## How Sticky Wages In Existing Jobs Can Affect Hiring

Mark Bils
University of Rochester
NBER

Yongsung Chang
University of Rochester
Yonsei University

Sun-Bin Kim Yonsei University

### 1 Introduction

- Wages arguably sticky-but less so for new matches (Pissarides, 2009)
- Develop a Diamond-Mortensen-Pissarides model with wages flexible for new hires, but sticky within
- Depart from sticky-wage literature by firms/workers bargaining over effort/output
  - Not in wage: effort for hourly, hours or effort for salaried
  - Renders effective wage partly flexible

- In M-P model wage stickiness in existing jobs doesn't matter—Doesn't hold in our model
  - Wage stays high after negative shock; ask more of workers
  - Reduces payoff to hiring–G.E. effect
- Can get wide difference in effort by vintage, impact short-lived
- If constrain workers to have same effort/pace, impact much larger
  - Get considerable wage inertia/unemployment volatility

- Difficult to measure cyclicality of effort
- Schor (1987) finds modestly procyclical for 131,500 **piece-rate** workers in U.K. for 1970 to 1986.
- Anger (2011) unpaid overtime (extra) hours highly countercyclical for German workers for 1984 to 2004
- Lazear, Shaw, and Stanton (2013) examine productivity of 20,000 workers at services company for June 2006 to May 2010: increase in local unemployment rate of 5 percentage points increases productivity of 3.75%

- Our model consistent with productivity/wage response in great recession
  - 2007 to 2009, 10% decline in hours compared to 6% in output
- Goes part way in rationalizing Shimer puzzle
  - Gives bigger response in employment to productivity shock
  - Makes measured TFP respond much less to that shock
- Examine whether consistent with behavior of TFP across industries
  - Stratify industries by measures of wage stickiness
  - Stickier wages yields countercyclical TFP, more cyclical inputs



## Model

- Diamond-Mortensen-Pissarides matching model
- Exogenous Separation
- Staggering Wage Contracts
- Wages Flexible for Newly Matched Workers
- Effort is chosen through Nash Bargaining

#### Workers' Preferences

$$E_0 \sum_{t=0}^{\infty} \beta^t \left\{ c_t + \psi \frac{(1 - e_t)^{1 - \gamma} - 1}{1 - \gamma} \right\},\,$$

- c: consumption
- e: effort
- $\frac{e}{1-e}\frac{1}{\gamma}$ : Frisch elasticity of effort w.r.t. wage

## Firms' Production Technology

$$y_t = z_t e_t^{\alpha} (k_t e_t)^{1-\alpha},$$

- z: aggregate productivity
- k: capital per effort, equated over firms
- Aggregate capital fixed over cycle

## **Matching Technology**

$$M(u_t, v_t) = \chi u_t^{1/2} v_t^{1/2},$$

Each period jobs are destroyed with exogenous probability  $\delta$ .

## **Free Entry Condition**

Vacancies posted until expected value of hire equals cost of vacancy.

## **Staggered Wage Contract**

• When a match is formed, the wage is set according to a Nash bargaining.

ullet Wage is fixed for T periods.

#### **Choice of Labor Effort**

- Effort is determined according to the Nash bargaining.
- We consider three cases:
  - Effort level is fixed
  - Effort level is chosen by worker vintage
  - Common level of effort chosen across vintages

## Nash Bargaining over Wages of New Bargains

The wage for new matches,  $w^*(z, \mu)$ , dictated by Nash bargain between set of workers and firm:

$$w^*(z,\mu) = argmax_w \Big(J_0(w;z,\mu)\Big)^{1/2} \Big(W_0(w;z,\mu) - U(z,\mu)\Big)^{1/2}.$$

First order condition for  $w^*(z,\mu)$  gives

$$J_0(w^*; z, \mu) = W_0(w^*; z, \mu) - U(z, \mu).$$

#### **Choice of Effort**

Given wage contract  $w_j$ , effort dictated by Nash bargain. By worker vintage:

$$e_j^*(w_j, z, \mu) = argmax_{e_j} \left( J_j(e_j; w_j, z, \mu) \right)^{1/2} \left( W_j(e_j; w_j, z, \mu) - U(z, \mu) \right)^{1/2}$$

First order condition for  $e^*(z, \mu)$  gives

$$\psi(1-e_j)^{-\gamma}J_j(e_j; w_j, z, \mu) = \alpha z k^{1-\alpha} (W_j(e_j; w_j, z, \mu) - U(z, \mu))$$

For  $w_j = w^*(z, \mu)$  have efficient effort

$$\psi(1 - e_j)^{-\gamma} = \alpha z k^{1 - \alpha}$$

#### Model with Common Level of Effort

We also consider the model with common level of effort across workers.

- Maybe unrealistic to operate at varying work rules across employee.
- Complementarity of labor across workers

### Bargaining over the Common Level of Effort

The common effort level,  $e(z, \mu)$ , is determined by Nash bargaining over weighted average of surpluses across worker vintages.

$$e^*(z,\mu) = argmax_e(J)^{1/2}(W-U)^{1/2},$$

$$J = \sum_{j=0}^{T-1} \left( \frac{N_j}{\sum_{j=0}^{T-1} N_j} \right) J_j,$$

$$W - U = \sum_{j=0}^{T-1} \left( \frac{N_j}{\sum_{j=0}^{T-1} N_j} \right) (W_j - U).$$

## **Calibration: Key Parameters**

- Contract length: T = 4
- ullet Frisch Elasticity of Effort:  $\frac{1}{\gamma}\frac{(1-e)}{e}=1$ ;  $\psi$  so S.S. effort, e=1/2
- Labor elasticity:  $\alpha = 0.64$
- Benefit b so replacement rate  $b / \left( w_{ss} + \psi \frac{(1-e)^{1-\gamma}-1}{1-\gamma} \right) = 75\%.$
- ullet Productivity Shock:  $ho_z=$  0.95

## Impulse Responses to a 1% Decrease in Productivity

We will show models with:

- Fixed Effort (Flexible wage and Sticky wage)
- Endogenous Effot
  - Flexible wage
  - Sticky wage with individual effort level
  - Sticky wage with common effort level

## **Models with Fixed Effort**







#### **Models with Variable Effort:**

We consider cases with:

- ullet Benchmark (T= 4,  $\gamma=$  1, lpha= 0.64)
- Longer Contract Length (T = 8)
- Smaller Frisch Elasticity ( $\gamma = 2$ )
- Smaller Labor Demand Elasticity ( $\alpha = 0.28$ )

Benchmark (T= 4,  $\gamma=$  1,  $\alpha=$  0.64)





# Wages for New Bargains (w<sub>0</sub>)







## New Matches (M)





Benchmark (T=4,  $\gamma=1$ ,  $\alpha=0.64$ )

-1.8

2



Sticky Wage Individual Effort

-----Flexible Wage Endognous Effort

14

16













## Longer Contract Length (T = 8)







## Smaller Frisch Elasticity ( $\gamma=2$ )





Smaller Labor Demand Elasticity ( $\alpha = 0.28$ )



# 2 Model Helps Explain Volatility of Unemployment for Measured Productivity

- Partly by making employment respond more
- Partly by making measured productivity less cyclical than shock

 $Productivitiy \ Shock = Measured \ TFP \ in \ US$ 

## Unemployment (Model vs US Data)



## Unemployment (Model vs US Data)



# Measured TFP (Model vs US Data)



Productivitiy Shock = 1.8\* Measured TFP in US

# Measured TFP (Model vs US Data)



## Unemployment (Model vs US Data)



## 3 Industry Wage and TFP Patterns

• Examine cyclicality of inputs, TFP, and wages by stickiness

$$\begin{pmatrix} x_{it} \\ y_{it} - x_{it} \\ w_{it} \end{pmatrix} = \alpha Y_t + \beta \left[ s_{it} - \overline{s}_{it} \right] Y_t + error_{it}$$

• U.S. KLEMS Data for 60 Industries 1987-2010

 Measure wage stickiness by industry from frequency of wage changes in SIPP data

### **Correlation Cyclical Relative Wage and TFP**

• Highly correlated for (HP) industry cycle

• Only in proportion to labor's share

#### **Industry Wage and TFP Fluctuations**

Dependent Variable = TFP for Value Added

| Wage               | 0.54<br>(0.04) | -0.08<br>(0.09) |
|--------------------|----------------|-----------------|
| Wage*Labor's Share |                | 1.13<br>(0.15)  |

60 industries by 24 years. Regressions include full set of year dummies. Industries weighted by value added.

#### **Measuring Wage Stickiness**

- Use 1990 to 2008 SIPP panels
  - Measure 4 and 8-month frequencies of change
- Allow for measurement error—assume change exactly reversed signifies error

— Do under Calvo or Taylor: 
$$lpha_C = rac{\Delta_2 - \Delta_1}{1 - \Delta_1}$$

#### Frequency of Wage Changes SIPP, 1990-2011

|                          | 4-month | 8-month | Error | Calvo | Taylor |
|--------------------------|---------|---------|-------|-------|--------|
| 1990-93 Panels (1990-95) | 0.68    | 0.76    | 0.34  | 0.26  | 0.20   |
| 1996 Panel (1996-99)     | 0.75    | 0.85    | 0.36  | 0.39  | 0.28   |
| 2001 Panel (2001-04)     | 0.76    | 0.84    | 0.38  | 0.34  | 0.25   |
| 2004 Panel (2004-07)     | 0.39    | 0.55    | 0.07  | 0.28  | 0.22   |
| 2008 Panel (2008-11)     | 0.29    | 0.40    | 0.05  | 0.19  | 0.16   |
| Average all Panels       | 0.57    | 0.69    | 0.25  | 0.29  | 0.22   |

#### **Cyclicality by Industry Wage Stickiness**

RHS variable is Duration(months)\*Aggregate Real GDP

|                     | Inputs | TFP   | Wage  |
|---------------------|--------|-------|-------|
| All 60 Industries   | 0.17   | -0.29 | 0.22  |
|                     | (.04)  | (.10) | (.06) |
| 30 Low-Labor-Share  | 0.13   | -0.20 | 0.22  |
| Industries          | (.04)  | (.15) | (.09) |
| 30 High-Labor-Share | 0.15   | -0.45 | 0.20  |
| Industries          | (.07)  | (.14) | (.08) |

#### **Conclusion**

- Breaks irrelevance of sticky wage for current workers
- Matters quantatively when tie effort levels—gives a lot of wage inertia
  - Bigger employment response
  - Mutes procyclical productivity
- Industry wage stickiness matters for cyclicality of TFP for industries with important labor share