Climate Change, Growth, and Risk

Ravi Bansal¹ Dana Kiku² Marcelo Ochoa³

¹Fuqua School of Business Duke University & NBER

²University of Illinois at Urbana-Champaign

³Federal Reserve Board

October 2013

Climate Change and the Economy

- Economic impact of industrial CO₂ emissions:
 - $+\,$ More output & consumption in the short run
 - Increase in atmospheric concentration of ${\rm CO}_2,$ leading to global warming and natural disasters in the long run

Global Temperature Anomaly

Source: U.S. National Oceanic and Atmospheric Administration

Bansal, Kiku & Ochoa

Climate Change, Growth, and Risk

Economics of Climate Change: Questions

- What is the optimal climate policy?
- How much is society willing to sacrifice today to mitigate future climate change risks?
- What is the Social Cost of Carbon (SCC)?
- Social price of carbon depends critically on:
 - discount rates on consumption strips (Hansen (2012))
 - consumption damage function (cash-flow)

Model Ingredients

- Deterministic DICE/RICE model of Nordhaus (1991, 2010) features prominently in measuring SCC
- Our model:
 - incorporates uncertainty (climate and non-climate risks)
 - planner has preference for timing of resolution of uncertainty
 - features temperature-induced disasters
 - permanent vs. transient output losses (Pindyck (2012))
 - matches key features of consumption and asset return data
 - discount rates consistent with asset markets data

Key Findings

- Sensitivity of utility (and discount rates) to emissions is important for the magnitude of SCC
 - Preference for early resolution of uncertainty induces significant reductions in emissions along the optimal path
 - Power utility agent, even with large disasters, is nonchalant towards climate risks
- Permanent climate-induced disasters lead to sizable SCC, large transient disasters carry small SCC
- Model is consistent with financial markets data
 - Margins that make equity carry a high risk premium also make climate risk important

Climate Module: CO₂ Emissions

• Global CO₂ emissions

$$E_t = Y_t^{\lambda_t}$$

where:

- Y_t is the total (gross) amount of consumption goods
- $-\ \lambda_t \geq 0$ is the carbon intensity of consumption
- CO₂ emissions growth rate

$$\Delta e_{t+1} = \lambda_{t+1} \Delta y_{t+1} + \Delta \lambda_{t+1} y_t$$

Climate Module: Global Warming

- Accumulation of carbon in the atmosphere leads to global warming
- Geophysical link between CO₂ emissions and global temperature:

$$T_t = \nu T_{t-1} + \chi e_t$$

- T_t is temperature anomaly (temperature above the pre-industrial level)
- $e_t \equiv \log E_t$ is the log of CO₂ emissions
- $u \in (0,1)$ is the rate of carbon retention in the atmosphere
- $-\chi > 0$ is temperature sensitivity to CO₂ emissions
- Consistent with Nordhaus (2008)'s specification

Climate Module: Emissions and Temperature under BAU

- Calibrated to match emission & temperature projections under BAU scenario (Nordhaus (2010))
- Emissions are in millions of metric ton of carbon per annum
- Temperature anomaly (temperature relative to its pre-industrial level) is in Celsius

Climate Module: Global Warming and Natural Disasters

- Climate change due to global warming leads to catastrophic natural disasters that result in a significant reduction in economic growth
- Disasters are triggered when temperature crosses tipping point \mathcal{T}^*
- Their impact on consumption growth is modelled using compound Poisson process:

$$D_{t+1} = \sum_{i=1}^{N_{t+1}} \zeta_{i,t+1} - d_t \pi_t$$

- N_{t+1} is a Poisson random variable with intensity π_t

 $-\zeta_{i,t+1} \sim \Gamma(1,d_t)$ are gamma distributed jumps with mean d_t

Climate Module: Global Warming and Natural Disasters

• Frequency of natural disasters and the damage function are increasing in temperature

Intensity:
$$\pi_t \equiv E_t[N_{t+1}] = l_0 + l_1 T_t$$

Size: $d_t = \begin{cases} q_1 \overline{T}_t + q_2 \overline{T}_t^2, & \text{if } \overline{T}_t > T^* \\ 0, & \text{otherwise} \end{cases}$

- where $\overline{T} = E_0[T_t]$
- Simplifying, non-critical assumption (since temperature dynamics are dominated by the deterministic trend in emissions)

Climate Module: Global Warming and Natural Disasters

Economic Module: Growth Dynamics

• Growth dynamics

$$\Delta y_{t+1} = \mu + x_t + \Delta s_{t+1} + \sigma \eta_{t+1} - \phi_c D_{t+1}$$
$$x_{t+1} = \rho_x x_t + \varphi_x \sigma \epsilon_{t+1} - \phi_x D_{t+1}$$
$$s_{t+1} = \rho_s s_t + \varphi_s \sigma u_{t+1} - \phi_s D_{t+1}$$

where:

- Δy_t growth rate of gross consumption
- $-x_t$ long-run component
- $-s_t$ transient component
- $D_t natural disasters$
- Industrial emissions (hence, temperature) are driven by output shocks

Alternative Policies

- $BAU \equiv Business as usual$
 - No abatement, consume all available consumption goods:

$$C_t = Y_t$$

- Implement an abatement policy that limits industrial emissions
 - Benefits: lower frequency and magnitude of disasters
 - Costs: have to sacrifice a fraction of consumption goods to finance abatement policy; hence:

$$C_t = Y_t(1 - \Lambda_t)$$

CO₂ Abatement Policies: Benefits

• Benefit of policy intervention is an acceleration in the development of carbon-free technologies:

$$egin{array}{rcl} E_t^* &=& Y_t^{\lambda_t^*} \ \Delta\lambda_t^* &=& \Delta\lambda_t - heta_t \end{array}$$

- λ_t^* is the carbon intensity under a given abatement policy
- λ_t is the intensity under the BAU scenario
- $\theta_t \ge 0$ is the emission reduction function:

$$\theta_t = \bar{\theta} e^{\alpha t}$$
, for $t \in [\tau_0, \tau_1]$

- α captures the time schedule of the policy (more earlier vs. more later)
- $ar{ heta}$ is the scale of abatement efforts ($ar{ heta}=$ 0 corresponds to BAU)
- $[\tau_0,\tau_1]$ is the time period when the policy is in effect

CO₂ Abatement Policies: Costs

- Emission reductions cost $\Lambda_t Y_t$ units of consumption goods
- Abatement cost depends on the targeted reduction level (θ_t) :

$$\Lambda_t = \xi_t \theta_t^k$$

- k > 0 - more aggressive abatement policies (i.e., larger θ) cost more - $\xi_t = \xi_0 e^{-gt}$ declines at rate g > 0 (improvement in cost-efficiency)

• Abatement cost function consistent with integrated assessment models (Nordhaus (2010), Anthoff and Tol (2013))

CO₂ Abatement Policies: Benefits vs. Costs

• Net-of-costs consumption dynamics:

$$C_t = Y_t(1 - \Lambda_t)$$

$$\Delta c_{t+1} = \mu - \Delta \Lambda_{t+1} + x_t + \Delta s_{t+1} + \sigma \eta_{t+1} - \phi_c D_{t+1}$$

$$x_{t+1} = \rho_x x_t + \varphi_x \sigma \epsilon_{t+1} - \phi_x D_{t+1}$$

$$s_{t+1} = \rho_s s_t + \varphi_s \sigma u_{t+1} - \phi_s D_{t+1}$$

- Cost/Benefit Tradeoff:
 - Lower consumption in the short run
 - Lower risk and costs of natural disasters in the long run

CO₂ Abatement Policies: Benefits and Costs

- Emission reduction function: $\theta_t = \overline{\theta} e^{\alpha t}$, for $t \in [1, 250]$ years
- Abatement policies differ in $\alpha \leqslant 0$ and $\bar{\theta} \ge 0$
- Set of available abatement policies allows for a wide range of emission paths

Emission Path

Economic Module: Utility

• Representative agent with Epstein-Zin-Weil recursive preferences:

$$U_t = \left[(1-\delta)C_t^{1-\frac{1}{\psi}} + \delta\left(E_t \left[U_{t+1}^{1-\gamma}\right]\right)^{\frac{1-\frac{1}{\psi}}{1-\gamma}} \right]^{\frac{\psi}{\psi-1}}$$

- δ is subjective discount factor
- γ is the coefficient of risk aversion
- ψ the intertemporal elasticity of substitution (IES)
- Life-time utility of the agent:

$$U_t = \left[(1-\delta) W C_t
ight]^{rac{\psi}{\psi-1}} C_t$$

Social Cost of Carbon

• SCC is defined as the marginal utility of carbon emissions (measured in units of consumption goods):

$$SCC = \frac{\partial U_0}{\partial E_0} \left/ \frac{\partial U_0}{\partial C_0} \right|$$

Taking the derivatives, can show that:

$$SCC = \frac{\psi}{\psi - 1} \frac{\partial WC_0 / \partial E_0}{WC_0} C_0$$

• where WC_0 is wealth-to-consumption ratio at time 0

- SCC measures the required increase in current consumption to compensate for damages caused by a marginal increase in date-0 emissions
- It incorporates two effects of emissions:
 - Cash-Flow effect the impact of damages on consumption path
 - Discount-Rate effect preference to risks and their timing

LRR-C Integrated Model: Solution and Optimization

- Calibrate emission/temperature dynamics to match BAU climate scenario (Nordhaus (2010))
- Choose abatement costs consistent with integrated assessment models
- Solve for the optimal abatement policy by maximizing life-time utility
- Solve the model backwards from the long-run steady state along the transition path

Power Utility & ΔC -Disasters

		High-RA	Low-RA
β	Time discount factor	0.99	0.99
γ	Risk aversion	5	1/1.5
ψ	IES	1/5	1.5
μ	Mean growth (gross)	0.018	0.018
σ	Vol of iid shock	0.016	0.016
ϕ_c	Disaster impact on Δc	1	1
Τ*	Tipping point	2.0°C	2.0°C

- Due to global warming, consumption is subject to permanent disasters
- · Long-run and transient components are shut off
- What is utility gain of adopting an abatement policy?

Power Utility & ΔC -Disasters: Utility Gains

Utility gains of alternative abatement policies relative to BAU

- No utility gains from the perspective of power-utility agent
- The plot is constructed for $\alpha = 0$; no utility gains for other values of α

Bansal, Kiku & Ochoa

Power Utility & ΔC -Disasters: Intuition

• Pricing implications of power utility

	High-RA	Low-RA
Risk-free Rate (%)	9.38	2.20
Risk Premia (%)	0.27	0.03
DR of Cons Strips (%)		
1yr	9.81	2.22
100yr	9.78	2.22
200yr	9.56	2.23
SCC (\$US/ton of carbon)	0.02	0

- Climate change is inconsequential due to heavy discounting, or
- Climate change is not perceived as risky

Recursive Preferences & Δ C–Disasters

β	Time discount factor	0.99
γ	Risk aversion	5
ψ	Intertemporal elasticity of substitution	1.5
ϕ_c	Disaster impact on Δc	1
<i>T</i> *	Tipping point	2.0°C

- Preference for early resolution of uncertainty
- Growth dynamics are kept the same:
 - Disasters have permanent effect on consumption level
 - Long-run and transient components are shut off

EZ & ΔC -Disasters: Utility Gains

Utility gains of alternative abatement policies relative to BAU

- EZ-agent chooses to implement an abatement policy
- Utility gain under the optimal policy is about 11.5%

EZ & Δ C–Disasters: Optimal Abatement Policy

- Optimal to implement a stringent abatement policy that prevents future disasters from happening:
 - $\alpha^{opt} = -0.015 < 0$ more aggressive abatement efforts at the outset (since earlier efforts have long-term emission reduction benefits)

$$- \bar{\theta}^{opt} = 0.00155$$
 – high enough scale of abatement efforts to
prevent temperature anomaly to cross over the
 $2C^o$ disaster threshold

EZ & Δ C–Disasters: Climate Dynamics

• Emission Path

EZ & Δ C–Disasters: Cost of Optimal Policy

Cumulative Growth

Initial cost of the optimal abatement policy is about 0.8% of output

EZ & Δ C–Disasters: Benefits of Optimal Policy

• Distribution of disaster size under BAU scenario

Magnitude of Disasters, [5%, 95%] confidence interval

- Under the optimal policy, temperature does not breach $2\mathsf{C}^o$ tipping point
 - \Rightarrow No climatic disasters under the optimal policy

Alternative Assumptions on Climate Change Risks

Param	eter	$\Delta C \& X$ –Disasters	S–Disasters
ϕ_c	Disaster impact on Δc	1	0
ρ_x	Persistence of long-run growth	0.94	
φ_x	Volatility parameter of long-run growth	0.25	
ϕ_x	Disaster impact on long-run growth	0.04	
ρ_s	Persistence of transient component		0.9
φ_s	Volatility parameter of transient component		0.5
ϕ_s	Disaster impact on transient component		1

• Maintain preferences for early resolution of uncertainty

EZ-Preferences: Utility Gains

Utility gains of optimal abatement policies relative to BAU

- Higher utility gains if climate change risks affect long-run growth
- Less stringent abatement policy and lower gains with S-Disasters

EZ-Preferences: Optimal Policies

	α	$\bar{ heta}$
EZ-Preferences		
Δ C–Disasters	-0.015	0.00155
$\Delta C \& X$ –Disasters	-0.015	0.00155
S–Disasters	0	0.00015

- If disasters have permanent effect, it is optimal to implement a stringent policy to avert them altogether
- If disasters have only transient impact, the optimal policy is much less stringent and its benefits are smaller

EZ-Preferences: Optimal Policies

• Temperature

• Cost (fraction of output)

Risks, Preferences and Discounting

	Risk Premia	Risk-Free	SCC
_	(%)	Rate (%)	(US/ton)
EZ-Preferences			
Δ C–Disasters	0.27	1.98	71
$\Delta C \& X$ –Disasters	1.26	1.30	168
S–Disasters	0.14	2.10	1.1
CRRA (high-RA)			
Δ C–Disasters	0.27	9.38	0.02
CRRA (low-RA)			
Δ C–Disasters	0.03	2.20	0

• $\Delta C \& X$ -Disasters specification matches financial market data best:

- Implied market risk premium is about 4%
- Risk-free rate is 1.3%

Bansal, Kiku & Ochoa

Risks, Preferences and Discounting

- Power Utility:
 - Elasticity of utility to distant climatic disasters is close to zero
 - \Rightarrow Zero social cost of carbon
- Preference for Early Resolution of Uncertainty:
 - Permanent disasters (even in a distant future) have non-trivial effect on current welfare
 - Elasticity of utility to future disasters that have permanent effect on consumption level and long-run effect on growth is high
 - \Rightarrow Social cost of carbon is large
 - Transient disasters matter significantly less

Risk Premia Decomposition

	Risk Premia	Risk Contribution (Fraction of Total)			
	Total	Short-Run	Long-Run	Transient	Jumps
EZ-Preferences					
Δ C–Disasters	0.27%	0.72			0.28
$\Delta C \& X$ –Disasters	1.26%	0.15	0.61		0.24
S–Disasters	0.14%	0.92		0.03	0.05
CRRA (high-RA)					
Δ C–Disasters	0.27%	0.72			0.28
CRRA (low-RA)					
Δ C–Disasters	0.03%	0.78			0.22

 In ΔC & X–Disasters specification, most premia come from gaussian long-run risks (not the jump components)

Risk Preferences and Discounting

- Compare two specifications:
 - (1) Preference for Early Resolution of Uncertainty (IES=1.5, RA=5)
 - (2) Power Utility (IES=1.5, RA=1/IES)
- The same growth dynamics in both specifications
 - ΔC –Disasters
- Have shown:
 - (1) SCC = 1^{1} & it is optimal to take actions to reduce emissions
 - (2) SCC \approx \$0 & abatement policies are sub-optimal relative to BAU

Risk Preferences and Discounting

Discount Rates of Consumption Strips

- With preference for early resolution of uncertainty, future is discounted at a higher rate, yet SCC is higher
- What matters is not discounting per se but preferences to timing of risks

Bansal, Kiku & Ochoa

Risk Preferences and Discounting

• Consider a marginal increase in emissions at time 0

- With preference for early resolution of uncertainty, elasticity of utility to emissions is much higher
- Hansen and Scheinkman (2012), Borovička and Hansen (2013) provide analysis of price elasticities

SCC with Smaller Disasters

- Scale down disaster size by half
- Social Cost of Carbon:

	Benchmark	0.5*Benchmark
EZ-Preferences		
Δ C–Disasters	71	13
$\Delta C \& X$ –Disasters	168	52
S–Disasters	1.1	0.2
CRRA (high-RA)		
Δ C–Disasters	0.02	0
CRRA (low-RA)		
Δ C–Disasters	0	0

Preference for Robustness

- The economic impact of rapid global warming is highly uncertain
- Incorporate this type of uncertainty in a robust control setting (Hansen and Sargent (2001, 2008, 2010))
- Let *P* be the probability density of the reference model
- Let Q denote the density associated with an alternative model under which climate-driven cataclysms have worse consequences (larger size of disasters)
- Use entropy to measure model discrepancies:

$$I(P,Q) = E^{P} \big[L \log(L) \big]$$

- $L = \frac{Q}{P}$ is the likelihood ratio of the two densities

Preference for Robustness

- If the agent is fully confident in the reference specification, entropy is zero
- As the level of confidence declines, the set of plausible alternatives widens and entropy increases
- The degree of model uncertainty can be expressed as an upper bound on relative entropy:

$$I(P,Q) \leq \overline{I}.$$

• With preference for robustness, the agent solves a max-min problem:

$$\max_{\alpha,\bar{\theta}} \min_{Q} \left[(1-\delta) C_t^{1-\frac{1}{\psi}} + \delta \left(E_t^Q \left[U_{t+1}^{1-\gamma} \right] \right)^{\frac{1-\frac{1}{\psi}}{1-\gamma}} \right]^{\frac{1}{1-\frac{1}{\psi}}}$$

subject to the budget, the resource allocation and the entropy constraints

Preference for Robustness: Implications

• EZ-preferences and Δ C–Disasters

Entropy Bound (\overline{I})	Utility Gain	SCC
0	1.12	71
0.005	1.15	94
0.010	1.17	105
0.020	1.20	124

- Decisions are made under worst-case scenario among considered alternatives
 - $\bar{I} = 0.005$ disasters are 10% worse
 - $\bar{l} = 0.01$ disasters are 15% worse
 - $\overline{I} = 0.02$ disasters are 21% worse

Conclusions

- Preferences to risks and timing of risks are important for understanding welfare implications of climate change
 - With power utility, distant temperature disasters have little impact on current utility to warrant any (costly) abatement efforts
 - With preferences for early resolution of uncertainty, distant disasters do matter and abatement policies are welfare improving
- Discount rates and their elasticity to climate risks are important determinants of social cost of carbon
 - Important to incorporate equity data as financial markets have a lot to say about discount rates