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Identifying the Taylor rule

Long-term goal
Integrate models of bond pricing and monetary policy

Open question
Can we identify the monetary policy parameter(s)?
Can we distinguish systematic policy from shocks to it?
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Identifying the Taylor rule

Common views
Macro: not identified
Finance: can’t extract policy component from affine model

What we do
Describe conditions for identification
Revisit earlier work on dynamic rational expectations models
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Outline

Two examples of the problem

Rational expectations solutions and identification

More complex models

What if you don’t see the state?
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Setup

State

xt+1 = Axt +Cwt+1

Shocks

sit = d>i xt

Identification issue: we observe state x , but not shock si
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Cochrane’s example

Model

it = r +Etπt+1 (Fisher equation)

it = r + τπt + st (Taylor rule)

Expectational difference equation

Etπt+1 = τπt + st

Solution: πt = b>xt with b> =−d>(τI−A)−1

Identification problem: any τ works for some d

b>A = τb>+d>
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Affine example

Model

m$
t+1 = −δ

>xt −λ
>

λ/2+λ
>wt+1 ((log) Pricing kernel)

it = − logEt exp(m$
t+1) = δ

>xt (Interest rate)

Expectational difference equation

Etπt+1 = τπt + st

Is interest rate equation a Taylor rule or the Fisher equation?

δ = τb>+d> or δ = b>A
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Questions

Would an extra shock help?

it = Etπt+1 + s1t (Fisher equation)

it = τπt + s2t (Taylor rule)

If shocks are independent, can use s1t as an instrument

Would long rates help?
May span state, but we see state anyway
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A representative-agent model

Equations

it = − logEt exp(mt+1−πt+1) (Euler/Fisher equation)

mt = −ρ−αgt ((log) Pricing kernel)

gt = g+ s1t (Consumption growth)

it = τπt + s2t (Taylor rule)

Guess it = a>xt , πt = b>xt

Solution: b> = (αd>1 −d>2 )(τI−A)−1, a> = τb>+d>2

Estimate a and b from OLS of it and πt on xt

We have n knowns a and n+1 unknowns (τ,d2)

One exclusion restriction is sufficient to identify τ e.g.,
independence of shocks
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An exponential-affine model

Equations

it = − logEt exp(mt+1−πt+1) (Euler/Fisher equation)

mt+1 = −ρ− s1t +λ
>wt+1 ((log) Pricing kernel)

it = τπt + s2t (Taylor rule)

Guess it = a>xt , πt = b>xt

Solution: b> = (δ>−d>)(τI−A)−1, a> = τb>+d>

Estimate a and b from OLS of it and πt on xt

We have n knowns a and n+1 unknowns (τ,d)

One exclusion restriction is sufficient to identify τ, e.g., d2i = 0.
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Observations

OLS of it on πt does not recover τ

One restriction on MP shock suffices to identify the Taylor rule

It does not matter whether they are shocks in the Euler equation
or not

This success reflects what Hansen and Sargent call the hallmark
of rational expectations models: that cross-equation restrictions
connect the parameters in one equation to those in the others

What about more elaborate models?
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A Phillips curve

Equations

it = − logEt exp(mt+1−πt+1) (Euler equation)

mt = −ρ−αgt (Pricing kernel)

πt = βEt πt+1 +κgt + s1t (Phillips curve)

it = τ1πt + τ2gt + s2t (Taylor rule)

Guess it = a>xt , πt = b>xt and gt = c>xt

Solution:

b> = βAb>+κc>+d>1
a> = τ1b>+ τ2c>+d>2

Estimate a, b and c from OLS of it , πt and gt on xt

In the 2nd eq-n we have n knowns a and n+2 unknowns (τ1,τ2,d2)

Two exclusion restrictions is sufficient to identify τ1 (and τ2)
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Unobserved state

Until now we have assumed observed state
This assumption allowed us to run the OLS critical for identification

What changes when the state has to be estimated?
Nothing

Have to discuss identification and estimation of the state
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Identifying the state

The state can be “rotated”, x̂t = Txt , without affecting implications
for observed variables

The new state is:

x̂t+1 = TAT−1x̂t +TCwt+1 = Âx̂t + Ĉwt+1.

The interest rate is it = r +a>T−1x̂t = r + â>x̂t

Similarly, b̂> = b>T−1

The Taylor rule implies

â> = τb̂>+ d̂>2 ,

Identification of τ is exactly the same as before

Have to impose restrictions to fix a state: C = I and
lower-triangular A is a common choice
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Transformation-invariant restrictions

The impact on restrictions: d>2 e = 0 translates into d̂>2 ê = 0 with
ê = Te.

If T is unknown, can we deduce ê?

Ex. 1: The TR shock is uncorrelated with the other (Euler
equation) shock – standard in the New-Keynesian literature

d̂>2 E(x̂ x̂>)d̂1 = (d>2 T−1)(TVxT>)(d>1 T−1)> = d>2 Vxd1

Ex. 2: In the optimal monetary policy setting all variables are
affected by s1t , thus s2t = ks1t

The implied restriction is d>2 − kd>1 = 0
In terms of the transformed state:

d̂>2 − kd̂>1 = d>2 T−1− kd>1 T−1 = (d>2 − kd>1 )T−1 = 0
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Estimating the state

Introduce a measurement equation:

yt = Gxt +Hvt .

The Kalman filter, xt|t = E(xt |y t), recovers all states when (A,G)
is observable:

rank


G

GA
...

GAn−1

= n

As a result, it = a>xt|t +a>εt , εt ⊥ y t

All the earlier logic applies still by replacing xt with xt|t
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Term Structure and Survey Forecasts

Financial and survey data are rich sources of information about
the unobserved state

In our models forward rates f h
t and forecasts Ft(·) for horizon h

are

f h
t = a>Ahxt + vt

Ft(πt+h) = Et(πt+h)+ vt = b>Ahxt + vt

Ft(gt+h) = Et(gt+h)+ vt = c>Ahxt + vt

Usually xt is low-dimensional and dim(yt) is large. In these
cases, researchers attach measurement errors to all observables
yt and use the Kalman filter to estimate the state.
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Conclusion

Brute-force identification of the Taylor rule is impossible

Rational expectations framework brings information from the
whole system to bear on the TR coefficients

We offer a constructive approach towards identification

In general, one needs exclusion restrictions on MP shocks to
identify TR; typical models impose more than what’s required
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