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Abstract

We present a model in which monetary policy drives risk premia and the cost of
capital. Risk tolerant agents (banks) borrow from risk averse agents (depositors) and
invest in risky assets, but they are subject to a reserve requirement. The central bank
uses open market operations to set the nominal interest rate, which is the opportunity
cost of holding reserves, and in this way it controls the cost of leverage and the level of
risk taking in the economy. There are no nominal rigidities. Lower nominal rates result
in lower risk premia and higher volatility. Unexpected policy shocks are amplified
via balance sheet effects. We use the model to examine the implications of various
conventional and unconventional policies for asset prices and stability.
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I. Introduction

The textbook model of monetary policy operates through the link between nominal and real

interest rates induced by nominal rigidities. At the same time, recent experience has led

to a broad understanding that monetary interventions, through their impact on financial

institutions, also affect the risk premium component of the cost of capital. This mecha-

nism is particularly salient during periods of economic stress, and it has prompted central

banks around the world to devise policies aimed at stabilizing the prices of risky assets. In

calmer years, its presence is felt more subtly: did the low interest rate environment of the

mid 2000s encourage excessive risk taking by financial institutions? Phenomena as diverse

as the “Greenspan put,” large scale asset purchases, “Operation Twist”, across-the-board

guarantees, and lender-of-last-resort interventions can all be brought under the umbrella of

a risk premium channel of monetary policy.

The canonical New Keynesian framework does not speak to risk premia. Since the risk

premium channel runs through financial institutions, it has surfaced in the banking literature

alternatively as the bank lending channel, the credit channel, or financial stability policy more

broadly. Yet risk is the province of asset pricing.

In this paper, we provide an asset pricing framework for studying the risk premium

channel of monetary policy. The central bank in the model varies the nominal interest

rate in order to regulate the effective risk aversion of the marginal investor in the economy.

It does so by influencing financial institutions’ cost of taking leverage, and hence also the

aggregate level of risk taking. Lowering the nominal rate reduces the cost of taking leverage

and increases aggregate risk taking, resulting in a decrease in equilibrium risk premia.

More concretely, we model an endowment economy populated by two types of agents,

those with low risk aversion and those with high risk aversion. We think of the more risk

tolerant agents as pooling their wealth in the form of the equity capital of financial interme-

diaries, which we identify as banks. Since banks invest on behalf of the risk tolerant agents,

in equilibrium they take leverage. They do so by borrowing from the more risk averse agents,

or taking deposits. Our view of banks and deposits is purposely simplified, abstracting from

other features such as screening and monitoring in order to focus on risk taking and risk

premia.

The central bank requires banks to hold a fraction of the deposits that they raise as

reserves. Reserves are a liability of the central bank and they enter circulation as a result of
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open market operations.1 Aside from this restriction, the model is frictionless. In particular,

there are no nominal rigidities, which allows us to focus exclusively on the risk premium

channel. The single state variable of the model is the share of bank capital in total wealth.

The difference between the (endogenous) return on reserves and the return on risk-free

bonds represents the opportunity cost of holding reserves, and hence the cost of taking

leverage. This difference equals the nominal interest rate. Hence, the central bank regulates

banks’ demand for leverage by inducing changes in the nominal rate. An increase in the

nominal rate represents an increase in the cost of leverage and so it reduces banks’ demand

for leverage. As banks are the risk tolerant investors in the economy, this causes aggregate

risk taking to fall and the economy’s effective risk aversion to rise, driving up the equilibrium

risk premium.

The solution to the model shows that the nominal rate equals the shadow price of banks’

reserves requirement. When the reserve requirement binds tightly, the nominal rate is high.

When the reserves requirement is slack, banks’ demand for leverage is satiated, their holdings

of the risky endowment claim are at the unconstrained optimum, and the nominal rate is

zero. A zero nominal rate therefore implies that further easing cannot increase banks’ risk

taking. Indeed, any further attempt to lower the nominal rate results in banks holding excess

reserves. As a result, the nominal rate in the model is bounded below by zero.

We show that banks’ problem can be rewritten as an unconstrained portfolio-choice

problem by replacing the real interest rate (the return on risk-free bonds or deposits) with

the real Fed Funds rate, the rate that banks would charge to lend reserves to each other in

an interbank market. The spread between these two rates can be referred to as the external

finance spread. Therefore, a valid interpretation of how monetary policy drives bank leverage

is that it alters the external finance spread. The model predicts that this spread is in fact

proportional to the nominal rate. As we show in Figure 1 and discuss in Section IV., there is

in fact a very strong relationship over a long sample period between the level of the nominal

rate and spread between Fed Funds and Treasury Bills. This evidence is highly suggestive

of a positive relationship between the nominal interest rate and banks cost of obtaining

leverage, which is the essential reduced form of our model.

Our model allows the central bank to specify the nominal interest rate policy as a function

1We do not micro-found the reserve requirement, but this can be done in several ways. An important
rationale for reserves is that deposit insurance severs the link between banks’ risk taking and the rate they
pay on deposits. This creates a role for the government in regulating banks’ risk taking, and a reserves
requirement provides a flexible way of doing so. In turn, the standard rationale for government-run deposit
insurance is the need to avoid costly banks runs (Diamond and Dybvig 1983).
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of the state variable, the net worth share of the banking sector. We solve for the dynamics of

reserves required for the central bank to support its target nominal rate. The solution shows

that the nominal rate depends on the dynamics of total reserves, but not on the quantity of

reserves. The reason is that the return to holding reserves does not depend on their level,

but on their growth rate over time.2 We take reserves to be the numeraire in the model, so

inflation is the change in the price of consumption expressed in reserves, or minus the capital

gain on reserves.

To analyze the full implications of the model, we solve for the equilibrium using projection

methods. To demonstrate the impact of monetary policy, we compare prices and quantities

between a high and a low nominal rate regime. We show that when nominal rates are

high, bank leverage is low, the Sharpe ratio and risk premium of the endowment claim are

high, and the valuation of the endowment claim is low. An additional interesting finding

is that volatility is decreasing in the nominal rate. Volatility in the model is endogenously

stochastic; it depends on banks’ net worth. Since low interest rates increase bank leverage,

they also increase the volatility of the state variable, the volatility of discount rates, and

hence the volatility of returns.

We further examine two dynamic interest rate policies. One captures a “Greenspan

put” by decreasing the nominal rate as bank net worth falls in part of the state space. We

find that this policy stabilizes prices locally since after a negative endowment shock banks’

leverage rises and discount rates fall. However, as leverage rises and eventually becomes

satiated, there is no further room for such accommodation so that further negative shocks

cause prices to fall rapidly. At this point volatility becomes significantly higher than it would

have been otherwise. Thus in our framework a Greenspan put policy stabilizes prices in the

short run at the expense of greater instability in the long run.

The second dynamic policy we consider shows the impact of forward guidance. Under

forward guidance, the central bank commits to keeping nominal rates low even after the

economy recovers (the wealth share of the banking sector rises). We show that by reducing

future discount rates this policy is able to induce an additional increase in price valuations

even when current nominal rates are at the zero lower bound.

Finally, we extend the model to incorporate unexpected shocks to the central bank’s

nominal rate policy. We show that policy shocks lead to a second round amplification effect

on risk premia and other equilibrium quantities. This effect is akin to a financial accelerator:

2One way to see this is to consider a one-time doubling of total reserves. This would halve the value of
each unit of reserves (i.e. double the price level), but it would not affect the holding return of reserves going
forward, and so it would leave the nominal rate unchanged.
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when nominal rates fall, the assets on bank balance sheets rise more than their liabilities,

which raises banks’ net worth and enables them to expand their balance sheets, pushing risk

premia down even further.

The rest of this paper is organized as follows: Section 2 reviews the literature, Section

3 presents the model, Section 4 characterizes the equilibrium, Section 5 presents the results

for a benchmark economy, Section 6 examines dynamic policies, Section 7 introduces an

extension with policy shocks, and Section 8 concludes.

II. Related literature

Our paper is most closely related to the literature on the bank lending channel of monetary

policy initiated by Bernanke (1983) and formalized by Bernanke and Blinder (1988) and

Kashyap and Stein (1994). The bank lending channel relies on an imperfect substitutability

between bank loans and unintermediated bonds so that a contraction in bank lending affects

the overall availability of funding and spills over to the macroeconomy. The transmission

link from monetary policy runs through bank reserves: a drop in the supply of reserves forces

banks to shrink their balance sheets.

Bernanke and Gertler (1989), Kiyotaki and Moore (1997), and Bernanke, Gertler, and

Gilchrist (1999) develop the broader balance sheet channel of monetary policy, which em-

phasizes the impact of policy shocks on the net worth of borrowers. A drop in interest rates

strengthens borrower balance sheets, enabling more borrowing and investment. Against the

backdrop of the 2008 financial crisis, recent models shift attention from firms to financial

intermediaries (e.g. Adrian and Shin 2010, Gertler and Kiyotaki 2010, Cúrdia and Woodford

2009, Brunnermeier and Sannikov 2013). In these models, a maturity or liquidity mismatch

between intermediary assets and liabilities causes interest rate shocks to affect intermediary

net worth, driving the supply of credit.

Our principal contribution to the literatures on the bank lending and balance sheet chan-

nels is to focus on the risk premium component of the cost of capital within a canonical asset

pricing framework. Specifically, we model an economy populated by agents with different

levels of risk aversion, which gives rise to a credit market as in Dumas (1989), Wang (1996)

and Longstaff and Wang (2012). Risk tolerant agents deploy their wealth in levered portfo-

lios which we interpret as banks. They raise funds by selling bonds to risk averse households,

or depositors. The key friction is a reserve requirement that imposes a cost on leverage. A

reserve requirement is similar to a margin requirement (e.g. Gromb and Vayanos 2002, Brun-
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nermeier and Pedersen 2009, Gârleanu and Pedersen 2011) with the key distinction that its

cost is set by monetary policy. Specifically, the opportunity cost of holding reserves is equal

to the nominal interest rate. By controlling the nominal interest, the central bank controls

the cost of leverage and the amount of risk taking in the economy.

A changing financial landscape has called into question the centrality of bank reserves

as a transmission mechanism (Woodford 2010). Our approach is to adopt the reserves

framework as a convenient way of arriving at the essential reduced form of our model, a

positive relationship between the nominal interest rate and banks’ external finance spread.

We present empirical support for this reduced form and focus on its implications for risk

premia.

Stein (1998) and Stein (2012) also study the ability of the central bank to control bank

leverage by adjusting the supply of reserves. In Stein (2012), leverage entails a potential

negative externality resulting from fire sales. Reserves function as “pollution permits” whose

price, the nominal rate, provides a useful signal that enables regulators to maintain financial

stability. We build on Stein’s (1998, 2012) insights by providing a fully specified dynamic

model of this mechanism. For example, we find that in an intertemporal setting it is the

growth rate of reserves rather than their quantity that determines the nominal rate and

controls risk taking. This observation is consistent with the observed weak relationship

between interest rate changes and the quantity of reserves over short horizons (the so-called

“liquidity puzzle,” e.g. Friedman and Kuttner 2010).

In contrast to the literature, our model does not require any nominal rigidities.3 In fact, it

exhibits neutrality with respect to the quantity of reserves but not their dynamics. Whereas

a one-off increase in the quantity of reserves is offset by a proportional increase in the price

level, a sustained increase in the expected growth rate of reserves results in higher expected

depreciation, which makes holding reserves more costly. Besides the growth rate, the central

bank can also adjust the stochastic exposure of reserves growth to economic shocks, which

also affects the opportunity cost of holding reserves by altering the inflation risk premium.

In this way, our asset pricing framework allows us to abstract from nominal rigidities and

their concomitant real effects and focus exclusively on risk taking. This differs from other

papers on monetary policy and bank risk taking including Stein (2012), Adrian and Shin

(2010), and Dell’Ariccia, Laeven, and Marquez (2011).

Our paper is also related to the literature on the role of government liabilities as sources

3Kashyap and Stein (1994) write that absent nominal rigidities, “there can be no real effects of monetary
policy through either the lending channel of the conventional money channel”.
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of liquidity for the financial sector (Woodford 1990, Gertler and Karadi 2011, Caballero

and Farhi 2013, Krishnamurthy and Vissing-Jorgensen 2012, Greenwood, Hanson, and Stein

2012). In our model, reserves provide liquidity to banks and crowd in investment in risky

assets just as government debt does in Woodford (1990).

On the empirical side, Bernanke and Gertler (1995) and Bernanke and Blinder (1992) are

early papers that find support for the bank lending and balance sheet channels of monetary

policy. Bernanke and Blinder (1992) show that monetary tightening as reflected in a shock

to the Fed Funds rate, leads banks to shrink their balance sheets. Kashyap, Stein, and

Wilcox (1993) show that bank funding is also sensitive to policy shocks. Kashyap and Stein

(2000) show that smaller banks are particularly sensitive. More recently, Jiménez, Ongena,

Peydró, and Saurina Salas (2011) and Landier, Sraer, and Thesmar (2013) provide further

corroborating evidence on the links between monetary policy and bank balance sheets.

Our model generates a positive relationship between nominal interest rates and risk pre-

mia, a phenomenon often called “reaching for yield”. This relationship has been documented

in several event studies, including Bernanke and Kuttner (2005), Duffee (1998), and Hanson

and Stein (2012). We note that in our model this is purely a nominal phenomenon since in

the absence of price rigidities the nominal and real interest rates do not move in parallel.

III. Model

We model an infinite-horizon exchange economy in continuous time t ≥ 0, with aggregate

endowment Dt that follows a geometric Brownian motion:

dDt

Dt

= µDdt+ σDdBt. (1)

The economy is populated by a continuum of agents with total mass one. There are two

types of agents, A and B. Both types have recursive preferences as in Duffie and Ep-

stein (1992), the continuous-time analog to the discrete-time formulation of Epstein and Zin

(1989). Duffie-Epstein preferences allow us to vary the elasticity of intertemporal substitu-

tion (EIS) independently of the risk aversion coefficient. An EIS greater than one ensures

that valuations are decreasing in risk aversion so that when nominal rates are high resulting

in high effective risk aversion, asset prices are low.

To ensure stationarity, we assume that agents die at a rate κ. New agents are also born

with intensity κ with a fraction ω as type A and 1− ω as type B. Gârleanu and Panageas
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(2008) show that under these assumptions, the lifetime utility V i
0 of an agent of type i = A,B

can be expressed as the recursion

V i
0 = E0

[∫ ∞
0

f i
(
Ci
t , V

i
t

)
dt

]
(2)

f i
(
Ci
t , V

i
t

)
=

(
1− γi

1− 1/ψi

)
V i
t

( Ci
t

[(1− γi)V i
t ]

1/(1−γi)

)1−1/ψi

− (ρ+ κ)

 . (3)

The felicity function f i is an aggregator over current consumption and future utility. The

parameters ψi and γi, i = A,B, denote agents’ elasticity of intertemporal substitution (EIS)

and relative risk aversion (RRA).

Without loss of generality, we assume that type A agents are more risk tolerant, γA < γB.

We view these agents’ wealth as the equity capital of the “banks” in the economy (or more

generally the financial sector). In order to focus on risk taking, we abstract from other

aspects of financial intermediation and adopt a simplified view in which banks are set up to

pool the economy’s risk-bearing capital to earn a risk premium.4 We therefore often refer to

the type-A agents as the banks and their wealth as the equity of the banking sector.

Let W i
t denote the total wealth of type-i agents at time t. We denote the wealth share

of type-A agents by ωt:

ωt =
WA
t

WA
t +WB

t

. (4)

We show below that ωt summarizes the state of the economy. To derive its dynamics, we

assume that the wealth of agents who die is bestowed on the newly born on a per-capita

basis. We can then write the law of motion of ωt as

dωt = κ (ω − ωt) dt+ ωt (1− ωt)
[
µω (ωt) dt+ σω (ωt) dBt

]
. (5)

The evolution of ωt has an exogenous component due to demographic turnover and an

endogenous component due to differences in the rates of saving and the portfolio choices

of the two agent types. The exogenous component prevents banks from dominating the

economy, ensuring a non-degenerate stationary distribution for ωt.

Agents trade a claim on the aggregate endowment. The price of this claim is Pt, its

4For example, in our setup it is not necessary to impose a restriction on equity issuance as in He and
Krishnamurthy (2012) and Brunnermeier and Sannikov (2013).
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dividend yield is F (ωt) = Dt/Pt, and its return process is

dRt =
dPt +Dtdt

Pt
= µ (ωt) dt+ σ (ωt) dBt. (6)

Agents also trade instantaneous risk-free bonds that pay the endogenously-determined real

interest rate r (ωt).

A. Deposits and reserves

The difference in risk aversion between agent types lead to the emergence of a credit market

(see e.g. Longstaff and Wang 2012). In particular, optimal risk sharing implies that the

risk-averse type-B agents lend to the risk-tolerant type-A agents using the instantaneous

risk-free bonds. Continuing with our interpretation of type-A agents as banks, we think of

these bonds as demand deposits.

The central friction in our model is that the central bank regulates deposit taking. In

particular, banks must hold reserves of no less than a fixed proportion of their deposits.

Reserves are issued only by the central bank, though they can be exchanged freely in a

secondary market.

A reserve requirement can be motivated in several ways. For example, it provides a lever

for regulating deposit creation, and deposit creation entails an externality in the presence

of deposit insurance. Deposit insurance itself might be optimal if deposits are susceptible

to destructive bank runs as in Diamond and Dybvig (1983). A reserve requirement is par-

ticularly well-suited to regulating the externalities associated with deposit creation because

it takes advantage of a price mechanism. The central bank monitors the cost of lending

and borrowing reserves in interbank markets and it responds to fluctuations in that cost by

conducting open market operation.5

Without directly modeling the externalities associated with deposit creation, our ap-

proach is to take reserve requirements as given and study their implications for risk-taking.

Formally, let wS,t be the banks’ portfolio weight in the risky endowment claim. Of this,

max {wS,t − 1, 0} must be deposit-financed (borrowed). Let wM,t be the banks’ portfolio

5Stein (2012) draws the analogy with the market for pollution permits. Reserves regulate the supply
of deposits based on a tradeoff between the private value of monetary services against the public cost of a
negative externality due to fire sales following crashes. In general, any negative externality associated with
deposit creation introduces a role for reserves.
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weight in reserves. The reserve requirement imposes the constraint

wM,t ≥ max
[
λσ2

t (wS,t − 1) , 0
]
. (7)

Agents must hold reserves in proportion to their deposits, if any, and reserves cannot be held

short. The parameter λ controls the reserve requirement, λσ2
t . Scaling by σ2

t simplifies the

resulting expressions, but is not essential.6 When λ = 0, there is no reserve requirement and

asset markets are complete. This case might correspond to a frictionless economy in which

deposit-related externalities do not arise.

Let Mt denote the total number of reserves and Πt the total real value of reserves in units

of the endowment. It will be useful to define

G (ωt) =
Πt

Pt
(8)

as the wealth share of reserves. Furthermore, let πt = Πt/Mt denote the consumption value

of each dollar of reserves. We take reserves to be the numeraire in the economy, so πt is the

inverse price level.7 It follows that the realized rate of inflation is −dπt/πt. We assume that

the central bank sets the path of reserves dMt/Mt so that inflation is locally deterministic,

− dπt
πt

= i (ωt) dt. (9)

Locally deterministic inflation simplifies the exposition of the model and is arguably realistic.

In the solution section, we show precisely how the central bank implements (9) by adjusting

the exposure of reserves growth to the endowment shock. Since the central bank also controls

the drift of reserves growth, it can still achieve its nominal rate target and so (9) does not

restrict the effectiveness of monetary policy.

Next, we define the nominal interest rate

n (ωt) = r (ωt) + i (ωt) . (10)

We treat n (ωt) as the central bank’s policy and solve for the path of reserves that implements

it. We write this policy as a function of ωt since it summarizes the state of the economy.

6In the absence of this scaling, the tightness of the reserves requirements varies inversely with the re-
turn variance of the endowment claim. This adds a degree of complication to the expressions which is
inconsequential.

7In practice, reserves are fungible with currency which serves as numeraire. Since our focus is on risk
taking, we abstract from introducing a transactions medium such as currency.
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Agents have rational expectations so they know this function. In an extension, we also

consider policy shocks, which may take the nominal rate away from its benchmark rule.

The central bank controls the supply of reserves via open market operations, sales and

purchases of bonds for reserves at prevailing market prices. Let Bt be the central bank’s

total holdings of bonds (hence the private sector holds −Bt in aggregate). If we think of

reserves as the central bank’s liability, then the central bank’s net worth is Bt − Πt. This

net worth is not directly affected by open market operations since they are conducted at

prevailing market prices. However, the central bank earns a stream of “seignorage” profit on

its portfolio, which is given by the difference between the interest income on its bond assets

and the realized deflation on its reserve liabilities. We assume that the central bank pays

out the seignorage it earns so its net worth remains at zero. Thus, seignorage is

Btr (ωt) dt− Πt
dπt
πt

= Πtn (ωt) dt. (11)

As we show below, no-arbitrage requires n (ωt) ≥ 0 so seignorage is never negative. To close

the model, we assume it gets refunded to all agents in the economy in proportion to their

wealth.8

B. Optimization

We begin with the Hamilton-Jacobi-Bellman (HJB) equation of an agent in our economy.

Let V i
(
W h
t , ωt

)
denote the value function of agent h of type i = A,B. Also let cht , w

h
S,t,

and whM,t be the agent’s consumption-wealth ratio, endowment claim portfolio weight, and

reserves portfolio weight. The HJB equation is

0 = max
cht ,w

h
S,t,w

h
M,t

f i
(
chtW

h
t , V

i
(
W h
t , ωt

))
dt+ E

[
dV i

(
W h
t , ωt

)]
(12)

8This keeps the refund policy from changing the wealth distribution.
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subject to the agent’s wealth dynamics9 and the reserve requirement

dW h
t

W h
t

=

(
r (ωt)− cht + whS,t [µ (ωt)− r (ωt)] + whM,t

[
dπt
πt
− r (ωt)

]
(13)

+G (ωt)n (ωt)

)
dt+ whS,tσ (ωt) dBt

whM,t ≥ 0 (14)

whM,t ≥ λσ2 (ωt)
(
whS,t − 1

)
. (15)

The diffusive component of wealth depends only on the weight of the risky claim and not on

the reserves holdings which are locally risk-free. In the drift term, G (ωt)n (ωt) represents

the stream of seignorage refund payments.10 By (9) and (10), the excess return on reserves,

dπt/πt − r (ωt), equals −n (ωt), the negative of the nominal rate. Hence, reserves are costly

when the nominal rate is positive. The reserve requirement consists of two parts: the shorting

restriction that prevents agents from increasing the effective supply of reserves on their own,

and the leverage constraint.

The homogeneity of the felicity function implies that the consumption and portfolio

policies are independent of wealth, so we can write them as functions of agent type only.

Define the aggregate type-i consumption-wealth ratio as ci (ωt) =
∫
i
ch (ωt)

Wh

W i dh for i =

A,B, and similarly for the type-i portfolio policies wiS (ωt) and wiM (ωt).

C. Equilibrium conditions

In equilibrium, the markets for goods (i.e. consumption), the endowment claim, and reserves

must clear. The bond (deposit) market clears by Walras’ law. Since the public’s net bond

holdings are simply minus the value of reserves, aggregate wealth equals the value of the

endowment claim, WA
t + WB

t = Pt. The three market-clearing conditions can therefore be

written as

ωtc
A (ωt) + (1− ωt) cB (ωt) = F (ωt) (16)

ωtw
A
S (ωt) + (1− ωt)wBS (ωt) = 1 (17)

ωtw
A
M (ωt) + (1− ωt)wBM (ωt) = G (ωt) . (18)

9These are the wealth dynamics should the agent manage to cheat death over the next instant. The agent
accounts for the possibility of death directly in the felicity function (3) (see Gârleanu and Panageas 2008).

10Recall from (11) that total seignorage is Πtn (ωt) and that it gets refunded in proportion to wealth, so

an agent with wealth Wh
t gets Πtn (ωt)

Wh
t

Pt
= G (ωt)n (ωt)W

h
t .
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All three are normalized by total wealth. The first equation gives the goods-market clearing

condition, the second gives the market-clearing condition for the endowment claim, and the

third gives the market-clearing condition for reserves.

IV. Solution

In this section we derive the equations that characterize the equilibrium. These equations

do not permit closed-form solutions. However, we are able to derive analytical expressions

that highlight key mechanisms. In the next section, we provide a full analysis of the model’s

implications by applying numerical methods.

A. The value function and the demand for leverage

For simplicity of notation, we drop agent, type, and time subscripts though it should be

understood that they apply. Let θλVWW ≥ 0 and θ0VWW ≥ 0 be the Lagrange multipliers

on the reserves and non-negativity constraints. By Ito’s lemma we can rewrite the HJB

equation as the Lagrangian

0 = max
c,wS ,wM

f (cW, V ) + VWW [r − c+ wS (µ− r)− wMn+Gn] (19)

+Vω

[
κ (ω − ω) + ω (1− ω)µω

]
+ VWωWω (1− ω)wSσωσ +

1

2
VWWW

2 (wSσ)2

+
1

2
Vωωω

2 (1− ω)2 σ2
ω + θλVWW

[
wM − λσ2 (wS − 1)

]
+ θ0VWWwM .

The following proposition gives the form of the value function up to an an unknown function

of the wealth distribution J (ω) together with the equation that characterizes it.

Proposition 1. Each agent’s value function has the form

V (W,ω) =

(
W 1−γ

1− γ

)
J (ω)

1−γ
1−ψ . (20)

The unknown function J (ω) gives the agent’s consumption-wealth ratio, c∗ = J and solves
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the second order ordinary differential equation

ρ+ κ = 1/ψJ + (1− 1/ψ)
(
r + λσ2θλ +Gn

)
− 1/ψ

Jω
J

[
κ (ω − ω) (21)

+ ω (1− ω)µω

]
− 1/ψ

2

[(
ψ − γ
1− ψ

)(
Jω
J

)2

+
Jωω
J

]
ω2 (1− ω)2 σ2

ω

+
1

2

(
1− 1/ψ

γ

)[
µ− r
σ2
− λθλ +

(
1− γ
1− ψ

)
Jω
J
ω (1− ω)

σω
σ

]2
σ2

if γB − γA ≥ λn with θλ = n if the agent is of type A and θλ = 0 if the agent is of type B.

If instead γB − γA < λn, J solves

ρ+ κ = 1/ψJ + (1− 1/ψ)
(
µ− γ

2
σ2
)
− 1/ψ

Jω
J

[
κ (ω − ω) + ω (1− ω)µω

]
. (22)

Proof of Proposition 1. The proof is contained in Appendix A.

The function J is type-specific but not agent-specific since it does not depend on wealth.

Instead, it depends solely on the wealth distribution ω. As a result, ω is a sufficient statistic

for asset valuations and other equilibrium quantities.

Using the value functions, we can solve for agents’ portfolio demands. Proposition 2

below provides the conditions under which banks take leverage (by issuing deposits), and

characterizes their demand for the risky endowment claim as it depends on the central bank’s

nominal rate policy.

Proposition 2. Banks take leverage/deposits (wAS > 1) if and only if

γB − γA > λn. (23)

In this case, banks’ portfolio holdings of the endowment claim are given by

wAS =
1

γA

[
µ− r
σ2
− λn+

(
1− γA

1− ψA

)
JAω
JA

ω (1− ω)
σω
σ

]
. (24)

Proof of Proposition 2. The proof is contained in Appendix A.

Equation (24) has three parts. The first term, (µ − r)/σ2, is the standard “myopic”

mean-variance tradeoff for the endowment claim. It shows that banks take more leverage

when there is a higher risk premium per unit of risk. The third term, which depends on

JAω , represents the intertemporal hedging component of banks’ demand for the risky asset.
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This component determines how much banks adjust their current risk taking to hedge future

changes in investment opportunities. The investment opportunity set is stochastic because

of variation in aggregate risk tolerance that is induced by changes in the relative wealth ω

of the risk-tolerant and risk-averse agents.

The second term in equation (24) gives the direct impact of the nominal rate on bank

leverage, which we summarize in the following corollary.

Corollary 1. All else equal, an increase in the nominal interest rate reduces bank leverage.

For every dollar of deposit funding, banks must increase their reserves holdings by the

reserve requirement. Since the excess return on reserves is the negative of the nominal rate,

holding reserves is costly. An increase in the nominal interest rate raises the effective cost of

deposits and results in less leverage.

Using (24), we can see that an increase in the nominal rate works like an increase in

banks’ effective risk aversion. This in turn raises the economy’s aggregate risk aversion and

hence also the risk premium.

Recall that reserves are locally risk-free. Why is their excess return negative in equilib-

rium? The reason is that reserves give banks the right to take leverage. We can think of the

flow value of this right as a latent dividend stream that banks receive from holding reserves.

The “dividend” is given by the Lagrange multiplier on banks’ reserve requirement, θAλ , which

in equilibrium equals the nominal rate n. Now, in equilibrium the (risk-adjusted) total real

return on any asset must equal r. The capital gain on reserves, given by the change in the

inverse price level (or minus the inflation rate), dπ/π = −ιdt, adjusts so that:

r = n− ι. (25)

This is Fisher’s equation. Interpreted through the lens of asset pricing, it states that the

real risk-free rate r equals the capital gain on reserves −i plus the latent dividend stream n.

Proposition 2 also shows that banks lever only if agents’ risk aversions differ sufficiently

to overcome the cost of leverage. The difference in risk aversions multiplied by the return

variance,
(
γA − γB

)
σ2, measures the risk premium earned by banks on their first dollar of

leverage. This premium reflects the gains from risk sharing. For banks to take leverage, it

must be greater than the cost of leverage which is given by the nominal rate n multiplied by

the reserve requirement λσ2.

Corollary 2. If λn ≥ γB − γA then wAS = wBS = 1.
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If the cost of leverage exceeds the difference in risk aversions then banks do not raise

deposits and the two groups remain in “financial autarky”.

B. Reserves value and dynamics

The following proposition gives the value of reserves and solves for the law of motion for Mt,

the quantity of reserves required to support the central bank’s nominal interest rate rule.

Proposition 3. The value of reserves as a fraction of aggregate wealth is given by

G(ωt) = ωtλσ
2
t (w

A
S,t − 1). (26)

Under the central bank’s nominal rate rule n (ωt), the quantity of reserves Mt must follow

the law of motion

dMt

Mt

= [n (ωt)− r (ωt)] dt+
dΠt

Πt

(27)

= [n (ωt)− r (ωt)] dt+
dG (ωt)

G (ωt)
+
dPt
Pt

+
dG (ωt)

G (ωt)

dPt
Pt

. (28)

Proof of Proposition 3. The proof is contained in Appendix A.

The dynamics of the quantity of reserves in equation (27) are given as a function of the

bank’s policy n(ω), and two endogenous quantities, the total value of reserves Π(ω), and the

real rate r(ω). The central bank adjusts the growth rate of reserves to achieve the target

while responding to underlying shocks.

The growth rate of reserves is stochastic even though realized inflation is locally deter-

ministic. To attain the nominal rate n (ω), the central bank must influence the rate of return

on reserves, which depends on the state of the economy ω. In particular, to maintain a stable

nominal rate, the quantity of reserves must keep up with aggregate wealth P and demand

for reserves G.

Equation (27) also implies the following corollary.

Corollary 3. The nominal interest rate depends on the growth rate of reserves, not their

level, which is not separately identified.

This result follows directly from equation (27), which shows that n(ω) is related to the

growth of M , not the level. A specific value of M pins down the price level (Π = Mπ), but
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the nominal rate depends only on the growth rate of M . Equation (26) shows that it is the

real value of reserves Π = GP , not the quantity M , that affects risk taking. The quantity

of reserves is not separately identified from the price level since Π = Mπ. Thus, the model

features neutrality with respect to the quantity but not the growth rate of reserves.

This mechanism contrasts with classic models of reserves where the quantity of reserves

matters via sticky prices. For example, this is the case in the canonical formulation of the

bank lending channel in Bernanke and Blinder (1988). Similarly, in the discussion of Kashyap

and Stein (1994), and in the model of Stein (2012), the determining factor is the level of

reserves made available by the central bank.

C. The Fed Funds rate and the external finance spread

The Fed Funds market is a short-term (mostly overnight) uncollateralized lending market for

banks in the US.11 The rate that prevails in this market, the Fed Funds rate, has emerged as

a key target for monetary policy. Fed Funds loans are not subject to reserve requirements as

they are not deposits. In equilibrium, banks must be indifferent between raising a dollar of

deposits versus borrowing Fed Funds. We can therefore define the real Fed Funds rate (FFr)

as the real deposit (or risk-free bond) rate inclusive of the cost of the reserve requirement:

FFrt = r (ωt) + λσ2
t n (ωt) . (29)

The term λσ2n is then the spread between FFn and the rate on deposits/Treasurys, and it

captures the cost of the reserves requirement. We interpret this spread as the external finance

premium, since it is the difference between the value of a dollar inside the banking system

versus outside. This term is used similarly in the literature (e.g. Bernanke and Gertler 1995)

to refer to the gap between the cost of banks’ marginal sources of funding and the rate on

risk-free deposits or short-term TBills.

We highlight the importance of the external finance premium in the model by rewriting

equation (24) for banks’ optimal leverage/risky claim holdings,

wAS =
1

γA

[
µ− FFr

σ2
+

(
1− γA

1− ψA

)
JAω
JA

ω (1− ω)
σω
σ

]
. (30)

11The Fed Funds market represents a substantial source of overnight funding for large US money-center
banks. The other significant source of interbank uncollateralized dollar funding is the Eurodollar market.
The prevailing rate in that market, LIBOR, typically tracks the Fed Funds rate very closely (Kuo, Skeie,
and Vickery 2010).
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Banks’ constrained leverage choice can therefore be cast equivalently as an unconstrained

optimal portfolio decision if the real interest rate is replaced by the cost of external financing,

which exceeds the risk-free rate by the external finance premium.12

Equation (30) shows how changes in the nominal rate affect bank leverage by changing the

external finance premium. When the central bank increases the nominal rate, the external

finance premium widens, reducing banks’ demand for leverage. The ultimate result is an

increase in aggregate risk aversion and the price of risk.

Figure 1 plots the empirical relationship between the level of the Fed Funds rate (solid

line, left axis) and the Fed Funds-TBill spread (dashed line, right axis) for the period July

1980 to May 2008. The beginning of this period corresponds roughly to the abolition of

Regulation Q, which limited the rate banks could pay on deposits, while the end corresponds

roughly to the beginning of the financial crisis, which brought about a spike of credit risk in

the Fed Funds market. The figure plots 20-week moving averages of these series.

The figure displays a remarkably tight relationship between the two series over this

roughly twenty-eight year period. Indeed, the correlation is 86%. Moreover, the Fed Funds-

TBill spread closely tracks both the trend and the cycles in the Fed Funds rate over this

period.

The average Fed Funds rate over this period is 6.25%, while the average Fed Funds-Tbill

spread is 0.57%. The sensitivity of the Fed Funds-TBill spread to a change in the Fed Funds

rate, estimated by OLS regression, is 0.14. In the model, this value corresponds to the

reserve requirement, λσ2, which we set to be 0.10.

The tight relationship between the external finance premium and the interest rate in

Figure 1 suggests a stable relationship between the interest rates and banks’ funding costs.

This relationship presents a challenge to models based on interest rate shock rather than

levels.

V. Results

To analyze further the impact of monetary policy on the economy, we choose values for

the model parameters, specify a nominal rate policy, and solve for the resulting equilibrium.

12The risk-free in the model is given equivalently by either the rate on deposits, or the rate of return
on (instantaneous) government bonds. As noted above, we think of deposits as being protected by deposit
insurance and hence equivalent to government bonds from investors viewpoint.
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Since the model does not permit a closed-form solution, we solve it numerically. This requires

solving the HJB equations of the two agent types simultaneously. We do this using Chebyshev

collocation, which provides a global solution.

A. Parameters

Table I displays our benchmark parameter values. We set the risk aversions of the two agents

at 1.5 for type A and 15 for type B in order to generate a high demand for deposits and

leverage. This allows monetary policy to have large effects on aggregate risk aversion and

equilibrium asset prices.

Description Parameter Value

Risk aversion A γA 1.5
Risk aversion B γB 15
EIS ψA, ψB 3.5
Reserve requirement λσ2

D 0.1
Endowment growth µD 0.02
Endowment volatility σD 0.02
Time preference ρ 0.01
Death rate κ 0.01
Type-A share of population ω 0.10
Nominal Rate 1 n1 0%
Nominal Rate 2 n2 5%

Table I: Parameter values. This table lists the benchmark parameter values used to
illustrate the results of the model.

We set the elasticity of intertemporal substitution (EIS) to 3.5 for all agents so that the

two types differ only in risk aversion. An EIS value greater than one implies that an increase

in effective risk aversion, for example generated by a rise in the nominal interest rate, results

in a decrease in the equilibrium wealth-consumption ratio. Thus, as rates rise, prices fall.

We pick the pick the reserve requirement parameter λ so that λσ2
D = 0.1. Since return

volatility is similar to fundamental volatility, this corresponds to a reserve requirement of

about 10%, which is the reserve requirement for net transactions accounts in the US. We

set the endowment growth rate and volatility to 2%, consistent with standard estimates for

US aggregate consumption growth and volatility. We set agents’ time preference parameter

ρ and death rate κ both to 0.01, which leads to real interest rates near 2%, consistent with
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the data. To stabilize banks’ wealth share ω at moderate levels, we set the population share

of type-A agents ω to 10%.

We compare equilibria across two nominal rate policies. In the first policy, the nominal

rate is identically zero. In this case, holding reserves is costless, so the model is equivalent

to a frictionless one with no reserve requirement. This case represents a useful frictionless

benchmark. In the second policy, the nominal rate is set to 5%, making reserves costly

and constraining leverage. While the model allows for much more complex policy rules, we

restrict attention to these simple cases in order to convey the main intuition. We consider

dynamic policies later in the paper.

B. Portfolio Choice

Figure 2 shows the impact of higher nominal rates on the holdings of risky claims by banks

(top panel) and depositors (bottom panel). The plots show portfolio weights across different

values of the wealth distribution ω under policy n1 = 0% (blue triangles) and policy n2 = 5%

(red squares).

Bank leverage falls as the nominal rate rises at all values of the wealth distribution. The

decrease is larger when banks’ wealth is small relative to overall wealth (low ω). For the

chosen parameters, when ω is close to zero, banks’ risky asset holdings decrease from around

10 times their net worth to less than 2 times. At moderate levels of ω between 0.2 and

0.4 where the economy spends the most time, banks’ holdings of risky assets decrease from

between 2 and 4 times net worth under n1 to slightly above 1 under n2, so that a near

complete deleveraging takes place.

As the bottom panel of Figure 2 shows, depositor holdings of the risky asset offset the

decrease in bank holdings. For instance, when ω falls between 0.2 and 0.4, depositors hold

40% of their wealth in risky claims under n1 = 0%, rising to almost 100% under n2 = 5%.

The changed allocation of risk in the direction of the more risk-averse depositors can be

thought of as increasing the effective risk aversion of the representative investor.

The relationship between the portfolio weight and the wealth share ω in Figure 2 is a result

of market clearing. When ω is close to either zero or one, a single type of agent dominates

the economy, which reduces the opportunity for risk sharing. Agents of the remaining type

must hold all their wealth in the endowment claim, whereas agents of the disappearing type

can be satisfied with a vanishingly small amount of borrowing and lending. Thus, when ω is

20



near zero, prices are set by depositors causing banks to demand very high leverage as long as

the nominal rate is not too high. By contrast, when ω is near one, banks set prices making

risky claims unattractive to depositors unless a high nominal rate keeps the risk premium

high.

We see that under n2 = 5%, reserves are sufficiently costly for banks to take almost no

leverage. At even higher levels of n, the economy enters financial autarky (see Corollary

2): the credit market shuts down and both types of agents hold all their wealth in the risky

endowment claim at all levels of ω. This is why under n2 = 5% portfolio demand is relatively

flat in ω for both types of agents.

C. The price of risk and the risk premium

The top panel of Figure 3 shows how the Sharpe ratio (top panel) and risk premium (bottom

panel) of the endowment claim change with the interest rate policy. As noted above, the

effective risk aversion in the economy is higher at the higher nominal rate, and this is indeed

reflected in a higher Sharpe ratio. At moderate levels of ω between 0.2 and 0.4, the price of

risk goes up by a factor of between two and four in going from the low-rate policy n1 = 0%

to the high-rate policy n2 = 5%. The effect is even stronger at higher levels of ω, rising to

an almost ten-fold increase near ω = 1.

The upper value of the Sharpe ratio near 0.3 is due to the high risk aversion of depositors.

When rates are high and depositors are required to hold almost 100% of their wealth in risky

claims, the price of risk approaches γBσD, its value in an economy solely inhabited by the

more risk averse agents.

The bottom panel of Figure 3 shows that the increase in the risk premium largely tracks

the increase in the Sharpe ratio. At ω between 0.2 and 0.4, the risk premium rises from 0.15–

0.3% under n1 = 0% to near 0.6% under n2 = 5%. The small differences in the shapes of the

risk premium and Sharpe ratio curves are due to changes in the volatility of the endowment

claim induced by the two policies.

D. Volatility

Figure 4 plots the volatility of returns. Although cash flow volatility is constant, return

volatility is time varying. Moreover, it exceeds cash flow volatility in a hump-shaped pattern.
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Under the low-rate policy n1 = 0%, return volatility peaks near ω = 0.2 at about 0.028, which

is 40% higher than fundamental volatility.

The excess volatility of returns is a result of changes in discount rates. For a given

nominal rate policy, the aggregate discount rate is determined by a weighted average of the

risky-asset demands of the two agent types. The weights depend on ω. At moderate values

of ω, banks take significant leverage and at the same time command enough wealth to affect

prices. As a result, in this region a shock to the endowment has a large effect on banks’

wealth share ω. This makes aggregate risk tolerance and the discount rate volatile, which

in turn makes realized prices volatile. By contrast, when either type of agent dominates the

economy, returns do not change the risk tolerance of the representative investor by much

and there is little variation in discount rates. Return volatility is then close to fundamental

volatility.

Note that excess volatility is much lower under the high-rate policy n2 = 5%. This is

because bank leverage is reduced so shocks do little to change the wealth distribution and

by extension discount rates. Figure 4 thus shows that a low interest rate policy is associated

with greater endogenous risk.

We note that return volatility is higher than fundamental volatility because discount

rates are “counter-cyclical”. The presence of leverage implies that a positive endowment

shock disproportionately raises the net worth of banks, which lowers effective aggregate risk

aversion and the discount rate. As a result, endowment shocks and discount rate shocks

reinforce each other, amplifying realized returns.

E. The real interest rate

Figure 5 plots the equilibrium real interest rate under the two nominal interest rate policies.

We see that the real rate is actually lower under the high nominal rate policy n2 = 5% than

under n1 = 0%. This result is due to the impact of policy on aggregate risk aversion. When

nominal rates are high, the allocation of risk is suboptimal, which raises the precautionary

savings motive of the representative investor and pushes down the real interest rate.

The difference between the real rates under the two policies is greatest near ω = 1. Recall

that the same pattern holds for depositors’ portfolio holdings in Figure 2. At high nominal

rates, depositors retain a large amount of risk and so the real rate falls.

It may seem surprising that the increase in the nominal rate has opposing effects on the
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risk premium and risk free rate. Yet, this is a direct consequence of the higher nominal

rate increasing aggregate risk aversion. Higher risk aversion increases both risk prices and

precautionary savings. The risk premium rises and the (real) interest rate falls.13

F. Valuations

Figure 6 plots the wealth-consumption ratio under the two policies. Although a higher

nominal rate has opposing effects on the risk premium and real risk-free rate, the net impact

on the value of the endowment claim is unambiguous. For all values of ω, the valuation

ratio is higher under the low-rate policy n1. The effect is strongest near the middle of the

state-space where the value of the endowment claim is about 15% higher under n1.

The sign of the net impact of nominal rates on valuations is a function of the EIS.

When the EIS is greater than one, greater risk aversion reduces demand for assets causing

valuations to fall. In this case the rise in the risk premium exceeds the fall in the interest

rate. In contrast, when the EIS is less than one, the opposite occurs and valuations actually

rise in risk aversion.

While the higher nominal rate uniformly decreases valuations, the size of the impact is

non-monotonic in ω. In particular, it is highest at intermediate values of ω, when the wealth

levels of banks and depositors are comparable. In this region, the deleveraging induced by

high nominal rates has a large impact on the allocation of risk: it causes demand for risky

assets and the supply of deposits to shrink substantially. In contrast, when ω is near zero,

a reduction in leverage has little effect on allocations since banks hold few assets. Similarly,

when ω is close to one, the supply of deposits is low regardless of the nominal rate. Thus,

the effect of monetary policy on valuations is largest when aggregate risk sharing (measured

either by aggregate leverage or aggregate deposits), is at its greatest extent.

G. Wealth distribution

While the nominal rate has no effect on aggregate leverage when ω equals zero or one, it

still has an effect on the price of the endowment claim, as Figure 6 shows. This is due to

the impact that the nominal rate has on the dynamics of the wealth distribution. At higher

13The same result obtains in homogeneous economies in a comparative static with respect to risk aversion.
Specifically, in a homogeneous economy with RRA γ and EIS ψ, we have ∂

∂γ (µ− r) = σ2 > 0 and ∂
∂γ r =

− 1
2σ

2 (1 + 1/ψ) < 0.
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nominal rates, banks take less risk and their wealth tends to grow more slowly. As a result,

the stationary distribution for their wealth share, ω centers around a lower value. This is

shown in Figure 7, which depicts this stationary distribution under the two nominal rate

policies.

Since a higher nominal rate diminishes the expected future size of banks, it increases

the expected aggregate risk aversion of the economy, and hence also discount rates. This

dynamic effect on prices via expected future risk aversion is in addition to the local, direct

effect of higher nominal rates on risk taking. Below, we further explore the dynamic asset

price effects of changes in interest rates by looking at policy shocks and forward guidance.

H. Reserves

Figure 8 plots the ratio of the value of reserves to total wealth (G) under each policy. The

wealth share of reserves is very small under the high nominal rate policy n2 = 5%, and for

most values of ω it is much greater under n1 = 0%. Since higher nominal rates make holding

reserves more costly, banks hold less reserves (and take less leverage). Indeed, if the interest

rate is high enough as to induce financial autarky (Corollary 2) reserves holdings fall to zero.

As the nominal rate decreases, banks take more leverage and hold a larger share of

reserves on their balance sheets. In Figure 8, the increase in equilibrium reserves holdings

in moving from policy n2 to a zero-interest rate policy is large, especially at intermediate

values of ω. Indeed, near ω = 0.2, the wealth share of reserves G rises to almost 0.1. This

occurs because under a zero nominal rate there is no cost to holding reserves. In fact, at

that point there is no difference between holding reserves and holding bonds.

Figure 8 further shows that reserves holdings depend on the relative size of bank wealth

ω. The relationship is non-monotonic. Holding the nominal rate fixed, equilibrium reserves

holdings at first increase in banks’ wealth, and then start to decrease. This result shows

that aggregate reserves can both increase and decrease independently of any change in the

stance of monetary policy as measured by the nominal rate.

The relation between bank wealth and reserves reflects the aggregate leverage in the

economy, ω
(
wAS − 1

)
. When bank wealth ω is small, aggregate leverage is small even though

per dollar banks are highly levered (wAS − 1 is high). As banks’ wealth increases, their per-

dollar leverage decreases but it does so less rapidly at first as the risk premium remains high.

Aggregate leverage therefore increases. As bank wealth continues to rise, however, per-dollar
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leverage starts to decline more rapidly. This occurs as risk prices decline due to the increased

amount of risk-tolerant capital. Aggregate leverage decreases and it approaches zero as ω

approaches one. This pattern is responsible for the hum-shaped value of total reserves in

Figure 8.

Figure 9 shows the growth rate in the quantity of reserves required to implement the

low and high nominal rate policies, n1 and n2. This rate is characterized in Proposition 3.

Note that reserves growth is higher under n2 than n1. The reason is that in order to obtain

a higher nominal rate, the central bank must make the cost of holding reserves higher. It

does so by issuing reserves at a higher rate, which reduces the rate at which existing reserves

appreciate, creating higher inflation. The rise in inflation makes the higher nominal rate

consistent with the real interest rate.

Looking across the range of the wealth share ω, the growth rate of reserves is lowest

between 0.2 and 0.5. This is also the region where the real value of reserves G is relatively

flat in ω (see Figure 8). In this case, from Proposition 3, the demand for reserves is stable,

so money growth is approximately the sum of inflation and expected wealth growth, which

is close to the growth in output. In this region, the central bank can maintain a steady

nominal rate with steady reserves growth.

In contrast, money growth rises steeply at low or high levels of ω. When ω is low, the

value of reserves is also small since aggregate leverage is small (banks are highly levered

but they have little capital). At the same time, banks earn a high risk premium, so their

wealth is expected to grow quickly. This means that all else equal, the aggregate value of

reserves is expected to rise. To keep the capital gain on reserves from being too high, and

hence the cost of holding reserves, the nominal rate, too low, the central bank must increase

the growth rate of reserves. At the other end, if ω is high, then it is also expected to fall,

causing demand for reserves to rise as bank leverage increases. Again, to achieve the desired

nominal rate the central bank must increase the growth rate of reserves to prevent them from

appreciating too quickly. Note that at either extreme the required growth rate in reserves is

unbounded since as ω approaches zero or one, the aggregate value of reserves vanishes (see

Figure 8).

Turning to the volatility of reserves growth, the picture is asymmetric. When ω is

low, bank leverage is high, so a positive endowment shock has a strong positive impact

on the demand for reserves. To avert unexpected deflation, the quantity of reserves must

be increased quickly. For the high rate policy n2, demand for reserves rises more slowly,

and the required response is less aggressive. When ω is high, however, leverage is low and
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endowment shocks have a smaller impact on the wealth distribution. Hence, the effect on the

reserves demand is much smaller. In this case the central bank does not need to intervene

as aggressively.

Overall, Figure 9 shows that in normal times (intermediate ω values) the central bank

can maintain its policy stance with steady reserves growth close to the sum of endowment

growth and the target inflation rate. By contrast, in a downturn, when bank wealth is low, it

must increase the rate of reserves growth and also intervene more aggressively when shocks

arrive in order to maintain a stable nominal rate.

VI. Dynamic policies

So far we have restricted attention to constant interest rate policies. We now analyze two

settings in which dynamic policies play a central role. The first is one in which the central

bank has already lowered the nominal rate to zero, and yet it wishes to further support asset

prices. In the literature this situation is often referred to as hitting the “zero lower bound”.

We show how in this situation the central bank can support asset prices by guiding down

investors’ expectations of future nominal interest rates, i.e. “forward guidance”.

Our second setting examines the effect of an interest rate policy that responds to neg-

ative economic shocks by decreasing nominal rates. This type of policy is exemplified by

“Greenspan put”, the notion that the Federal Reserve responds to negative shocks in asset

markets by cutting interest rates.

A. The zero lower bound and forward guidance

The monetary policy literature usually posits that the nominal rate cannot go below zero.

This bound arises endogenously in the model in this paper. Mathematically speaking, the

nominal rate must be nonnegative because it equals the Lagrange multiplier on the reserves

constraint. More intuitively, the nominal rate reflects the tightness of the constraint on

banks’ risk taking. When the nominal rate is zero, banks are satiated in their demand for

risk, as shown in Proposition 2. In this case, their weight in the risky asset equals the optimal

weight for an unconstrained investor. Banks have no desire to increase risk taking beyond

this point.

If the central bank did try to decrease the nominal rate below zero, banks would borrow
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deposits to invest in reserves, rather than in risky assets. Since reserves are riskless, this

combination would represent an arbitrage. The resulting demand for reserves would then

force the nominal rate back up to zero. This asymmetry between positive and negative

nominal rates reflects the fact that the reserves requirement forces banks to hold a minimum

amount of reserves, but does not prevent them from holding excess reserves.

Nevertheless, the central bank can still use monetary policy to influence asset prices by

changing the course of expected future interest rates. This is illustrated in Figure 10. The

top panel plots two nominal rate policies. Both policies set the nominal rate to zero when

bank capital ω is low, as in a financial crisis. Under policy nfg,2 (red squares), the nominal

rate increases once bank capital recovers to a value of ω = 0.25. In contrast, policy nfg,1

(blue triangles) delays the increase in the nominal rate until ω = 0.3. Viewed from states

where ω < 0.25, it is meant to capture the idea of the central bank providing investors with

guidance that rates will remain low for a longer period.

The bottom panel of Figure 10 plots the ratio of the prices of the endowment claim under

the two policies, Pfg,1/Pfg,2. We focus on values of ω less than 0.25, where the nominal rate

is zero under both policies. The plot shows that even though the nominal rate is at its lower

bound, the expectation that future rates will be lower under policy nfg,1 has a substantial

impact on the current price of the endowment claim. For example, for ω = 0.25 the price of

the endowment claim is around 4% higher under the forward guidance policy nfg,1.

Guiding future nominal rates down increases prices by inducing a decrease in future

discount rates. Investors expect that assets will be worth more in the future, and they are

therefore willing to pay more for them today. Note that this effect is purely dynamic, it does

not work by changing the cost of taking leverage today since this cost is already zero.

Finally, note that prices are higher under nfg,1 than under nfg,2 even when ω is such that

both policies have equally high nominal rates. The reason is that prices reflect the possibility

that ω will be low in the future.

B. Greenspan put

As a second example of a state-contingent policy, we analyze the impact of a “Greenspan

put”.14 Within the context of our model, we interpret a Greenspan put as a policy that

14The term dates to the late 1990s when critics faulted Federal Reserve chairman Alan Greenspan for
“encouraging excessive risk-taking by creating what came to be called ‘the Greenspan put’, that is, the belief
that the Fed would, if necessary, support the economy and therefore the stock market” (Blinder and Reis
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reduces nominal interest rates in the event of a large enough sequence of negative shocks.

Specifically, we consider the simple example of a constant benchmark and a Greenspan put

alternative defined as

ngp,1 (ωt) = 0.04 (31)

ngp,2 (ωt) = min

{
0.05,

0.05

0.3
ωt

}
. (32)

Under policy ngp,2, the nominal rate rises from 0% at ω = 0 at a constant rate before reaching

5% at ω = 0.3 at which point it levels off. Thus, a sequence of negative shocks that pushes

the bank capital share ω below 0.3 triggers progressive rate decreases. The level of the

constant benchmark ngp,1 is set so that the two policies have similar unconditional average

nominal rates (integrated against the stationary distribution of ω).

The results are presented in Figure 11. The top left panel plots the two policies, while

the top right panel displays the wealth-consumption ratio. The Greenspan put policy ngp,2

results in lower prices when ω is high as it implements a higher nominal rate. However, when

ω approaches the cutoff 0.3 from above, the valuation under ngp,2 approaches that under the

benchmark ngp,1. This occurs because of the nearing prospect of lower nominal rates. As ω

falls below 0.3, the valuation under n2,gp flattens out and even mildly increases, whereas it

falls under ngp,1. In this way, the central bank is supporting asset prices by cutting nominal

rates. As ω continues to fall however, there is little room for further rate cuts and valuations

begin to fall steeply so that they are nearly equal under the two policies at ω = 0. The

Greenspan put policy therefore has the effect of stabilizing prices in a moderate downturn

but it cannot forestall a severe price decline in a highly adverse scenario.

The bottom left panel of Figure 11 plots the risk premium. When ω is high, the higher

nominal rates of the Greenspan put policy result in a higher risk premium. As ω declines

towards 0.3, the stabilization effect of the policy results in reduced risk premia. Once rates

actually start falling past 0.3, the risk premium drops precipitously as a result of the aggres-

sive rate cutting. However, when ω nears zero, prices are set to fall even more steeply than

under the benchmark policy, so the risk premium under ngp,2 eventually that under ngp,1.

The bottom right panel of Figure 11 plots volatility. The pattern here is also driven by

the behavior of prices. Under the Greenspan put policy ngp,2, volatility is lower when ω is

high. This is due to the higher nominal rate in this region, which suppresses risk taking and

stabilizes aggregate risk aversion. As ω declines towards 0.3, it dips further as the prospect of

2005).
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intervention keeps prices from falling. Past 0.3, the “put” goes into the money and the rate

cutting kicks in, causing volatility to fall even further. In this way, the Greenspan put policy

is able to reduce volatility in moderate downturns. However, if ω declines even further, the

temporary support runs out and prices enter a steep descent. As a result, the Greenspan

put results in higher volatility in severe downturns.

VII. Policy shocks

In the baseline model the interest-rate policy gives the nominal rate as a function of the

single state variable ω. The only shock is the endowment growth shock and there is no

independent monetary policy shock. Hence, in examining the impact of different nominal

rates on equilibrium, we have so far compared across equilibria under different nominal rate

rules. In this section we extend the model to incorporate an independent shock to the interest

rate policy.

We model the monetary policy shock as exogenous. Under this shock the central bank

“surprises the market” by raising or lowering nominal rates independently of the endowment

growth shock. A positive shock has two effects. The first is direct: it increase banks’ cost of

taking leverage. This is the same effect as in the baseline comparison across policies. The

second, indirect effect is that a surprise rate change impacts prices and causes the wealth

distribution to change. This change in the state variable produces second-round effects on

prices that amplify the direct impact of the rate change.

A. Model extension

We alter the policy rule with two objectives in mind. First, we want to allow for independent

policy shocks. These shock the nominal rate away from a benchmark policy rule that agents

know. As under the baseline model, this benchmark rule is a function of ω. At the same

time, we do not want the nominal rate to stray too far from the benchmark rule. This leads

to a clearer interpretation of both the benchmark rule and the ensuing quantitative results.

To that end, let nb (ωt) ∈ [n, n] be the benchmark policy rate and suppose the nominal

rate nt follows the process

dnt = −κn
[
nt − nb (ωt)

]
dt+ (nt − n) (n− nt)σndBn

t , (33)
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where dBn are the policy shocks, which we assume are independent of the endowment growth

shocks dB. The nominal rate tends to drift towards the benchmark rate nb (ωt) at the rate

κn. Note that due to the structure of the diffusive component, n is bounded below by n and

above by n.

Since shocks to n are persistent, the equilibrium now depends on two state variables, the

wealth share ω and nominal rate n. Moreover, the dynamics of ω now depend on n, so that

µω = µω (ω, n) and σω = σω (ω, n). Hence, we rewrite all endogenous functions in terms of

the two state variables. For example, F = F (ω, n). Furthermore, we maintain the same

notation for the diffusions, but now the exposures (i.e., σ) are 2× 1 vectors whose first and

second components correspond to the endowment shock dB and the policy shock dBn. The

rest of the model, including the reserve requirement, is unchanged.

We now state the form of the agent’s value function and optimal portfolio choice under

the extended model, leaving the full derivation to the Appendix.

Proposition 4. The agents’ value functions are given by

V (W,ω, n) =

(
W 1−γ

1− γ

)
J (ω, n)

1−γ
1−ψ , (34)

where J (ω, n) represents the agents’ optimal consumption-wealth ratio, c∗ = J . Banks take

leverage (wAS > 1) when (and only when)

λn < γB − γA (35)

−
[(

1− γA

1− ψA

)
JAn
JA
−
(

1− γB

1− ψB

)
JBn
JB

][ Fn
F

(n− n)2 (n− n)2 σ2
n

σ2
D +

(
Fn
F

)2
(n− n)2 (n− n)2 σ2

n

]
.

In this case, their holdings of the endowment claim are given by

wAS =
1

γ

{
µ− r
σ′σ

− λn (36)

+

(
1− γ
1− ψ

)[
Jω
J
ω (1− ω)

(
σ′ωσ

σ′σ

)
+
Jn
J

(n− n) (n− n)
(σ2σn
σ′σ

)]}
.

Proof. The proof is contained in Appendix B.

The solution of the extended model generally follows that of the benchmark model. We

note two differences. First, the portfolio demand (36) includes a hedging term for policy

shocks. Second, the boundary of the region in which banks take leverage in n × ω space
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(equation 35) depends on the difference in hedging demands between the two agent types.

The reason is that, even though ω becomes locally deterministic in the no-leverage region,

n does not.

B. Results

To illustrate the model with policy shocks, we set nb = 0.03, n = 0.00, n = 0.06, κn =

0.01, and σn = 5. A high persistence (low κn) for policy shocks increases their impact on

valuations, while the boundaries n and n keep the nominal rate from drifting very far away

from the benchmark policy. Figure B.1 in Appendix B plots the joint stationary density of

n and ω under the model to give a sense of the distribution of these state variables.

Figure 12 shows the impact of a policy shock that raises the nominal interest rate from

1% to 4%, at different values of ω. As in the benchmark case, the increase in the nominal

rate leads to a higher risk premium, lower real interest rate, and lower valuation of the

endowment claim. Since the shock is highly persistent, the effects are similar to the changes

observed in the benchmark model across the high and low nominal rate policies.

Figure 12 further shows that policy shocks have a second-round effect on prices. This

occurs because in changing prices the interest rate shock causes a change in the wealth dis-

tribution. This is a result of the differences in risk taking across agent types. When the

nominal rate is 1%, banks employ high levels of leverage. As a result, the fall in the value of

the wealth claim due to the nominal rate increase causes them to lose wealth disproportion-

ately. The top left panel in the figure shows the fall in banks’ wealth share ω. The change

in the wealth distribution is greatest when ω is between one quarter and one third, since at

this point banks’ wealth share is significant and their leverage is high.

The top right panel shows that the wealth redistribution effect amplifies the first-round

fall in prices. The dashed red line isolates the direct effect of the policy shock on the valuation

ratio, calculated by holding ω constant. The total effect, given by the solid red line, also

incorporates the additional price impact of the policy shock due to the induced change in the

wealth distribution. By reducing the size of bank balance sheets, higher rates reduce banks’

capacity to bear risk, causing prices to fall further. Hence, the total effect is always greater

than the direct effect. This amplification resembles the financial accelerator of Bernanke,

Gertler, and Gilchrist (1999), except it is driven by policy shocks.

The bottom panels of Figure 12 show that under these parameters the amplification
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arises mainly through the real interest rate rather than the risk premium. Looking first at

the risk premium, the indirect effect of the policy shock is small, as seen in the narrow gap

between the direct and total effects, though the two go in the same direction. This effect is

comparatively small because at these parameters leverage is quite low at the high nominal

rate and hence the risk premium is nearly flat in ω.

Turning to the real interest rate, the first-round effect of the policy shock is negative, as

in the baseline model. However, because the shock shifts the wealth distribution towards

the risk averse depositors who have a strong precautionary motive, the second-round effect

actually to raises the real rate. In this way, the policy shock dampens the fall in the real

interest rate, leading to a greater fall in prices.

We note that policy shocks in our model have pronounced asymmetric effects. In partic-

ular, a rate hike leads to greater amplification than a rate drop. The reason is that at higher

rates banks take less leverage, so the wealth distribution is not as significantly affected when

prices change.

VIII. Conclusion

Contemporary monetary policy is substantially concerned with the functioning of the finan-

cial system and with valuations in the markets for risky assets. Through their effects on

financial institutions, central bank interventions drive not only the level of interest rates in

the economy, but also the level of risk premia.

We present an asset pricing framework that enables us to study the relationship between

monetary policy and risk premia in an environment with no nominal rigidities. When raising

deposits to invest in risky assets is subject to a reserve-type requirement, the nominal interest

rate represents the effective cost of leverage. Lower rates lead to more risk taking and lower

though more volatile risk premia. Unexpected rate changes affect bank balance sheets and

have amplified effects. A zero lower bound reflects satiation in risk taking and the central

bank can support asset prices further through forward guidance.
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ardous times for monetary policy: what do twenty-three million bank loans say about the

effects of monetary policy on credit risk?. Econometrica, forthcoming.

Kashyap, Anil K, and Jeremy C Stein, 1994. Monetary policy and bank lending. in Monetary

policy . pp. 221–261 The University of Chicago Press.

Kashyap, Anil K, and Jeremy C. Stein, 2000. What do a million observations on banks

say about the transmission of monetary policy?. The American Economic Review 90, pp.

407–428.

Kashyap, Anil K, Jeremy C Stein, and David W Wilcox, 1993. Monetary policy and credit

conditions: Evidence from the composition of external finance. American Economic Review

83.

Kiyotaki, Nobuhiro, and John Moore, 1997. Credit cycles. Journal of Political Economy 105.

Krishnamurthy, Arvind, and Annette Vissing-Jorgensen, 2012. The aggregate demand for

treasury debt. Journal of Political Economy 120, 233–267.

Kuo, Dennis, David Skeie, and James Vickery, 2010. How well did libor measure bank

wholesale funding rates during the crisis?. Unpublished manuscript, Federal Reserve Bank

of New York.

Landier, Augustin, David Sraer, and David Thesmar, 2013. Banks exposure to interest rate

risk and the transmission of monetary policy. Discussion paper, National Bureau of Eco-

nomic Research.

Longstaff, Francis A., and Jiang Wang, 2012. Asset pricing and the credit market. Review

of Financial Studies 25, 3169–3215.

Stein, Jeremy C., 1998. An adverse-selection model of bank asset and liability management

with implications for the transmission of monetary policy. The RAND Journal of Eco-

nomics 29, pp. 466–486.

Stein, Jeremy C, 2012. Monetary policy as financial stability regulation. The Quarterly

Journal of Economics 127, 57–95.

Wang, Jiang, 1996. The term structure of interest rates in a pure exchange economy with

heterogeneous investors. Journal of Financial Economics 41, 75–110.

35



Woodford, Michael, 1990. Public debt as private liquidity. The American Economic Review

80, pp. 382–388.

, 2010. Financial intermediation and macroeconomic analysis. The Journal of Eco-

nomic Perspectives 24, 21–44.

36



Appendix A

Proof of Proposition 1. Conjecture that V has the form in (20). After substituting for V
and f from (3), wealth drops out of the HJB equation (19):

0 = max
c,wS ,wM

(
1− γ

1− 1/ψ

)[(
c

J
1

1−ψ

)1−1/ψ

− (ρ+ κ)

]
(A.1)

+ (1− γ)
[
r − c+ wS (µ− r)− γ

2
(wSσ)2 − wMn+Gn

]
+

(
1− γ
1− ψ

)[
Jω
J
ω (1− ω)µω + (1− γ)

Jω
J
ω (1− ω)wSσωσ

]
+

1

2

(
1− γ
1− ψ

)[(
1− γ
1− ψ

− 1

)(
Jω
J

)2

+
Jωω
J

]
ω2 (1− ω)2 σ2

ω

+ (1− γ) θλ
[
wM − λσ2 (wS − 1)

]
+ (1− γ) θ0wM .

The FOC for consumption gives

c = J. (A.2)

Substituting and rearranging,

(ρ+ κ)

(
1− γ

1− 1/ψ

)
= max

wS ,wM
(1− γ)

(
1/ψ

1− 1/ψ

)
J (A.3)

+ (1− γ)
[
r + wS (µ− r)− γ

2
(wSσ)2 − wMn+Gn

]
+

(
1− γ
1− ψ

)[
Jω
J
ω (1− ω)µω + (1− γ)

Jω
J
ω (1− ω)wSσωσ

]
+

1

2

(
1− γ
1− ψ

)[(
1− γ
1− ψ

− 1

)(
Jω
J

)2

+
Jωω
J

]
ω2 (1− ω)2 σ2

ω

+ (1− γ) θλ
[
wM − λσ2 (wS − 1)

]
+ (1− γ) θ0wM .

Portfolio demand is characterized by

wS =
1

γ

[
µ− r
σ2
− λθλ +

(
1− γ
1− ψ

)
Jω
J
ω (1− ω)

σω
σ

]
(A.4)

n = θB0 + θλ. (A.5)

Let

wS =
1

γ

[
µ− r
σ2
− λn+

(
1− γ
1− ψ

)
Jω
J
ω (1− ω)

σω
σ

]
(A.6)

wS =
1

γ

[
µ− r
σ2

+

(
1− γ
1− ψ

)
Jω
J
ω (1− ω)

σω
σ

]
. (A.7)
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There are three possible cases:

wS =


wS if wS ≤ 1
1 if wS ≤ 1 < wS
wS if 1 < wS.

(A.8)

The corresponding multipliers are

{θ0, θλ} =


{n, 0} if wS ≤ 1{

γ
λ

(1− wS) , γ
λ

(wS − 1)
}

if wS ≤ 1 < wS
{0, n} if 1 < wS.

(A.9)

Substituting into the HJB equation and simplifying,

ρ = 1/ψJ + (1− 1/ψ)
(
r + λσ2θλ +Gn

)
(A.10)

−1/ψ

(
Jω
J
ω (1− ω)µω +

1

2

[(
ψ − γ
1− ψ

)(
Jω
J

)2

+
Jωω
J

]
ω2 (1− ω)2 σ2

ω

)

+
1

2

(
1− 1/ψ

γ

)[
µ− r
σ2
− λθλ +

(
1− γ
1− ψ

)
Jω
J
ω (1− ω)

σω
σ

]2
σ2.

The market-clearing equation (17) for the endowment claim implies that only one type of
agents, if any, takes leverage, so the equilibrium must be in one of the three cases,

wAS > 1, wBS < 1 (A.11)

wAS = 1, wBS = 1 (A.12)

wAS < 1, wBS > 1. (A.13)

Substituting,

{
wAS , w

B
S

}
=


{
wAS , w

B
S

}
if wBS ≤ 1 < wAS

{1, 1} if wAS , w
B
S ≤ 1 < wAS , w

B
S ,{

wAS , w
B
S

}
if wAS ≤ 1 < wBS .

(A.14)

Call these three cases (i), (ii), and (iii).

Under case (i),

wAS =
1

γA

[
µ− r
σ2
− λn+

(
1− γA

1− ψA

)
JAω
JA

ω (1− ω)
(σω
σ

)]
(A.15)

wBS =
1

γB

[
µ− r
σ2

+

(
1− γB

1− ψB

)
JBω
JB

ω (1− ω)
(σω
σ

)]
. (A.16)

Note that

σω
σ

=
1

1− ω
(
wAS − 1

)
. (A.17)
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Stock-market clearing gives

1 = ωwAS + (1− ω)wBS (A.18)

= ωwAS + (1− ω)
1

γB

{
γAwAS + λn (A.19)

−
[(

1− γA

1− ψA

)
JAω
JA
−
(

1− γB

1− ψB

)
JBω
JB

]
ω
(
wAS − 1

)}
.

This gives a linear equation for wAS in terms of exogenous and conjectured quantities. The
solution is

wAS =
1− 1

γB
(1− ω)λn− 1

γB

[(
1−γA
1−ψA

)
JAω
JA
−
(

1−γB
1−ψB

)
JBω
JB

]
ω (1− ω)

ω + (1− ω) γA

γB
− 1

γB

[(
1−γA
1−ψA

)
JAω
JA
−
(

1−γB
1−ψB

)
JBω
JB

]
ω (1− ω)

. (A.20)

We need to verify wAS > 1, which gives

λn < γB − γA. (A.21)

From here we can get (µ− r) /σ2, and σω/σ. This also gives σ and hence σω, and as a result,
µ− r. To get the drift of ω, apply Ito’s Lemma to (4) and use WA +WB = P to obtain

dω

ω (1− ω)
=

(
dWA

WA
− dWB

WB

)
−
(
dWA

WA
− dWB

WB

)(
dP

P

)
. (A.22)

Substituting for the evolution of aggregate type-A and type-B wealth gives (4) and

µω =
(
wAS − wBS

)
(µ− r) + λσ2

(
wBS − 1

)
n−

(
JA − JB

)
− σωσ. (A.23)

This can be plugged into the dynamics of returns to get µ:

dR =
dD/F

D/F
+ Fdt (A.24)

=
dD

D
− dF

F
−
(
dD

D

)(
dF

F

)
+

(
dF

F

)2

+ Fdt (A.25)

µ = µD + F − Fω
F
ω (1− ω) (µω + σωσD) (A.26)

+

[(
Fω
F

)2

− 1

2

Fωω
F

]
ω2 (1− ω)2 σ2

ω

σ = σD −
Fω
F
ω (1− ω)σω. (A.27)

From here, get r using r = µ− (µ− r). Finally, plug the constraints θAλ = n and θBλ = 0 into
the HJB equations to verify the conjectures for JA and JB. To obtain the value of reserves,
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use the reserves-market clearing equation (18),

{
wAM , w

B
M

}
=

{
G

ω
, 0

}
. (A.28)

The binding leverage constraint pins down the value of reserves:

G = ωλσ2
(
wAS − 1

)
. (A.29)

Under case (ii), {
wAS , w

B
S

}
= {1, 1} (A.30){

wAM , w
B
M

}
= {0, 0} . (A.31)

The stock market clears and G = 0. From here, we get σω = 0 and so σ = σD. Next, use

µω = −
(
JA − JB

)
. (A.32)

in the dynamics of returns (A.26) and (A.27) to get µ and σ. Substituting into the HJB
equations and simplifying,

ρ = 1/ψJ + (1− 1/ψ)
(
µ− γ

2
σ2
)
− 1/ψ

Jω
J

[κ (ω − ω) + ω (1− ω)µω] . (A.33)

This case requires

λn >
∣∣γA − γB∣∣ . (A.34)

The real interest rate lies inside a range between a lending and a borrowing rate.

Case (iii) is analogous to Case (i) with the roles reversed. It requires λn < γA − γB,
which is ruled out by assumption. This completes the proof.

Proof of Proposition 2. Banks take leverage under case (i) in the proof of Proposition 1
above. This case From (A.21), requires λn < γB − γA. Banks’ portfolio demand is then
given by (A.15).

Proof of Proposition 3. Equation (26) follows from the fact that reserves are costly and
therefore the reserve requirement binds, see (A.29). To obtain (27), apply Ito’s Lemma
to Πt = Mtπt and use the fact that inflation −dπt/πt = ι (ωt) dt = [n (ωt)− r (ωt)] dt is lo-
cally deterministic (equations 9 and 10). Finally, apply Ito’s Lemma to Πt = GtPt to obtain
(28).
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Appendix B

This Appendix contains the derivations for the model with policy shocks. Denote the dy-
namics of ω by

dω = κ (ω − ω) dt+ ω (1− ω)
[
µω (ω, n) dt+ σω (ω, n)′ dB

]
. (B.1)

Write the return process

dR =
dP +Ddt

P
(B.2)

= µ (ω, n) dt+ σ (ω, n)′ dB, (B.3)

the instantaneous real risk-free rate as r = r (ω, n), and the dividend yield as F = F (ω, n).
Applying Ito’s Lemma gives

µ = µD + F − Fω
F

[κ (ω − ω) + ω (1− ω) (µω + σ′ωσD)]− Fn
F
κn (n− nb)

+

[(
Fω
F

)2

− 1

2

Fωω
F

]
ω2 (1− ω)2 σ′ωσω +

[(
Fn
F

)2

− 1

2

Fnn
F

]
(n− n)2 (n− n)2 σ2

n

+2

[(
Fω
F

)(
Fn
F

)
− 1

2

Fωn
F

]
ω (1− ω) (n− n) (n− n)σω,2σn (B.4)

σ =

[
σD
0

]
− Fω

F
ω (1− ω)σω −

Fn
F

(n− n) (n− n)

[
0
σn

]
. (B.5)

The reserve requirement is

wM ≥ max
[
λσ′σ (wS − 1) , 0

]
. (B.6)

The wealth dynamics are as in the benchmark case.

Proof of Proposition 4. Dropping agent subscripts and applying LaGrange multipliers θλVWW
and θ0VWW on the leverage and non-negativity constraints, the HJB equation is

0 = max
c,wS ,wM

f (cW, V ) + VWW [r − c+ wS (µ− r)− wMn+Gn] (B.7)

+Vω [κ (ω − ω) + ω (1− ω)µω] + Vnκn (n− nb)

+VWωWω (1− ω)wSσ
′
ωσ + VWnWwS (n− n) (n− n)σ2σn +

1

2
VWWW

2w2
Sσ
′σ

+
1

2
Vωωω

2 (1− ω)2 σ′ωσω + Vωnω (1− ω) (n− n) (n− n)σnσω,2

+
1

2
Vnn (n− n)2 (n− n)2 σ2

n + θλVWW [wM − λσ′σ (wS − 1)] + θ0VWWwM .

41



Conjecture that the value function has the form

V (W,ω, n) =

(
W 1−γ

1− γ

)
J (ω, n)

1−γ
1−ψ . (B.8)

Then wealth drops out of the HJB equation:

0 = max
c,wS ,wM

1

1− 1/ψ

[
c1−1/ψJ1/ψ − (ρ+ κ)

]
+ r − c+ wS (µ− r)− γ

2
w2
Sσ
′σ (B.9)

−wMn+Gn− 1/ψ

1− 1/ψ

[
Jω
J

[κ (ω − ω) + ω (1− ω)µω] +
Jn
J
κn (n− nb)

+ (1− γ)
Jω
J
ω (1− ω)wSσ

′
ωσ + (1− γ)

Jn
J
wS (n− n) (n− n)σ2σn

]
−1

2

1/ψ

1− 1/ψ

[(
1− γ
1− ψ

− 1

)(
Jω
J

)2

+
Jωω
J

]
ω2 (1− ω)2 σ′ωσω

− 1/ψ

1− 1/ψ

[(
1− γ
1− ψ

− 1

)(
Jω
J

)(
Jn
J

)
+
Jωn
J

]
ω (1− ω) (n− n) (n− n)σnσω

−1

2

1/ψ

1− 1/ψ

[(
1− γ
1− ψ

− 1

)(
Jn
J

)2

+
Jnn
J

]
(n− n)2 (n− n)2 σ2

n

+θλ [wM − λσ′σ (wS − 1)] + θ0wM .

The FOC for consumption gives

c = J. (B.10)

Substituting and rearranging,

0 = max
wS ,wM

1/ψJ − (ρ+ κ)

1− 1/ψ
+ r + wS (µ− r)− γ

2
w2
Sσ
′σ − wMn+Gn (B.11)

− 1/ψ

1− 1/ψ

[
Jω
J

[κ (ω − ω) + ω (1− ω)µω] +
Jn
J
κn (n− nb)

+ (1− γ)
Jω
J
ω (1− ω)wSσ

′
ωσ + (1− γ)

Jn
J
wS (n− n) (n− n)σ2σn

]
−1

2

1/ψ

1− 1/ψ

[(
1− γ
1− ψ

− 1

)(
Jω
J

)2

+
Jωω
J

]
ω2 (1− ω)2 σ′ωσω

− 1/ψ

1− 1/ψ

[(
1− γ
1− ψ

− 1

)(
Jω
J

)(
Jn
J

)
+
Jωn
J

]
ω (1− ω) (n− n) (n− n)σnσω,2

−1

2

1/ψ

1− 1/ψ

[(
1− γ
1− ψ

− 1

)(
Jn
J

)2

+
Jnn
J

]
(n− n)2 (n− n)2 σ2

n

+θλ [wM − λσ′σ (wS − 1)] + θ0wM .
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Portfolio demand is characterized by

wS =
1

γ

{
µ− r
σ′σ

− λθλ (B.12)

+

(
1− γ
1− ψ

)[
Jω
J
ω (1− ω)

(
σ′ωσ

σ′σ

)
+
Jn
J

(n− n) (n− n)
(σ2σn
σ′σ

)]}
n = θB0 + θλ. (B.13)

Let

wS =
1

γ

{
µ− r
σ′σ

− λn (B.14)

+

(
1− γ
1− ψ

)[
Jω
J
ω (1− ω)

(
σ′ωσ

σ′σ

)
+
Jn
J

(n− n) (n− n)
(σ2σn
σ′σ

)]}
wS =

1

γ

{
µ− r
σ′σ

(B.15)

+

(
1− γ
1− ψ

)[
Jω
J
ω (1− ω)

(
σ′ωσ

σ′σ

)
+
Jn
J

(n− n) (n− n)
(σ2σn
σ′σ

)]}
.

There are three possible cases:

wS =


wS if wS ≤ 1
1 if wS ≤ 1 < wS
wS if 1 < wS.

(B.16)

The corresponding multipliers are

{θ0, θλ} =


{n, 0} if wS ≤ 1{

γ
λ

(1− wS) , γ
λ

(wS − 1)
}

if wS ≤ 1 < wS
{0, n} if 1 < wS.

(B.17)

Substituting into the HJB equation and simplifying,

ρ+ κ = 1/ψJ + (1− 1/ψ)
(
r + λσ′σθλ +Gn+

γ

2
w2
Sσ
′σ
)

(B.18)

−1/ψ

[
Jω
J
ω (1− ω) [κ (ω − ω) + ω (1− ω)µω] +

Jn
J
κn (n− nb)

]
−1/ψ

2

[
Jωω
J
ω2 (1− ω)2 σ′ωσω + 2

Jωn
J
ω (1− ω) (n− n) (n− n)σnσω,2

+
Jnn
J

(n− n)2 (n− n)2 σ2
n

]
− 1/ψ

2

(
ψ − γ
1− ψ

)[(
Jω
J

)
ω (1− ω)σω

+

(
Jn
J

)
(n− n) (n− n)

[
0
σn

]]′ [(
Jω
J

)
ω (1− ω)σω +

(
Jn
J

)
(n− n)

[
0
σn

]]
.
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The markets for goods, stocks, and reserves must clear (the bond market clears by Walras’
law):

ωcA + (1− ω) cB = F (B.19)

ωwAS + (1− ω)wBS = 1 (B.20)

ωwAM + (1− ω)wBM = G. (B.21)

Market-clearing implies that only one type of agents, at most, takes leverage, so there are
three possible cases in equilibrium:

wAS > 1, wBS < 1 (B.22)

wAS = 1, wBS = 1 (B.23)

wAS < 1, wBS > 1. (B.24)

Call these three cases (i), (ii), and (iii). Under case (i),

wAS =
1

γA

{
µ− r
σ′σ

− λn (B.25)

+

(
1− γA

1− ψA

)[
JAω
JA

ω (1− ω)

(
σ′ωσ

σ′σ

)
+
JAn
JA

(n− n) (n− n)
(σ2σn
σ′σ

)]}
wBS =

1

γB

{
µ− r
σ′σ

(B.26)

+

(
1− γB

1− ψB

)[
JBω
JB

ω (1− ω)

(
σ′ωσ

σ′σ

)
+
JBn
JB

(n− n) (n− n)
(σ2σn
σ′σ

)]}
.

Note that

σ′ωσ

σ′σ
=

1

1− ω
(
wAS − 1

)
(B.27)

σ2σn
σ′σ

=

[
1 +

Fω
F
ω
(
wAS − 1

)] −Fn
F

(n− n) (n− n)σ2
n

σ2
D +

(
Fn
F

)2
(n− n)2 (n− n)2 σ2

n

.

Stock-market clearing gives

1 = ωwAS + (1− ω)wBS (B.28)

= ωwAS + (1− ω)
1

γB

{
γAwAS + λn (B.29)

−
[(

1− γA

1− ψA

)
JAω
JA
−
(

1− γB

1− ψB

)
JBω
JB

]
ω
(
wAS − 1

)
−
[
1 +

Fω
F
ω
(
wAS − 1

)]
·
[(

1− γA

1− ψA

)
JAn
JA
−
(

1− γB

1− ψB

)
JBn
JB

] [ −Fn
F

(n− n)2 (n− n)2 σ2
n

σ2
D +

(
Fn
F

)2
(n− n)2 (n− n)2 σ2

n

]}
.

This gives a linear equation for wAS in terms of exogenous and conjectured quantities. The

44



solution is

wAS =

1− 1
γB

(1− ω)λn− 1
γB

[(
1−γA
1−ψA

)
JAω
JA
−
(

1−γB
1−ψB

)
JBω
JB

]
ω (1− ω)

− 1
γB

[(
1−γA
1−ψA

)
JAn
JA
−
(

1−γB
1−ψB

)
JBn
JB

] [ Fn
F [(1−ω)−FωF ω(1−ω)](n−n)2(n−n)2σ2

n

σ2
D+(FnF )

2
(n−n)2(n−n)2σ2

n

]
ω + (1− ω) γA

γB
− 1

γB

[(
1−γA
1−ψA

)
JAω
JA
−
(

1−γB
1−ψB

)
JBω
JB

]
ω (1− ω)

− 1
γB

[(
1−γA
1−ψA

)
JAn
JA
−
(

1−γB
1−ψB

)
JBn
JB

] [ Fn
F [−FωF ω(1−ω)](n−n)2(n−n)2σ2

n

σ2
D+(FnF )

2
(n−n)2(n−n)2σ2

n

] .(B.30)

We need to verify wAS > 1:

λn < γB − γA (B.31)

−
[(

1− γA

1− ψA

)
JAn
JA
−
(

1− γB

1− ψB

)
JBn
JB

][ Fn
F

(n− n)2 (n− n)2 σ2
n

σ2
D +

(
Fn
F

)2
(n− n)2 (n− n)2 σ2

n

]
.

From here we can get (µ− r) / (σ′σ), (σ′ωσ) / (σ′σ), and (σ2σn) / (σ′σ). This also gives σ and
hence σω, and as a result, µ− r.

Next, calculate wBS (verify wBS < 1) and calculate

µω =
(
wAS − wBS

)
(µ− r) + λσ′σ

(
wBS − 1

)
n−

(
JA − JB

)
− σ′ωσ. (B.32)

This can be plugged into the dynamics of returns to get µ, which also gives r. Finally, plug
the constraints θBλ = n and θAλ = 0 into the HJB equations to verify the conjectures for JA

and JB.

Money-market clearing gives

{
wAM , w

B
M

}
=

{
0,

G

1− ω

}
. (B.33)

The binding leverage constraint pins down the value of reserves:

G = (1− ω)λσ′σ
(
wBS − 1

)
. (B.34)

Under case (ii), {
wAS , w

B
S

}
= {1, 1} (B.35){

wAM , w
B
M

}
= {0, 0} . (B.36)

The stock market clears and G = 0. From here, we get σω = 0 and so σ = σD. Next, use
µω = −

(
JA − JB

)
in the dynamics of returns to get µ and σ. Substituting into the HJB
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equations and simplifying,

ρ+ κ = 1/ψJ + (1− 1/ψ)

[
µ+

(
1− γ
1− ψ

)
Jn
J

(n− n) (n− n)σnσ2 −
γ

2
σ′σ

]
(B.37)

−1/ψ

[
Jω
J

[κ (ω − ω) + ω (1− ω)µω] +
Jn
J
κn (n− nb)

]
−1/ψ

2

[(
ψ − γ
1− ψ

)(
Jn
J

)2

+
Jnn
J

]
(n− n)2 (n− n)2 σ2

n.

This case requires

λn >
∣∣γA − γB
+

[(
1− γA

1− ψA

)
JAn
JA
−
(

1− γB

1− ψB

)
JBn
JB

]( Fn
F

(n− n)2 (n− n)2 σ2
n

σ2
D +

(
Fn
F

)2
(n− n)2 (n− n)2 σ2

n

)∣∣∣∣∣ .(B.38)

The real interest rate lies inside a range between a lending and a borrowing rate.

Case (iii) is analogous to Case (i) with the roles reversed. It requires

λn < γA − γB (B.39)

+

[(
1− γA

1− ψA

)
JAn
JA
−
(

1− γB

1− ψB

)
JBn
JB

][ Fn
F

(n− n)2 (n− n)2 σ2
n

σ2
D +

(
Fn
F

)2
(n− n)2 (n− n)2 σ2

n

]
.

This completes the proof.

We solve the model using Chebyshev collocation with complete polynomials up to order
N in ω and n with N = 30.
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Figure 1: Fed Funds-TBill spread vs. Fed Funds rate. The figure plots the
20-week moving averages of the Fed Funds rate (solid red line) and the difference
between the Fed Funds rate and the 1-month Treasury bill rate (dashed blue
line). The sample is 7/25/1980 to 5/9/2008.
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Figure 2: Risk taking. The figure plots the risky claim portfolio weight
for agent A (top panel) and agent B (bottom panel) under the n1 = 0% (blue
triangles) and n2 = 5% (red squares) interest-rate policies.
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Figure 3: The price of risk and the risk premium. The figure plots the
Sharpe ratio (top panel) and risk premium (bottom panel) of the endowment
claim under the n1 = 0% (blue triangles) and n2 = 5% (red squares) interest
rate policies.
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Figure 4: Volatility. The figure plots the volatility of the endowment claim
under the n1 = 0% (blue triangles) and n2 = 5% (red squares) interest rate
policies.
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Figure 5: Risk-free rate. The figure plots the risk-free rate under the n1 = 0%
(blue triangles) and n2 = 5% (red squares) interest rate policies.
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Figure 6: Valuations. The figure plots the wealth-consumption ratio under
the n1 = 0% (blue triangles) and n2 = 5% (red squares) interest rate policies.
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Figure 7: The Stationary Density of Banks’ Wealth Share (ω). The
figure plots the stationary density of ω, the share of wealth owned by banks,
under the n1 = 0% (blue triangles) and n2 = 5% (red squares) interest rate
policies.
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Figure 8: Ratio of real reserves to wealth. The figure plots the ratio of
the real value of reserves to wealth G under the n1 = 0% (blue triangles) and
n2 = 5% (red squares) interest rate policies.



Reserves growth rate drift

0 0.2 0.4 0.6 0.8 1
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

ω

Reserves growth rate loading

0 0.2 0.4 0.6 0.8 1
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

ω

Figure 9: Quantity of reserves dynamics. The figure plots the drift and diffusion of the
growth rate in the quantity of reserves M under the n1 = 0% (blue triangles) and n2 = 5%
(red squares) interest rate policies.
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Figure 10: Impact of forward guidance on prices. The figure plots the impact of
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(blue triangles) and nfg,2 (red squares). The bottom panel plots the ratio of the price of
the endowment claim for nfg,1 relative to nfg,2 (Pfg,1 / Pfg,2).
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Stationary density
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Figure B.1: Stationary density: model with policy shocks. Stationary
density of the state variables ω and n in the extended model with policy shocks.
We set n = 0.00, n = 0.06, κn = 0.01, and σn = 5. The density is obtained by
solving the forward Kolmogorov equation of the system. The contour lines are
at increments of 50.
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