours, in

order to study the effect of news on the business cycle. Christiano and Fisher (2003) is the first

paper to explore the implications of IST shocks for aggregate asset prices and business cycle

fluctuations.

Several recent studies link IST shocks to aggregate and cross-sectional return patterns. Pa-

panikolaou (2011) is the first to study the implications of these shocks for asset prices in both

the aggregate and the cross-section of stocks. Papanikolaou (2011) introduces IST shocks in

a two-sector general equilibrium model and shows how financial data can be used to measure

IST shocks at a higher frequency. Kogan and Papanikolaou (2012a,b) explore how IST shocks

can explain the value premium as well as other cross sectional return patterns associated with

firm characteristics, such as Tobin’s Q, past investment, earnings-price ratios, market betas, and

idiosyncratic volatility of stock returns. Li (2012) uses IST shocks to explain the momentum

effect, while Yang (2013) uses IST shocks to explain the commodity basis spread. Bazdresch,

Belo, and Lin (2013) study the impact of labor market frictions on asset prices when the growth

opportunities in the economy are time-varying. Their model features an aggregate adjustment

cost shock which operates similarly to an IST shock affecting both labor and capital inputs. To

the best of our knowledge ours is the first paper that investigates the equilibrium implications

of capital utilization and market power on the relationship between technology shocks and asset

prices.

More broadly, our paper is also related to the recent literature that explores the general equi-

librium implications of technology innovations on asset prices.6 For example, Garleanu, Kogan,

and Panageas (2012) study the role of “displacement risk” due to innovation in a general equilib-

rium overlapping-generations economy, and Garleanu, Panageas, and Yu (2012) study the asset

pricing implications of technological growth in a model with “small,” disembodied, productivity

shocks, and “large,” infrequent, technological innovations embodied into new capital vintages.
6Neutral productivity shocks are the main driving force in the large literature that explores the implications

of real business cycles on asset prices (see, for example, Jermann (1998), Tallarini (2000), Boldrin, Christiano,
and Fisher (2001), Gomes, Kogan, and Yogo (2009)), and in the investment-based asset pricing literature (see,
for example, Cochrane (1991, 1996), Berk, Green, and Naik (1999), Gomes, Kogan, and Zhang (2003), Carlson,
Fisher, and Giammarino (2004), Zhang (2005), Liu, Whited, and Zhang (2009)).
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Lin (2012) studies the cross section of stock return by emphasizing how intangible capital (R&D)

affects both the creation of new products and the productivity of physical investment devoted

to the production of new capital. In his model, R&D capital can hence be interpreted as a

determinant of IST shocks.

Finally, our modelling device for introducing firms’ market power borrows from the en-

dogenous growth literature in macroeconomics that employs the monopolistically competitive

equilibrium structure pioneered by Dixit and Stiglitz (1977). Several recent papers employs a

similar channel in studying the equilibrium asset pricing implication of innovation, such as, for

example Kung and Schmid (2012), who link innovation to long-run risks, Loualiche (2012), who

studies the role of industry entry and exit on asset prices, and Kogan, Papanikolaou, and Stoff-

man (2013), who emphasize the role of innovation in affecting intergenerational risk sharing.

Our work differs from this literature in that we focus explicitly on the impact of market power

on the pricing mechanism associated with IST shocks.

3 A two-sector general equilibrium model

In this section, we build a two-sector general equilibrium model to study the pricing impact of

technological innovations on asset prices. The modelling framework builds on the two-sector

models in Jaimovich and Rebelo (2009) and Papanikolaou (2011). Jaimovich and Rebelo (2009)

focus on the macroeconomic impact of technology shocks on business cycles in discrete time when

households have time-separable utility. Papanikolaou (2011) studies the pricing implications of

investment shocks in continuous time and under recursive utility. We model an economy in

discrete time where agents have recursive utility and production is undertaken by firms operating

in two sectors: the consumption sector (C-sector) and the investment sector (I-sector). We also

allow firms to flexibly adjust their capital utilization and to retain some degree of market power

in their product market. Our model nests the cases of fixed capital utilization and perfectly

competitive markets as limiting cases.
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3.1 Households

The economy is populated by a continuum of identical households that maximize their lifetime

utility (U) derived from consumption (C) and hours worked (L) according to the following

Epstein-Zin recursive structure (Epstein and Zin (1989)):

Ut =
{

(1− β)
[
Ct(1− ψLθt )

]1−ρ
+ β(EtU

1−γ
t+1 )

1−ρ
1−γ

} 1
1−ρ

, (1)

where β is the time discount rate, 1/ρ is the elasticity of intertemporal substitution (EIS), and

γ is the coefficient of relative risk aversion. The parameters ψ and θ measure, respectively,

the degree and sensitivity of disutility to working hours. The recursive utility (1) reduces to

time-separable CRRA utility when ρ = γ, and, in particular, it belongs to the class of preference

for consumption and leisure discussed in King, Plosser, and Rebelo (1988), which we refer to as

KPR preferences. Households supply labor Lc and Li to the C- and I-sector respectively. The

total working hours L is the sum of the working hours in the two sectors, that is, Lt = Lct +Lit.

The labor market is perfectly competitive and frictionless.7

Households choose consumption and labor supply to maximize utility in (1), taking the wage

and firms’ dividends as given. Specifically, they solve the following problem:

Vt = max
{Cs,Ls}∞s=t

Ut, s.t. P csCs = WsLs +Dc
s +Di

s, s ≥ t, (2)

where P c is the price of consumption good,8 W is the market wage, Dc and Di are the dividends

paid by, respectively, the C- and I-firms, defined formally in (14) and (21) below.

From the household optimization, by a standard argument, we obtain the stochastic discount

factor (SDF) in the economy. The one-period SDF Mt,t+1 at time t is the marginal rate of

substitution between time t and time t+ 1, i.e.,

Mt,t+1 = β

(
Ct+1

Ct

)−ρ(1− ψLθt+1

1− ψLθt

)1−ρ(
Vt+1

(EtV
1−γ
t+1 )

1
1−γ

)ρ−γ
. (3)

7Extending the model to allow for wage rigidity as a friction in the labor market (see for example, Favilukis
and Lin (2013)) does not change our results.

8For convenience, we choose the final consumption good as numeraire by setting P ct = 1 for all t.
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3.2 Firms and technology

There are two productive sectors in the economy: the C-sector, producing the consumption good

and the I-sector, producing the capital good. Labor and the capital good are inputs for both

sectors.

3.2.1 Consumption sector

There is an infinite number of final good producers, who take intermediate goods as input and

produce final consumption good as output. The final consumption good is produced according

to the following constant elasticity of substitution (CES) technology:

Y c
t =

 Nc∑
f=1

(xcf,t)
σc−1
σc


σc
σc−1

, (4)

where xcf,t is the input of type f good, N c is the total number of types of intermediate consump-

tion goods, and σc is the elasticity of substitution between any two intermediate goods. All the

final output in C-sector is used for consumption (Ct = Y c
t ). We assume that the final good

producers are competitive and so they make zero net profit in equilibrium.9 The final good pro-

ducer’s demand xcf,t of intermediate good of type f at time t is determined by an intratemporal

profit maximization, i.e.,

max
xcf,t

P ct Y
c
t −

Nc∑
f=1

pcf,tx
c
f,t, (5)

where Y c
t is given by (4) and the prices P ct and pcf,t of, respectively, the final and intermediate

consumption good of type f are taken as given. Solving (5) yields the following demand for each

type of intermediate good:

xcf,t =
(
pcf,t
P ct

)−σc
Ct, (6)

where the price of the final consumption good is P ct =
[∑Nc

f=1(pcf,t)
1−σc

] 1
1−σc .

9An equivalent interpretation is that consumers have CES preferences over intermediate consumption goods in
the spirit of Dixit and Stiglitz (1977). We then can think of the final good producers are the consumers themselves.
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The CES parameter σc measures the degree of substitutability among intermediate goods and

provides a tractable way to model intermediate good firms’ market power. Perfect competition

corresponds to the limiting case σc → ∞. In this case the intermediate goods are perfect

substitute, and we have only one type of intermediate good which is also the final good. For finite

value of σc, the intermediate goods are not perfect substitutes. As a result, each monopolistic

firm has some degree of market power in the product market. As we show in Appendix A, each

intermediate good firm charges a constant markup equal to 1/σc, which represents the firm’s

monopolistic rent. Therefore, a lower value of σc implies more market power for the monopolistic

firms.

Each intermediate good firm f in the C-sector (C-firm hereafter) produces good f by using

capital, kcf,t, and labor, lcf,t, according to the following Cobb-Douglas production technology:

ycf,t = AtZ
c
t (u

c
f,tk

c
f,t)

1−α(lcf,t)
α, (7)

where At is the total factor of productivity (TFP), Zct is the sector-specific factor of productivity

for C-firms, and ucf,t > 0 is the intensity of capital utilization.

The capital utilization intensity variable ucf,t > 0 captures the duration or speed in operating

existing machines. For example, a high level of ucf,t may represent less maintenance time or longer

working hours. If we normalize the capital utilization to be ucf,t = 1 at “normal” times (steady

state), then a capital utilization higher than one means that the machines are more intensively

used comparing to normal times.

The technology shocks At and Zct follow geometric random walks with growth:

lnAt = µA + lnAt−1 + εAt , εAt ∼ i.i.d. N (0, σA), (8)

lnZct = µZ
c

+ lnZct−1 + εZ
c

t , εZ
c

t ∼ i.i.d. N (0, σZ
c
). (9)

Each C-firm f can purchase the investment good and increase its capital stock. The evolution

of capital for C-firm f is given by

kcf,t+1 = kcf,t(1 + icf,t − δ(ucf,t)), (10)
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where icf,t denotes the investment rate and the depreciation rate δ(ucf ) depends explicitly on the

intensity ucf,t of capital utilization. The dependence of depreciation on the capital utilization

captures the cost of increasing utilization and ensures that firms only choose a finite intensity

of utilization of their capital.

We follow Jaimovich and Rebelo (2009) and specify a depreciation function that has a con-

stant elasticity of marginal depreciation with respect to capital utilization, i.e.,

δ(u) = δ0 + δ1
u1+ξ − 1

1 + ξ
, ξ > 0, (11)

where δ0 corresponds to the depreciation rate under unit capital utilization, i.e., δ(1) = δ0. The

parameter ξ measures the elasticity of marginal depreciation with respect to capital utilization,

i.e., ξ = δ′′(u)u/δ′(u). A higher ξ means that capital depreciation, i.e., the marginal cost of

capital utilization, is very sensitive to the degree of utilization. In other words, a higher ξ makes

increasing capital utilization more costly. In contrast, a lower ξ, implies that capital utilization

is very responsive to exogenous shocks. Therefore, the parameter ξ measures the inflexibility of

firms’ capital service in responses to shocks.

The investment in new capital is subject to a convex capital adjustment cost. To increase

capital by an amount ickc, firms need to purchase ϕ(ic)kc units of capital goods. Following

Papanikolaou (2011), we parameterize the adjustment cost function as

ϕ(i) =
1
φ

(1 + i)φ − 1
φ
, φ ≥ 1, (12)

where φ captures the degree of the adjustment cost. The cases φ = 1 and 2 correspond,

respectively to, no adjustment cost and quadratic adjustment cost.

Each C-firm f makes optimal hiring, investment and capital utilization decisions in order to

maximize the firm’s market value, i.e., the present value of dividends obtained by taking wages

Wt, the price of capital good P it , and the stochastic discount factorMt,t+1 as given. Importantly,

in solving its maximization problem, the C-firm takes as given the demand xcf,t of intermediate

good f derived in (6). Specifically, the C-firm producing intermediate good f solves the following
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problem:

V c
f,t = max

{lc,ic,uc}
Et

∞∑
s=t

Mt,sd
c
f,s, s.t. dcf,s = pcf,sy

c
f,s −Wsl

c
f,s − P isϕ(icf,s)k

c
f,s, (13)

where dcf,s is firm f ’s dividend at time s, P is is the price of investment good, ycf,s = xcf,s,

and Mt,s is the time-t SDF for time-s payoffs, obtained from the one-period SDF in (3) as

Mt,s =
∏s−t−1
k=0 Mt+k,t+k+1.

Aggregating across all C-firms we obtain the aggregate market value of the C-sector

V c
t =

Nc∑
f=1

V c
f,t = max

{lc,ic,uc}
Et

∞∑
s=t

Mt,sD
c
s, s.t. Dc

s =
Nc∑
f=1

dcf,s, (14)

where dcf,s is given by (13).

3.2.2 Investment sector

The final investment good is also produced by an infinite number of perfectly competitive in-

vestment good producers that aggregate the intermediate investment goods according to the

following CES technology:10

Y i
t =

 N i∑
f=1

(xif,t)
σi−1

σi


σi
σi−1

. (15)

In (15), xif,t is the input of type f intermediate investment good, N i is the total number of

types of intermediate investment goods, and σi is the elasticity of substitution between any

two intermediate investment goods. Similar to the consumption sector, a lower value of σi

implies higher market power for intermediate investment good producers (see discussions for σc

in subsection 3.2.1). All the final output in I-sector is used for investment (It = Y i
t ). Similar to

the C-sector, the investment good producers’ demand xif,t of intermediate good f is given by:

xif,t =

(
pif,t
P it

)−σi
It, (16)

10A similar argument as in footnote 9 applies to the I-sector. We can think of the final investment good producers
as the intermediate goods producers themselves, using the same CES technology in transforming intermediate
investment goods to the final productive capital.
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where pif is the price for type f intermediate investment good, and the price of final investment

good P it =
[∑N i

f=1(pif,t)
1−σi

] 1
1−σi .

Each intermediate good firm f in the I-sector (I-firm hereafter) produces good f by using

capital, kif,t, and labor, lif,t, according to the following Cobb-Douglas production technology:11

yif,t = AtZ
i
t(u

i
f,tk

i
f,t)

1−α(lif,t)
α, (17)

where At is the same TFP shock affecting the C-sector production function (7), Zit is the sector-

specific factor of productivity for I-firms, and uif,t > 0 is the intensity of capital utilization. We

refer to the sector-specific shock Zit as the investment-specific technology (IST) shock. This

shock affects directly the I-sector and, because it impacts the C-sector through investment in

new capital, it is also referred to as a capital-embodied technological shock.

The IST shock follows a geometric random walk:

lnZit = µZ
i

+ lnZit−1 + εZ
i

t , εZ
i

t ∼ i.i.d. N (0, σZ
i
). (18)

The main focus of our study is the impact of this shock on asset prices.

The evolution of capital in the I-sector is similar to that in the C-sector, described in (10).

Specifically, given the current level of capital kif,t, the investment rate iit, and capital utilization

uif,t, the next period capital kif,t+1 is given by

kif,t+1 = kif,t(1 + iif,t − δ(uif,t)), (19)

where the depreciation rate δ(uif,t) depends on capital utilization according to equation (11).

Similar to C-firms, an I-firm that wants to increase capital by an amount iiki needs to purchase

ϕ(ii)ki units of capital goods at the unit price P it , where the adjustment cost function ϕ(·) is

given by (12).

Similar to C-firms, I-firms make optimal hiring, investment and capital utilization decisions

in order to maximize their market value by taking wages Wt, the price of capital good P it , and

the stochastic discount factor Mt,t+1 as given. In solving its maximization problem, the I-firm

11Our results are qualitatively the same if we use a constant elasticity of substitution (CES) technology between
labor and capital for the production of intermediate investment goods.
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f takes as given the demand xif,t of intermediate good f derived in (16). Specifically, the I-firm

producing good f solves the following problem:

V i
f,t = max

{li,ii,ui}
Et

∞∑
s=t

Mt,sd
i
f,s, s.t. dif,s = pif,sy

i
f,s −Wsl

i
f,s − P isϕ(iif,s)k

i
f,s, (20)

where dif,s is the type f firm’s dividend at time s and yif,s = xif,s.

Aggregating across all I-firms we obtain the aggregate market value of the I-sector

V i
t =

N i∑
f=1

V i
f,t = max

{li,ii,ui}
Et

∞∑
s=t

Mt,sD
i
s, s.t. Di

s =
N i∑
f=1

dif,s, (21)

where dif,s is given by (20).

3.3 Equilibrium

In equilibrium, all markets have to clear. For the C-sector, the market clearing condition is

Ct = Y c
t , where Y c

t is given in (4). For the I-sector, we need to account for the fact that the

final investment good is used for capital investment in both sectors. This implies the following

market clearing condition for the final investment good:

Nc∑
f=1

ϕ(icf,t)k
c
f,t +

N i∑
f=1

ϕ(iif,t)k
i
f,t = Y i

t , (22)

where Y i
t is given in (15).

Since all the monopolistic firms in each sector are affected by the same technological shocks, in

equilibrium they have identical product prices, quantities, investment, labor, capital utilization

choices, and values. This symmetry helps us to construct the following measures of aggregate
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capital, labor and output in the economy:

Kj
t = N j · kjf,t, j = c, i, (23)

Ljt = N j · ljf,t, j = c, i, (24)

Y j
t =

(
N j
) σj
σj−1 · yjf,t = At

((
N j
) 1
σj−1 Zjt

)(
ujtK

j
t

)1−α (
Ljt

)α
, j = c, i, (25)

P jt Y
j
t = N j · pjf,ty

j
f,t, j = c, i. (26)

The equilibrium of the economy is determined by the solution of the households’ problem (2), the

C-firm’s problem (13), and the I-firm’s problem (20). The equilibrium conditions derived from

these problems are given in Appendix A, where we also show that the equilibrium is stationary

after a suitable renormalization of all variables.

3.4 Asset prices

In this section, we describe our approach to study the implications of technology shocks to

equilibrium asset prices. We focus our analysis on two specific quantities of interests for asset

pricing. The first quantity is the market price of risk of technological shocks. This quantity

is the Sharpe ratio of a security whose returns are perfectly correlated with the shock. The

second quantity is the risk premium demanded in equilibrium for holding sectoral or aggregate

portfolios that are exposed to technology shocks.

3.4.1 Market price of risk of technology shocks

The economy we consider features three aggregate shocks, a neutral TFP shock At and two

sector specific shocks, Zct and Zit . Projecting the log SDF process (3) on the space spanned by

these shocks we can write:

mt,t+1 = ln(Mt,t+1) = Etmt,t+1 − γAt+1

εAt+1

σA
− γZct+1

εZ
c

t+1

σZc
− γZit+1

εZ
i

t+1

σZi
, (27)

where εAt+1, εZ
c

t+1 and εZ
i

t+1 are orthogonal to each other. The quantities γAt+1, γZ
c

t+1, and γZ
i

t+1 are

the market prices of risk for, respectively, the TFP shock At, the C-sector specific shock Zct and

the I-sector specific shock Zit . To see this, consider a similar projection of the log return rj,t+1
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of a generic asset j on the space spanned by these shocks, i.e.,

rj,t+1 = Etrj,t+1 + βAj,t+1ε
A
t+1 + βZ

c

j,t+1ε
Zc

t+1 + βZ
i

j,t+1ε
Zi

t+1. (28)

where βx
j,t+1 = Cov(εxt+1, rj,t+1)/(σx)2, x = A,Zc, Zi. Accounting for the Jensen’s inequality

adjustment, the log risk premium on asset j can be written as

Et(rj,t+1 − rf,t+1 + σ2
j /2) = −Cov(mt,t+1, rj,t+1)

= βAj,t+1σ
AγAt+1 + βZ

c

j,t+1σ
ZcγZ

c

t+1 + βZ
i

j,t+1σ
ZiγZ

i

t+1, (29)

where rf,t+1 is the log risk-free rate from t to t + 1, σj is the volatility of asset j’s log returns,

and the second equality follows from (27) and (28) and the orthogonality of the shocks εAt+1,

εZ
c

t+1, and εZ
i

t+1. If an asset j is perfectly correlated with the IST shock Zi, βZ
i

j,t+1 = σj/σ
Zi and

βAj,t+1 = βZ
c

j,t+1 = 0. Hence, from (29) the Sharpe ratio of this asset is given by

Et(rj,t+1 − rf,t+1 + σ2
j /2)

σj
=
βZ

i

j,t+1σ
ZiγZ

i

t+1

βZ
i

j,t+1σ
Zi

= γZ
i

t+1, (30)

proving that the quantity γZ
i

t+1 in the parameterization (27) is the market price of risk for the

IST shock Zit , i.e., the risk premium per unit volatility of the IST shock.

From the SDF equation (27), the market price of risk γZ
i

t+1 is given by

γZ
i

t+1 = −σZi ∂mt,t+1

∂εZ
i

t+1

. (31)

Hence, the market price of risk of IST shock is positive (negative) if a positive IST shock

εZ
i

t+1 > 0 causes a decrease (increase) in the marginal utility of consumption of the representative

household.

Similarly, from the SDF equation (27) we obtain the market prices of risk for TFP shocks,

γA, and for C-sector specific shocks, γZ
c
:

γAt+1 = −σA∂mt,t+1

∂εAt+1

, and γZ
c

t+1 = −σZc ∂mt,t+1

∂εZ
c

t+1

. (32)
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3.4.2 Aggregate and sectoral risk premia

To analyze risk premia associated with IST shocks, we first define the time t+ 1 realized return

of C-firms, Rc,t+1, as the return of an infinitely-lived security whose payoff is the dividend Dc
t ,

defined in (14). Similarly, we define the realized return Ri,t+1 of I-firms. The log return rc,t+1

of C-firms is,

rc,t+1 = ln(Rc,t+1) = ln
(

V c
t+1

V c
t −Dc

t

)
. (33)

From equation (28), the loading of the return of C-firm on the IST shock is given by

βZ
i

c,t+1 =
∂rc,t+1

∂εZ
i

t+1

=
∂ ln(V c

t+1)

∂εZ
i

t+1

. (34)

Using the risk premium definition in (29), we obtain that the risk premium λZ
i

c,t+1 associated to

IST shocks that the market demands for holding a sectoral portfolio of C-firms is given by:

λZ
i

c,t+1 = βZ
i

c,t+1σ
ZiγZ

i

t+1, (35)

where the loading βZ
i

c,t+1 is obtained through (34) and the market price of risk for IST shock

γZ
i

t+1 is given by (31). Similarly, λZ
i

i,t+1 associated to IST shocks that the market demands for

holding a sectoral portfolio of I-firms is given by:

λZ
i

i,t+1 = βZ
i

i,t+1σ
ZiγZ

i

t+1, (36)

where the loading on the IST shock is given by

βZ
i

i,t+1 =
∂ri,t+1

∂εZ
i

t+1

=
∂ ln(V i

t+1)

∂εZ
i

t+1

. (37)

At each time t, the aggregate market value V m
t is the sum of the market values of C- and I-firms,

V m
t = V c

t + V i
t , (38)

where the cum-dividend market values V c
t and V i

t are defined in (14) and (21), respectively.
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Following a similar logic as that used to derive sectoral risk premia λZ
i

c,t+1 and λZ
i

i,t+1, the risk

premium λZ
i

m,t+1 associated to IST shocks that the market demands for holding the aggregate

portfolio of C- and I-firms is given by:

λZ
i

m,t+1 = βZ
i

m,t+1σ
ZiγZ

i

t+1, (39)

where the loading on the IST shock is given by

βZ
i

m,t+1 =
∂rm,t+1

∂εZ
i

t+1

=
∂ ln(V m

t+1)

∂εZ
i

t+1

, (40)

and the aggregate cum dividend market value V m
t+1 is defined in (38).

The betas and risk premia associated with the other two technological shocks (At and Zct )

can be derived in a similar fashion as in equations (34)–(40), by replacing the IST shock εZ
i

t+1

with either the TFP, εAt+1, or the C-sector-specific shock, εZ
c

t+1.

4 Results

To highlight the important role played by capital flexibility and firms’ market power, we analyze

the implication of the model under both fixed (ξ → ∞) and variable (0 < ξ < ∞) capital

utilization , and under both perfectly competitive (σc, σi →∞) and monopolistically competitive

(0 < σc, σi <∞) sectors.

In addition, because of the flexibility of the Epstein-Zin framework, we also explore the role

of the elasticity of intertemporal substitution and contrast it to that of capital utilization and

market power. This allows us to analyze, both qualitatively and quantitatively, the effect on

asset prices of the three main channels of our model: technology (variable capital utilization),

industry structure (market power) and preferences (elasticity of intertemporal substitution).

4.1 Parameters

The model parameters belong to three groups: preference, production, and technology shocks.

We report our parameter choices in Table 1, where values are calibrated to a quarterly frequency.
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Preference parameters. We choose a relative risk aversion coefficient γ = 2 and a time

discount factor β = 0.995. Following Jaimovich and Rebelo (2009) we set the sensitivity of

disutility to working hours to θ = 1.4. The value ψ for the degree of disutility to working hours

is chosen in such a way as to insure that in the deterministic steady state the value L of working

hours is equal to 0.2, i.e., households work for 20% of their time.12 We provide results for three

different values of EIS (1/ρ): low (0.2), medium (0.5), and high (1.2). Note that, given a relative

risk aversion of γ = 2, the medium case (EIS=0.5) corresponds to the case of time-separable

CRRA utility.

Production parameters. The capital adjustment cost parameter is set to φ = 1.2, as in

Papanikolaou (2011). Following Jaimovich and Rebelo (2009), we set the labor share of output

to α = 0.64, and the deterministic steady state depreciation rate in (11) to δ0 = 1.25%. For

the case of fixed capital utilization (ξ →∞), the capital utilizations uct and uit are fixed at 1, so

the depreciation rate (11) is a constant δ0 = 1.25%. For the case of variable capital utilization

(0 < ξ <∞), the curvature parameter of the depreciation in capital utilization is set to ξ = 0.5,

higher than the value of ξ = 0.15 in Jaimovich and Rebelo (2009). Note that a higher value of

ξ implies less flexibility in adjusting capital utilization in equilibrium. The other depreciation

parameter in (11), δ1, is chosen such that the capital utilization in the deterministic steady

state of the general case is also equal to 1. When considering monopolistically competitive firms

(0 < σc, σi <∞), we choose market power parameters σc = σi = 4, which imply a 25% markup

for firms in both sectors. This markup value is lower than the 36% markup value calibrated by

Bilbiie, Ghironi, and Melitz (2012).

Technology shocks parameters. The quarterly growth rate (volatility) is set to 0.25%

(1%) for the TFP shock At, to 0.5% (2%) for the C-sector specific productivity shock Zct , and

to 1% (5%) for the I-sector specific productivity (IST) shock Zit .

Using these parameter values we solve the model numerically through third order perturba-

tions around the stochastic steady state.
12For a representative worker who works for 8 hours per day and 255 days a year, the working time accounts

for roughly 23% of the time in a year. In our calibration, we use a slightly lower value of 20% in order to take
into account other factors affecting working hours such as sick-leaves or unemployment.
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4.2 Macroeconomic quantities

In this section we analyze the responses of macroeconomic quantities of interest (consumption,

labor, capital utilization, and investment rate) and of the relative price of the capital good, to

a positive one standard deviation shock to each of the three technology shocks, At, Zct , and Zit .

We measure the response of a quantity of interest to a shock as the relative deviation from the

steady state value following a positive one standard deviation change in the log of the technology

shock.

Panel A of Table 2 reports responses of macroeconomic quantities to a positive 1% shock to

the TFP At. We consider first the case in which firms are perfectly competitive. Upon a positive

TFP shock, consumption C increases, labor Lc in the C-sector drops while labor Li in the I-

sector increases. The overall effect of positive TFP shock on total labor supply L is positive. As

we discuss in Section 5, under KPR preferences the labor in the two sectors cannot move in the

same direction in response to a technology shock. Variable capital utilization, investment rate in

the I-sector and the price of investment good respond positively to a positive TFP shock. The

investment rate of the C-sector is however sensitive to the level of EIS. For EIS<1 a positive

TFP shock results in a positive response of investment rate in both sectors while for EIS>1 the

response of C-sector investments to TFP shocks is negative. This happens because for lower

level of EIS, the household would like to smooth consumption by consuming more in the near

future and this induces an increase in capital investment in the C-sector. For high levels of EIS

the household is relatively less concerned about consumption smoothing over time. This leads

to lower investment in the C-sector and relatively more investment in the I-sector in order to

take advantage of the increase in productivity implied by the TFP shock. The capital good

price P i increases in response to a positive shock to At because of the increased demand from

the investment sector. The responses are qualitatively the same for cases in which firms have

some degree of monopoly power in their product market.

Panel A of Table 3 reports responses of macroeconomic quantities to the C-sector specific

shock Zct . The results are similar for cases under perfect competition and monopolistic com-

petition. Not surprisingly, consumption is positively affected by a consumption specific shock.

The responses of variable capital utilization are all positive. The capital good price P i increases
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in response to a positive shock to Zct because of the increased demand from the consumption

sector.

Finally, Panel A of Table 4 reports responses of macroeconomic quantities to the IST shock

Zit . The results are qualitatively the same for cases under perfect and monopolistic competition.

Comparing this panel to the corresponding panels in the previous tables reveals the unique nature

of IST shocks. In particular, the panel reveals the important role played by capital utilization

in the dynamics of macroeconomic quantities. For example, under fixed capital utilization, a

positive IST shock leads to a drop in consumption, independent of the level of EIS. The opposite

is true for the case of variable capital utilization. This fact has important implications for asset

pricing quantities as we discuss in the next section. In response to a positive IST shock, labor

in the I-sector increases while labor in the C-sector decreases. Capital utilization increases in

both sectors, while investment rates increase much more in the I-sector than in the C-sector.

Investment responses in the C-sector decline, and can turn negative as EIS increases. This

happens because for low level of EIS the household’s preference for consumption smoothing over

time induces more investment in the C-sector relative to the I-sector; for higher level of EIS

the household is willing to give up consumption in the short-run (i.e., reduce investment in the

C-sector) for more consumption in the future. Consistent with the interpretation that a positive

IST shocks makes the capital good cheaper, the price of the capital good P i reacts negatively

to a shock in Zit , independent of the level of EIS.

4.3 Asset pricing quantities

Following the analysis in Section 3.4, we derive asset pricing quantities of interest from the

response to a positive one standard deviation change to each of the three technology shocks. In

what follows, we discuss the results related to the market price of risk of the three technology

shocks (Subsection 4.3.1) and the risk premia of sectoral and aggregate portfolios (Subsec-

tion 4.3.2).

4.3.1 Market price of risk of technology shocks

As discussed in Section 3.4, the market price of risk for a technology shock is the Sharpe ratio

of an asset that is perfectly correlated with the shock. To construct the market price of risk γx,
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x = A,Zc, Zi, from the solution of our model, we rely on equations (31) and (32), which indicate

that this quantity is the (negative of the) response of the log SDF to a technology shock.

Panel B of Table 2 reports results for the TFP shock At. The market price of risk for

the TFP shock is positive for different values of EIS and under either fixed or variable capital

utilization. The magnitude, however, is higher for large values of EIS and for variable capital

utilization, ranging from 1.45% to 2.99% quarterly under perfect competition (and from 1.46%

to 3.08% under monopolistic competition). For high value of EIS, i.e., preference for early

resolution of uncertainty (ρ < γ), the household dislikes the uncertainty of their future utility.

Because a positive TFP shocks increases both current consumption Ct and future utility Vt+1,

the household’s marginal utility, i.e., the SDF in (3) becomes lower when ρ < γ. Hence the

higher price of risk observed for high EIS. The increase in capital utilization uct induced by the

TFP shocks further magnifies the impact on current consumption and increase the market price

of risk γA relative to the case of fixed capital utilization. Different degree of market power do

not alter these results, as can be seen by comparing the right and left sides of Table 2.

Panel B of Table 3 reports results for the C-sector specific shock Zct . Similar to the TFP

shock, the market price of risk for the Zct shock is positive for different values of EIS, under

either fixed or variable capital utilization, and under either perfect or monopolistic competition.

The magnitude is higher for higher EIS but not very sensitive to variable capital utilization or

degree of competition. It ranges from 3.89% to 4.46% quarterly. These results are not affected

by the degree of market power.

Panel B of Table 4 reports results for the IST shock Zit . In sharp contrast with the previous

two panels, we see that variable capital utilization can change the sign of the market price of risk

γZ
i
. Specifically, for low level of EIS (either 0.2 or 0.5) the market price of risk for the Zi shock is

negative under fixed capital utilization but positive under variable capital utilization. This result

is important because it shows that a purely technological aspect of the production process such

as the intensity of capital utilization, can have qualitatively implications for the compensation of

investment-specific technology risk. The existing literature has primarily focused on the effect

of preferences on the sign of the price of risk, suggesting that only a large value of EIS can

induce a positive price of risk for IST shock. Our result indicates that a positive price of risk for

IST shocks is possible also for low value of EIS if one allows for variable utilization of capital.
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Confirming the conjecture of the existing literature, we find that the price of risk turns positive

for large values of EIS. Importantly, we note that, even for high EIS value, variable capital

utilization amplifies the price of risk γZ
i
. For example, when EIS = 1.2, allowing for variable

capital utilization increases the market price of IST shocks from 2.77% to 3.71% under perfect

competition and from 3.00% to 4.14% under monopolistic competition. These results are not

affected by the degree of market power. In summary, capital utilization and preferences towards

early vs. late resolution of uncertainty have important qualitative implication for the sign of

the price of risk for IST shocks, while the impact of market power is relatively negligible. As we

show in the next section, market power plays instead a crucial role in the determination of the

market risk premium.

4.3.2 Aggregate and sectoral risk premia

We now consider the risk premia associated with the technological shocks for the aggregate

portfolios composed of C-firms, I-firms, and for the market portfolio comprising both sectors.

According to equation (29), the risk premia λx associated to a shock x = A,Zc, Zi are given by

λx = βx · σx · γx, where βx is the factor loading of the asset on shock x, σx is shock x volatility

and and γx the market price of risk of shock x. Given the exogenous shock volatility σx and

the market prices of risk γx obtained in the previous subsection, to compute risk premia λx we

need the beta loadings βx of the portfolios of interest. Following the definition in equation (34),

we construct the beta loading to a technology shock for a C-firm as the response of the firm’s

log market value to a one standard deviation shock. For example, βAc refers to the response of

a C-firm’s log market value to a one standard deviation TFP shock At. We follow similar steps

to construct betas with respect to other technology shocks for all portfolios considered.

Panel B of Table 2 reports results for the TFP shock. The loadings on the TFP shock for

the portfolio of C-firms, I-firms, and the market, are positive, i.e., βAj > 0, j = c, i,m. This fact,

combined with a positive market price of risk γA > 0, leads to a positive risk premia for these

portfolios, i.e., λAj > 0, j = c, i,m. The patterns are qualitatively the same under perfect and

monopolistic competition. The magnitude of the risk premia are however tiny, in the order of

0.04% quarterly.
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Panel B of Table 3 reports results for the C-sector specific shock. The loadings βZ
c

j > 0,

j = c, i,m, which, together with a positive market price of risk γZ
c
> 0, also leads to positive

risk premia λZ
c

j , j = c, i,m. The premia are higher for higher EIS but their magnitude is quite

small, in the order of 0.1% quarterly.

Panel B of Table 4 reports results for the IST shock Zi. We first consider the case of perfect

competition. The loadings on the Zi shock for the portfolio of C-firms, I-firms, and the market,

are negative, i.e., βZ
i

j < 0, j = c, i,m. This implies that the sign of the risk premia λZ
i

j ,

j = c, i,m, is opposite to that of the market price of risk γZ
i

for the IST shock. The results in

Panel B show that under low EIS (0.2 or 0.5) and fixed capital utilization, the risk premia λZ
i

j ,

j = c, i,m, are positive. In contrast, when EIS is high (1.2) or capital utilization is variable, the

risk premia are negative.

Results are qualitatively different under monopolistic competition as illustrated in Panel B

of Table 4. The loading of C-firm portfolios, βZ
i

c , becomes positive when EIS is high (1.2)

but only when capital utilization is flexible. Similarly, the loading of investment firms, βZ
i

i ,

becomes positive under variable capital utilization for all levels of EIS. The loading of market

portfolio, βZ
i

m , is positive when EIS is high (1.2) under both fixed and variable capital utilization.

Combining these loadings with the market price of risk discussed in Section 4.3.1, we observe

that the only case in which loadings and risk premia are positive for all portfolios is when EIS

is high and capital utilization is flexible (last column in Panel B). This result indicates that

monopoly power in the product market can change the sign of the risk premia associated with

IST shocks.

It is important to emphasize that the changes of sign documented in Panel B of Table 4

have a direct qualitative impact on the role of IST shocks in explaining observed levels of the

market risk premium. In fact, while a positive risk premium for IST shocks under fixed capital

utilization and low EIS can help explaining higher level of the equity premium, the negative risk

premium of IST shocks obtained under variable capital utilization and higher EIS in perfectly

competitive markets challenges the ability of the model to match observed level of the risk

premium. Our analysis suggests that variable capital utilization, firms’ market power, and

households’ preference towards early resolution of uncertainty can generate positive risk premia
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for IST shocks and thus improve the ability of the model in matching observed level of the risk

premium.

5 Inspecting the mechanisms

The results in the previous section indicate that the sign of the market price of risk and of the

risk premium associated with IST shocks depend on the degree of flexibility in capital utilization

and on the degree of firms’ market power. In this section, we provide an in depth analysis of

these mechanisms. In the next three subsections we inspect the following three channels through

which the IST shocks affect asset prices: (i) capital flexibility, measured by the degree ξ of capital

utilization; (ii) market power, measured by the monopolistic markups 1/σc and 1/σi; and (iii)

preference towards early or late resolution of uncertainty, measured by the EIS, 1/ρ.

5.1 The effect of flexible capital utilization

To understand the effect of flexible capital utilization on the market price of risk γZ
i

for IST

shocks, we need to understand its effect on the marginal utility of the representative household.

Because the household derives utility from consumption and leisure we separately investigate

the role of variable capital utilization on these two quantities under IST shocks.

When capital utilization is fixed, a positive IST shock increases the marginal productivity of

labor in the I-sector relative to the C-sector. Because the labor market is frictionless, this shock

induces a flow of workers from the C-sector to the I-sector. With fixed capital utilization, from

the market clearing condition (25), a drop in labor causes a drop in consumption in response to

a positive IST shock.

The effect of a positive IST shock on total working hours can be inferred from the equilibrium

conditions of households and firms. Combining the households’ first order conditions for con-

sumption and labor supply (respectively, equations (A.1.2) and (A.1.3) in Appendix A.1) with

the C-firm’s first order condition for labor demand (equation (A.1.6)) and the market clearing

condition for the consumption good (equation (A.1.4)), we obtain that

θψLθ−1
t

1− ψLθt
=

α

Lct

(
1− 1

σc

)
, α, ψ > 0, θ > 1. (41)
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The left hand side of (41) increases in total working hours (Lt = Lct + Lit) and the right hand

side decreases with working hours in the C-sector, Lct . This implies that, under the KPR

preferences specification of our model, in response to a IST shock, the total number of working

hours Lt moves always in the opposite direction as that of the working hours Lct of the C-

sector.13 From the above discussion, under fixed capital utilization, a positive IST shock induces

a drop in consumption and working hours Lct and, by (41) an increase in the total supply of

working hours Lt (see Table 4, Panel A). The drop in consumption, and the increase in total

working hours, increase the marginal utility after a positive IST shock. When EIS ≤ 1/γ this

generates a negative price of risk for IST shocks under fixed capital utilization. This mechanism

is emphasized by Papanikolaou (2011) who also analyzes the role of EIS in determining the sign

of the market price of risk for IST shocks.

As the results in Table 4 illustrate, under variable capital utilization, the above mechanism

can break down. The reason is that variable capital utilization has a direct effect on consump-

tion. To see this, consider again the market clearing condition (25). From Panel A of Table 4

we observe that, in the case of fixed capital utilization, consumption drops upon a positive IST

shock. In contrast, when capital utilization is allowed to respond to the IST shocks, consumption

increases with the IST shocks because of higher level of utilization uct . The increase in consump-

tion counterbalances the effect of a drop in leisure (i.e., an increase in working hours). Under

reasonable parameterization of the cost δ(u) in (11), the increase in consumption outweighs the

drop in leisure and leads to lower marginal utility of consumption after a positive IST shock.

A drop in marginal utility upon a positive IST shock implies a positive market price of risk for

these shocks, as documented in Panel B of Table 4.

Figure 1 confirms the above intuition. The figure shows that the consumption response to a

positive IST shock changes from negative, when capital is relatively inflexible (i.e., large values of

the capital utilization cost parameter ξ) to positive, when capital is relatively flexible (i.e., small
13It is well known that the KPR preferences fail to replicate the aggregate and sectoral comovement of major

macroeconomic aggregates such as output, consumption, investment and hours worked. The reason, as doc-
umented by Cochrane (1994) and Beaudry and Portier (2007), is that, under KPR preferences, the short-run
wealth effect of positive news about future productivity is very strong and induces agents to reduce labor supply
and hence output. This generates the counterfactual prediction that good news about the future cause recession
in the present. Jaimovich and Rebelo (2009) propose a new class of preferences that allows to parameterize the
intensity of the wealth effect and are consistent with balance growth. They show that these preferences can gen-
erate both aggregate and sectoral comovement. In an extension of our model that accommodates the preferences
considered in Jaimovich and Rebelo (2009) we find qualitatively similar results with regards to the market price
of risk and risk premia associated to IST shocks.
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values of ξ). This effect on consumption also translates into a similar pattern for the market

price of risk γZ
i

for IST shocks, as shown in Figure 2. In particular, as capital becomes more

flexible (i.e., as ξ becomes small), the market price of risk changes from negative to positive.

These results hold both for the case of perfectly competitive firms (Panel A in Figures 1 and 2)

and for the case of monopolistically competitive firms (Panel B in Figures 1 and 2).

The effect of flexible capital on the market risk premium λZ
i

m is illustrated in Figure 3.

Panel A shows that, for EIS < 1 and perfectly competitive firms, the risk premium for IST shocks

can change from positive to negative as capital becomes more flexible (it is always negative for

EIS > 1). This finding is a consequence of the fact that (i) βZ
i
< 0 in perfectly competitive

markets, as shown in Panel B of Table 4, and (ii) for EIS < 1 the market price of risk for IST

shocks, γZ
i
, goes from negative to positive as capital becomes more flexible, as shown in Figure

2 (for EIS > 1, γZ
i
> 0 always). Panel B of Figure 3 shows that the effect of flexible capital

on the risk premium can be quite different for monopolistically competitive firms, depending on

both firms’ market power and households’ EIS, as we discuss in the next two subsections.

5.2 The effect of firms’ market power

As reported in Section 4.3.2, the degree of firms’ market power affects qualitatively the risk

premium associated with IST shocks because it directly affects firms’ loadings, βZ
i
, on IST

shocks. In perfectly competitive markets, a positive shock to IST reduces the price P i of the

investment good and induce competing firms to increase investment and production. As a result

of this process, investment and labor costs incurred by firms are higher than the benefit received

from the increased output. This leads to a drop in firm value upon a positive IST shock and a

negative loading on the IST shock, βZ
i
< 0. In perfectly competitive markets, the sign of the

risk premium associated to IST shocks, λZ
i

m = βZ
i
σZ

i
γZ

i
, is therefore opposite to that of the

price of risk γZ
i
.14

The above argument does not hold if firms retain some degree of market power. If firms

have strong market power, i.e., high markups 1/σc and 1/σi, then a positive IST shock can have

14An alternative interpretation for why βZ
i

< 0 in perfectly competitive markets can be obtained from the
neoclassical q-theory of investment. In competitive markets, under constant returns in production and investment,
average q equals marginal q (see Hayashi (1982)). Since the IST shock reduces the price of capital, it reduces
both marginal and average q. A positive IST shock therefore reduces the value of firms because it reduces the

marginal value of installed capital. This leads to negative loadings βZ
i

of firm value on IST shocks.
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a positive impact on firm’s value because, absent competitive forces, firms can internalize the

reduction in investment cost following a positive IST shock and benefit from higher profits. For

sufficiently high level of market power, firm’s loadings on the IST shocks are positive, βZ
i
> 0,

and therefore the sign of the risk premium associated to IST shocks, λZ
i

m = βZ
i
σZ

i
γZ

i
, is the

same as that of the price of risk γZ
i
.

Figure 4 confirms the above intuition. Panel A shows the market risk premium of IST shocks,

λZ
i

m , as a function of market power (σc = σi) under fixed capital utilization (ξ →∞). The figure

shows that when firms have weak market power (high σc and σi), the market risk premia λZ
i

m

indeed have the opposite sign as the market price of risk γZ
i

reported in Panel A of Figure 2.

However, when firms have strong market power (low σc and σi), the risk premium can have the

same sign as the price of risk. For example, for EIS = 1.2, the market risk premium of IST

shocks is positive when firms have strong market power. Panel B shows that the effect of market

power on the market risk premium λZ
i

m associated to IST shocks is qualitatively similar if we

allow for flexible capital utilization. The main difference between panels A and B in Figure 4

concerns the market risk premia for low values of EIS (0.2. and 0.5). The risk premia are

positive under fixed capital utilization (Panel A) and negative under flexible capital utilization

(Panel B). As discussed in the previous section, this is a consequence of the fact that flexible

capital utilization changes the sign of the market price of risk γZ
i

from negative (in Panel A) to

positive (in Panel B). Note also that for low value of EIS, βZ
i

is still negative under moderate

degree of market power. Only under sufficiently high level of market power (i.e., sufficiently

lower value of σc and σi), βZ
i

can be positive. The difference between low and high value of EIS

highlights the importance of the interaction among preference towards early vs. late resolution

of uncertainty, market power, and capital utilization to which we now turn.

5.3 The effect of the elasticity of intertemporal substitution

As discussed in Section 4.3, EIS plays an important role in determining the sign of both the

market price of risk γZ
i

and the risk premium λZ
i

m associated with IST shocks. The effect of

EIS on the market price of risk γZ
i

is relatively intuitive. As pointed out by Papanikolaou

(2011), a high EIS implies that the household is more willing to accept the uneven consumption

profile induced by a technology shock and hence attributes relatively less values to an asset that
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perfectly hedges against these shocks. To understand this argument, it is convenient to refer to

the expression (3) of the SDF for Epstein-Zin preferences with consumption and leisure. The

EIS mechanism operates through preferences and affects the SDF primarily through the future

utility channel, Vt+1. A positive IST shock increases the household’s future utility. From the

last term in equation (3), this implies a lower SDF when EIS is high (i.e., when ρ−γ is negative).

This explains the positive market price of risk under higher value of EIS. The opposite is true

for low EIS.

The above argument, although intuitive, is not complete if one allows for flexible capital

utilization. As shown in Figure 2, when capital is inflexible (high ξ), the market price of risk

for IST shock is negative for low EIS (0.2 and 0.5) and positive for high EIS (1.2), confirming

the above argument. However, when capital is flexible (low ξ), the market price of risk becomes

positive for both low and high values of EIS. This indicates that, the effect of EIS on the price of

risk depends on the degree of capital utilization which can, in part, “undo” some of the effects

of EIS.

The effect of EIS on the risk premium λZ
i

m depends on firms’ competitive environment.

If firms are perfectly competitive, then, as we discussed in the previous subsection, the beta

loadings βZ
i

are negative. Therefore, the sign of the risk premium λZ
i

m is opposite to that of

the market price of risk γZ
i
. Panel A of Figure 5 shows that for perfectly competitive firms the

risk premium is monotonically decreasing in EIS. This happens because, as shown in Panel B

of Table 4, the market price of risk γZ
i

increases significantly as EIS increases and βZ
i
< 0.

If firms have market power the effect of EIS on the risk premium λZ
i

m is significantly different

from the case of perfect competition. As Panel B of Figure 5 shows, the risk premium is U-shaped

in EIS if firms have monopoly power. For lower EIS, the λZ
i

m > 0 for fixed capital (γZ
i
< 0 and

βZ
i
< 0), while λZ

i

m < 0 for flexible capital (γZ
i
> 0 and βZ

i
< 0). In contrast, for higher EIS,

λZ
i

m > 0 for both flexible and inflexible capital (γZ
i
> 0 and βZ

i
> 0).

To understand the above results, it helps to first discuss how market power and EIS affect

firm values. Market power allows firms to charge a markup for their products and therefore

it increases firms’ cash flows upon a positive IST shock (“cash flow effect”). On the other

hand, EIS affects firm values through the household’s marginal utility. A positive IST shock

increases future consumption and therefore decreases future marginal utility. The level of EIS
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affects the magnitude of the drop in future marginal utility following an IST shock and thus the

magnitude of the discount factor used in evaluating future cash flows (“discount rate effect”).

Households with low EIS dislike the steep consumption growth profile resulting from a positive

IST shock. Therefore, they discount future cash flows more heavily relative to high EIS house-

holds.15 Putting these two effects together, for high EIS, the cash flow effect dominates the

relatively weaker discount rate effect, implying that firm values respond positively to a positive

IST shock (βZ
i
> 0). This effect, combined with a positive market price of risk γZ

i
> 0 generates

a positive market risk premium λZ
i

m > 0 when EIS is high. For low EIS, the strong (negative)

discount rate effect dominates the positive cash flow effect upon a positive IST shock, implying

that firm values respond negatively to a positive IST shock (βZ
i
< 0). This effect explains why,

when EIS is low, the market risk premium λZ
i

m has a sign opposite to that of the market price

of risk γZ
i
, as shown in Panel B of Figure 5.

Note that, in the figure, market power can change the sign of the market risk premium only

under high EIS. When EIS is high, according to the impulse response, the value of aggregate

output (labor income plus dividends) increases under a positive IST shock. High market power

increases the capital share of output and allows firms to cover the increased cost in investment.

As a consequence, firm value benefits from a positive IST shock (βZ
i
> 0). In contrast, when

EIS is low, the value of aggregate output drops following a positive IST shock. In this case, high

market power is not sufficient to cover the increased cost in investment (βZ
i
< 0).16

The above argument can also help us understand the patterns reported in Panel B of Figure 3.

The figure shows that when capital is flexible, the market risk premium for monopolistic firms

depends crucially on the level of EIS. Following the above argument, for high EIS, the cash

flow effect dominates the discount rate effect, leading to positive IST betas, βZ
i
> 0. Given a

positive price of risk γZ
i
> 0, this leads to a positive risk premium λZ

i

m > 0. Similarly, for low

value of EIS, a negative beta, βZ
i
< 0, and a positive price of risk γZ

i
> 0 lead to negative risk

premia λZ
i

m < 0, as shown in Panel B of Figure 3 for flexible capital (low ξ). Finally, the above
15To see this, let us consider a special case in which consumption growth is deterministic after a positive IST

shock at time t and labor is fixed. In this case, the SDF expression in (3) simplifies to Mt,t+1 = β(Ct+1/Ct)
−ρ.

The corresponding multi-period discount factor is Mt,s = βs−t(Cs/Ct)
−ρ, where s ≥ t + 1 and Cs/Ct > 1.

Therefore, low EIS (i.e., high ρ) households discount future consumption more heavily than high EIS households
after a positive IST shock.

16To see this, consider the extreme case where the capital share of output is one (labor is free) and hence the
firm value is the value of total output. Even in this case, the discount rate effect induced by low EIS causes the
firm value to drop upon a positive IST shock.
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argument also explains why we need both high EIS and market power to generate positive risk

premia when capital is flexible, as illustrated in Panel B of Figure 4.

6 Conclusion

We provide a new perspective to understand the implications of IST shocks for asset pricing.

We argue that capital utilization and firms’ market power have a qualitatively important effect

on the market price of risk and risk premia of IST shocks. Under fixed capital utilization, the

current consumption drops upon a positive IST shock as workers in the consumption sector

switch to the investment sector. Variable capital utilization allows agents to expand current

consumption by more intensely utilizing the existing capital. Market power shields firms from

competition and therefore allows positive IST shock to positively impact firm’s value.

We identify three main mechanisms that drive the connection between IST shocks and asset

prices. First, variable capital utilization mainly affects the sign of the market price of risk

for IST shock by affecting current consumption. Second, market power affects the sign of risk

premium associated with IST shock by reducing the negative impact of competitive pressures

on firms’s profits. Finally, the elasticity of intertemporal substitution affects both the market

price of risk and risk premium of IST shocks through the stochastic discount factor channel.

While the sign of the market price of risk depends on capital flexibility and EIS, the sign of

the risk premium is determined jointly by market power, capital flexibility, and EIS. The new

perspective we provide in this paper could potentially benefit further explorations of time series

and cross sectional properties of asset returns.
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A Equilibrium conditions

A.1 Original problem

Household’s problem is given by (2), which we reproduce here:

Vt = max
{Cs,Ls}∞s=t

Ut, s.t. P csCs = WsLs +Dc
s +Di

s, s ≥ t,

and the corresponding Lagrangian is:

LHHt = Ut + λt(WtLt +Dc
t +Di

t − P ct Ct). (A.1.1)

The first order conditions with respect to consumption and labor supply are given by,

FOC 1 C: 0 = λtP
c
t − (1− β)C−ρt (1− ψLθt )1−ρU

ρ
t . (A.1.2)

FOC 2 L: 0 = λtWt − (1− β)C1−ρ
t (1− ψLθt )−ρU

ρ
t θψL

θ−1
t . (A.1.3)

FOC 3 λ: 0 = Ct −At((N c)
1

σc−1Zct )(u
c
tK

c
t )

1−α(Lct)
α. (A.1.4)

Consumption firm’s problem is given by (13), which we reproduce here:

V c
f,t = max

{lc,ic,uc}
Et

∞∑
s=t

Mt,sd
c
f,s, s.t. dcf,s = pcf,sy

c
f,s −Wsl

c
f,s − P isϕ(icf,s)k

c
f,s,

and the corresponding Lagrangian is:

LCf,t=Et
∞∑
s=t

Mt,s

(
pcf,sy

c
f,s −Wsl

c
f,s −P isϕ(icf,s)k

c
f,s +ηcs(k

c
f,s(1 +icf,s −δ(ucf,s))−kcf,s+1)

)
.(A.1.5)

Note that pcf,t = (ycf,t/Y
c
t )−1/σcP ct according to equation (6) and ycf,t is given by equation (7).

The firm takes the aggregate prices and quantities as given and makes optimal decisions on

hiring, investment, and capital utilization intensity. The corresponding first order conditions
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are,

FOC 4 lc: 0 =
(

1− 1
σc

)
αpcf,ty

c
f,t

lcf,t
−Wt. (A.1.6)

FOC 5 ic: 0 = ηct − P itϕ
′
(icf,t). (A.1.7)

FOC 6 uc: 0 =
(

1− 1
σc

) (1− α)pcf,ty
c
f,t

ucf,t
− ηct δ

′
(ucf,t)k

c
f,t. (A.1.8)

FOC 7 kc: 0 = EtMt,t+1

{(
1− 1

σc

) (1− α)pcf,t+1y
c
f,t+1

kcf,t+1

− P it+1ϕ(icf,t+1)

+ ηct+1(1 + icf,t+1 − δ(ucf,t+1))
}
− ηct . (A.1.9)

FOC 8 ηc: 0 = kcf,t(1 + icf,t − δ(ucf,t))− kcf,t+1. (A.1.10)

Investment firm’s problem is given by (20), which we also reproduce here:

V i
f,t = max

{li,ii,ui}
Et

∞∑
s=t

Mt,sd
i
f,s, s.t. dif,s = pif,sy

i
f,s −Wsl

i
f,s − P isϕ(iif,s)k

i
f,s,

and the corresponding Lagrangian is:

LIf,t=Et
∞∑
s=t

Mt,s

(
pif,sy

i
f,s−Wsl

i
f,s−P isϕ(iif,s)k

i
f,s +ηis(k

i
f,s(1 +iif,s−δ(uif,s))−kif,s+1)

)
.(A.1.11)

Note that pif,t = (yif,t/Y
i
t )−1/σiP it according to equation (16), and yif,t is given by equation (17).

The I-firm also takes the aggregate prices and quantities as given and makes optimal decisions

on hiring, investment, and capital utilization intensity. The corresponding first order conditions
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are,

FOC 9 li: 0 =
(

1− 1
σi

)
αpif,ty

i
f,t

lif,t
−Wt. (A.1.12)

FOC 10 ii: 0 = ηit − P itϕ
′
(iif,t). (A.1.13)

FOC 11 ui: 0 =
(

1− 1
σi

) (1− α)pif,ty
i
f,t

uif,t
− ηitδ

′
(uif,t)k

i
f,t. (A.1.14)

FOC 12 ki: 0 = EtMt,t+1

{(
1− 1

σi

) (1− α)pif,t+1y
i
f,t+1

kif,t+1

− P it+1ϕ(iif,t+1)

+ ηit+1(1 + iif,t+1 − δ(uif,t+1))
}
− ηit. (A.1.15)

FOC 13 ηi: 0 = kif,t(1 + iif,t − δ(uif,t))− kif,t+1. (A.1.16)

There are three market clearing conditions. For the final consumption good, it is given by

(A.1.4). The market clearing conditions for labor and the final capital good are:

MCC 14 L: 0 = Lt −
Nc∑
f=1

lcf,t +
N i∑
f=1

lif,t. (A.1.17)

MCC 15 I: 0 =
Nc∑
f=1

ϕ(ict)k
c
f,t +

Nc∑
f=1

ϕ(iit)k
i
f,t −At((N i)

1
σi−1Zit)(u

i
tK

i
t)

1−α(Lit)
α. (A.1.18)

The above equations can be rewritten in terms of aggregate quantities by using the symmetry

among firms in each sector (see equations (23) to (26)). In turn, we have total 17 equations

(the above 15 plus the equation for SDF in (3) and the definition of recursive utility in (1)) to

solve 17 endogenous variables (10 decision variables: C,L,Lc,i, ic,i, uc,i,Kc,i; 3 prices: M,W, P i

(note that we choose the final consumption good as the numeraire, so P c = 1); 3 Lagrangian

multipliers: λ, ηc,i; and the utility U .). All other quantities can be derived from these variables.

For example, the market values for C- and I-firms are determined by (14) and (21), respectively.

A.2 Detrended problem

The original problem is non-stationary due to technology growth over time. To find the steady

state of the economy, we first need to detrend the problem.
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Assuming there is no growth in the total labor supply. From the market clearing condition

for the final capital good in (A.1.18), the balanced growth rate of capital in the two sectors is

the same, which is given by

gKc = gKi = (gAgZi)
1
α , where gA = eµ

A
, gZi = eµ

Zi

.

Similarly, the market clearing condition for the final consumption good in (A.1.4) gives the

growth rate of consumption:

gC = gAgZc(gKc)1−α, where gZc = eµ
Zc

.

Since consumption equals the sum of wage and dividends from the two firms, the growth rates

of wage and investment cost have to be the same as that of consumption for the balanced growth

to exist. In addition, the utility function is written as the certainty equivalent in consumption,

so it has the same growth rate as consumption. Therefore, we have,

gW = gC ; gP i = gC/gKc , and gU = gC .

The original problem then can be written in terms of these detrended variables (e.g., the

detrended consumption Ĉt = Ct/g
t
C). The deterministic steady state of the detrended problem

can be easily solved.

A.3 Rescaled problem

Even though the detrended problem in the previous section is mean stationary, it is not covari-

ance stationary. This is due to the fact that the technological shocks are modeled as geometric

random walks and therefore their effect is permanent. To solve the model, we need rescale our

original problem such that the rescaled problem is stationary in both mean and covariance.

To achieve stationarity, we make the following choices of rescaling factors for different vari-

ables:

• At((N c)
1

σc−1Zct )(K
c
t )

1−α: divide Ct, Ut,Wt by this factor;
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• At((N c)
1

σc−1Zct )(K
c
t )
−α: divide P it by this factor;

• Kc
t : divide Ki

t by this factor.

After rescaling, the original problem (in particular the equilibrium conditions as specified

in Section A.1) can be rewritten in stationary variables which have finite mean and covariance.

The equilibrium for the original problem is easy to recover from the rescaled equilibrium.
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Table 1: Calibrated parameter values

This table reports the parameter values used in the numerical solution of the model. We consider different
values of EIS (L for low, M for medium, and H for high) relative to the inverse of the coefficient of risk
aversion. Note that the medium EIS equals the inverse of risk aversion, which corresponds to CRRA
utility. This in turn requires different values for two parameters in order to preserve the deterministic
steady state. For the fixed capital utilization case, the capital utilization is fixed at one for firms in both
sectors. The market power of firms is measured by the CES σc and σi, with smaller value implying more
market power. All other parameters are the same across different specifications of the model.

Group Description Symbol Value

Preference

Time discount rate β 0.995
Relative risk aversion γ 2
EIS 1/ρ 0.2(L); 0.5(M); 1.2(H)
Degree of labor disutility θ 1.4
Sensitivity of labor disutility ψ 3.25(L); 3.52(M); 3.87(H)

Production

Labor share of output α 0.64
Degree of capital adjustment cost φ 1.2
Depreciation rate constant δ0 0.0125
Depreciation rate slope δ1 0.099(L); 0.052(M); 0.035(H)
Elasticity of marginal depreciation ξ 0.5
Constant elasticity of substitution for C-sector σc 4 (monopolistic); 1012 (competitive)
Constant elasticity of substitution for I-sector σi 4 (monopolistic); 1012 (competitive)

Shocks

Growth rate of A-shock µA 0.0025
Standard deviation of A-shock σA 0.01
Growth rate of Zc-shock µZ

c
0.005

Standard deviation of Zc-shock σZ
c

0.02
Growth rate of Zi-shock µZ

i
0.01

Standard deviation of Zi-shock σZ
i

0.05
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Table 2: Macroeconomic quantities and asset prices: TFP shocks (At)

This table reports the responses of macro quantities and capital good price (relative deviations from the
steady states, i.e., deviations divided by the steady state values) under positive one standard deviation
shock to the TFP (i.e., a σA = 1% increase in ln(A)). The asset pricing moments are calculated based
on the responses of SDF and firms’ market values under the same shock. For example, the price of risk
γA for the A-shock is the negative of the relative deviation of SDF (see equation (32) when ∆εA = σA).
The betas are the relative deviations of market values divided by the standard deviation σA (similar to
equation (34) when ∆εA = σA). The risk premium is the product of price of risk, beta, and standard
deviation of the shock (similar to equation (35)). The cases of perfect competition correspond to models
under σc = σi =∞ (use 1012 in numerical solutions), and the monopolistic competition cases correspond
to models under σc = σi = 4. For variable capital utilization, ξ = 0.5. All the reported numbers except
betas are in percentage.

Competition: Perfect Competition Monopolistic Competition

EIS: EIS=0.2 EIS=0.5 EIS=1.2 EIS=0.2 EIS=0.5 EIS=1.2

Capital Utilization: Fixed Variable Fixed Variable Fixed Variable Fixed Variable Fixed Variable Fixed Variable

Panel A: Macroeconomic quantities and capital good price

Consumption C 0.993 1.219 0.960 1.196 0.890 1.098 0.998 1.259 0.978 1.246 0.938 1.191

Labor Lc -0.018 -0.105 -0.068 -0.129 -0.174 -0.224 -0.011 -0.067 -0.042 -0.084 -0.102 -0.139
Li 0.273 1.648 0.490 0.961 0.708 0.904 0.253 1.618 0.467 0.974 0.671 0.910
L 0.016 0.097 0.057 0.110 0.131 0.170 0.012 0.075 0.044 0.090 0.100 0.138

Capital utilization uc —— 0.938 —— 0.948 —— 0.872 —— 0.975 —— 0.993 —— 0.956
ui —— 2.026 —— 1.846 —— 1.833 —— 2.002 —— 1.839 —— 1.823

Investment rate ic 1.182 1.804 0.114 0.720 -2.362 -0.800 1.337 2.480 0.593 1.432 -1.092 0.294
ii 6.149 21.533 7.978 13.089 9.737 11.132 6.167 22.911 8.333 14.084 10.400 12.296

Capital good price P i 0.397 0.340 0.426 0.382 0.461 0.384 0.391 0.342 0.414 0.374 0.435 0.374

Panel B: Asset pricing quantities

Price of risk γA 1.447 1.980 1.839 2.201 2.723 2.988 1.461 2.100 1.896 2.328 2.773 3.079

Beta βAc 0.454 0.375 0.453 0.399 0.467 0.390 0.463 0.636 0.583 0.800 1.000 1.192
βAi 0.408 0.259 0.410 0.336 0.438 0.357 0.488 1.408 0.692 1.187 1.064 1.310
βAm 0.448 0.362 0.443 0.385 0.457 0.378 0.466 0.699 0.601 0.861 1.016 1.221

Risk premium λAc 0.007 0.007 0.008 0.009 0.013 0.012 0.007 0.013 0.011 0.019 0.028 0.037
λAi 0.006 0.005 0.008 0.007 0.012 0.011 0.007 0.030 0.013 0.028 0.030 0.040
λAm 0.006 0.007 0.008 0.008 0.012 0.011 0.007 0.015 0.011 0.020 0.028 0.038
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Table 3: Macroeconomic quantities and asset prices: C-sector specific shock (Zct )

This table reports the responses of macro quantities and capital good price (relative deviations from the
steady states, i.e., deviations divided by the steady state values) under positive one standard deviation
shock to the C-sector specific shocks (i.e., a σZc

= 2% increase in ln(Zc)). The asset pricing moments
are calculated based on the responses of SDF and firms’ market values under the same shock. For
example, the price of risk γZc

for the Zc-shock is the negative of the relative deviation of SDF (see
equation (32) when ∆εZc

= σZc

). The betas are the relative deviations of market values divided by
the standard deviation σZc

(similar to equation (34) when ∆εZc

= σZc

). The risk premium is the
product of price of risk, beta, and standard deviation of the shock (similar to equation (35)). The cases
of perfect competition correspond to models under σc = σi = ∞ (use 1012 in numerical solutions), and
the monopolistic competition cases correspond to models under σc = σi = 4. All the reported numbers
except betas are in percentage.

Competition: Perfect Competition Monopolistic Competition

EIS: EIS=0.2 EIS=0.5 EIS=1.2 EIS=0.2 EIS=0.5 EIS=1.2

Capital Utilization: Fixed Variable Fixed Variable Fixed Variable Fixed Variable Fixed Variable Fixed Variable

Panel A: Macroeconomic quantities and capital good price

Consumption C 2.024 2.093 2.023 2.066 2.007 2.030 2.023 2.091 2.022 2.067 2.013 2.045

Labor Lc 0.006 0.006 0.005 0.015 -0.015 0.000 0.004 0.000 0.003 0.006 -0.010 -0.004
Li -0.086 -0.068 -0.027 -0.089 0.073 0.025 -0.084 0.019 -0.022 -0.049 0.075 0.048
L -0.005 -0.002 -0.003 -0.008 0.015 0.009 -0.004 0.002 -0.002 -0.003 0.012 0.010

Capital utilization uc —— 0.346 —— 0.286 —— 0.239 —— 0.343 —— 0.295 —— 0.264
ui —— 0.299 —— 0.424 —— 0.486 —— 0.343 —— 0.434 —— 0.488

Investment rate ic 0.663 1.935 0.612 1.141 0.140 0.552 0.648 1.974 0.639 1.234 0.308 0.738
ii -0.463 -3.338 0.242 1.451 0.801 2.225 -0.563 -3.050 0.214 1.604 0.963 2.515

Capital good price P i 2.282 2.095 2.236 2.243 2.197 2.251 2.288 2.120 2.244 2.244 2.209 2.253

Panel B: Asset pricing quantities

Price of risk γZ
c

3.910 3.885 3.911 3.949 4.306 4.454 3.908 3.886 3.910 3.941 4.311 4.460

Beta βZ
c

c 1.130 1.052 1.114 1.123 1.099 1.128 1.104 0.997 1.054 1.039 1.018 1.042
βZ

c

i 1.070 0.888 1.052 1.046 1.034 1.078 1.007 0.742 0.986 0.940 1.003 1.025
βZ

c

m 1.123 1.034 1.100 1.107 1.077 1.111 1.095 0.976 1.042 1.024 1.014 1.038

Risk premium λZ
c

c 0.088 0.082 0.087 0.089 0.095 0.101 0.086 0.077 0.082 0.082 0.088 0.093
λZ

c

i 0.084 0.069 0.082 0.083 0.089 0.096 0.079 0.058 0.077 0.074 0.087 0.091
λZ

c

m 0.088 0.080 0.086 0.087 0.093 0.099 0.086 0.076 0.082 0.081 0.087 0.093
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Table 4: Macroeconomic quantities and asset prices: I-sector specific shock (Zit)

This table reports the responses of macro quantities and capital good price (relative deviations from the
steady states, i.e., deviations divided by the steady state values) under positive one standard deviation
shock to the I-sector specific shocks (i.e., a σZi

= 5% increase in ln(Zi)). The asset pricing moments are
calculated based on the responses of SDF and firms’ market values under the same shock. For example,
the price of risk γZi

for the Zi-shock is the negative of the relative deviation of SDF (see equation (31)
when ∆εZi

= σZi

). The betas are the relative deviations of market values divided by the standard
deviation σZi

(see equation (34) when ∆εZi

= σZi

). The risk premium is the product of price of risk,
beta, and standard deviation of the shock (see equation (35)). The cases of perfect competition correspond
to models under σc = σi =∞ (use 1012 in numerical solutions), and the monopolistic competition cases
correspond to models under σc = σi = 4. All the reported numbers except betas are in percentage.

Competition: Perfect Competition Monopolistic Competition

EIS: EIS=0.2 EIS=0.5 EIS=1.2 EIS=0.2 EIS=0.5 EIS=1.2

Capital Utilization: Fixed Variable Fixed Variable Fixed Variable Fixed Variable Fixed Variable Fixed Variable

Panel A: Macroeconomic quantities and capital good price

Consumption C -0.073 0.786 -0.229 0.775 -0.523 0.426 -0.045 0.996 -0.140 1.016 -0.302 0.832

Labor Lc -0.113 -0.548 -0.357 -0.701 -0.811 -1.116 -0.071 -0.336 -0.219 -0.443 -0.470 -0.679
Li 1.690 8.469 2.547 5.131 3.257 4.415 1.579 7.986 2.414 5.041 3.061 4.354
L 0.101 0.492 0.293 0.580 0.595 0.816 0.076 0.366 0.225 0.458 0.452 0.652

Capital utilization uc —— 3.378 —— 3.657 —— 3.453 —— 3.576 —— 3.852 —— 3.782
ui —— 9.048 —— 7.652 —— 7.343 —— 8.759 —— 7.577 —— 7.286

Investment rate ic 3.401 1.680 -1.760 -0.727 -12.365 -6.110 4.232 4.896 0.529 2.480 -6.657 -1.332
ii 32.614 121.625 39.180 60.343 45.937 47.488 33.078 127.476 41.067 64.762 48.642 52.224

Capital good price P i -3.979 -3.570 -3.667 -3.904 -3.347 -3.928 -4.028 -3.650 -3.755 -3.947 -3.519 -3.980

Panel B: Asset pricing quantities

Price of risk γZ
i

-2.735 0.123 -0.702 1.004 2.765 3.706 -2.648 0.724 -0.408 1.675 3.002 4.144

Beta βZ
i

c -0.723 -0.687 -0.701 -0.767 -0.665 -0.784 -0.674 -0.346 -0.482 -0.245 -0.016 0.139
βZ

i

i -0.677 -0.546 -0.647 -0.710 -0.593 -0.738 -0.506 0.799 -0.274 0.286 0.069 0.279
βZ

i

m -0.717 -0.671 -0.689 -0.755 -0.640 -0.768 -0.659 -0.252 -0.448 -0.162 0.005 0.173

Risk premium λZ
i

c 0.099 -0.004 0.025 -0.039 -0.092 -0.145 0.089 -0.013 0.010 -0.021 -0.002 0.029
λZ

i

i 0.093 -0.003 0.023 -0.036 -0.082 -0.137 0.067 0.029 0.006 0.024 0.010 0.058
λZ

i

m 0.098 -0.004 0.024 -0.038 -0.088 -0.142 0.087 -0.009 0.009 -0.014 0.001 0.036
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Figure 1: Capital flexibility and consumption responses to IST shocks
The figure plots the consumption responses to one standard deviation shock to the investment-
specific technology under different degree of capital inflexibility (ξ). Higher value of ξ implies
less flexibility to adjust the firm’s capital utilization intensity. The values are obtained using
the same method as in Table 4.
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Figure 2: Capital flexibility and market price of risk for IST shocks
The figure plots the market price of risk (γZ

i
) for IST shocks under different degree of capital

inflexibility (ξ). Higher value of ξ implies less flexibility to adjust the firm’s capital utilization
intensity. The values are obtained using the same method as in Table 4.
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Figure 3: Capital flexibility and market risk premium of IST shocks
The figure plots the market risk premium (λZ

i

m ) of IST shocks under different degree of capital
inflexibility (ξ). Higher value of ξ implies less flexibility to adjust the firm’s capital utilization
intensity. The values are obtained using the same method as in Table 4.
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Figure 4: Market power and market risk premium of IST shocks
The figure plots the market risk premium (λZ

i

m ) of IST shocks under different degree of mo-
nopolistic power (σc and σi). Lower value of σc(σi) implies stronger monopolistic power in the
product market. The values are obtained using the same method as in Table 4.
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Figure 5: EIS and market risk premium of IST shocks
The figure plots the market risk premium (λZ

i

m ) of IST shocks under different values of elasticity
of intertemporal substitution. The values are obtained using the same method as in Table 4.
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