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FAST COMMUNITY DETECTION BY SCORE
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Consider a network where the nodes split into K different com-
munities. The community labels for the nodes are unknown and it is
of major interest to estimate them (i.e., community detection). Degree
Corrected Block Model (DCBM) is a popular network model. How to
detect communities with the DCBM is an interesting problem, where
the main challenge lies in the degree heterogeneity.

We propose a new approach to community detection which we
call the Spectral Clustering On Ratios-of-Eigenvectors (SCORE).
Compared to classical spectral methods, the main innovation is to use
the entry-wise ratios between the first leading eigenvector and each of
the other leading eigenvectors for clustering. Let X be the adjacency
matrix of the network. We first obtain the K leading eigenvectors,
say, η̂1, . . . , η̂K , and let R̂ be the n×(K−1) matrix such that R̂(i, k) =
η̂k+1(i)/η̂1(i), 1 ≤ i ≤ n, 1 ≤ k ≤ K−1. We then use R̂ for clustering
by applying the k-means method.

The central surprise is, the effect of degree heterogeneity is largely
ancillary, and can be effectively removed by taking entry-wise ratios
between η̂k+1 and η̂1, 1 ≤ k ≤ K − 1.

The method is successfully applied to the web blogs data and the
karate club data, with error rates of 58/1222 and 1/34, respectively.
These results are much more satisfactory than those by the classical
spectral methods. Also, compared to modularity methods, SCORE
is computationally much faster and has smaller error rates.

We develop a theoretic framework where we show that under mild
conditions, the SCORE stably yields successful community detection.
In the core of the analysis is the recent development on Random
Matrix Theory (RMT), where the matrix-form Bernstein inequality
is especially helpful.

1. Introduction. Driven by the emergence of online “networking com-
munities” (e.g. Facebook, LinkedIn, MySpace, Google+) and by the growing
recognition of scientifically central networked phenomena (e.g., gene regu-
latory networks, citation networks, road networks), we see today a great
demand for methods to infer the presence of network phenomena, partic-
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ularly in the presence of large datasets. Tools and discoveries in this area
could potentially reshape scientific data analysis and even have impacts on
daily life (friendship, marketing, security).

Large complex network data sets pose an array of new problems where
statisticians can make substantial contributions and scientific discoveries.
In particular, solidly founded principled approaches are needed to make
predictions and to detect structures.

A problem that is of major interest is “network community detection”
[7, 8, 9, 14, 22, 23, 24, 25, 32, 33]. Given an n-node (undirected) graph
N = (V,E), where V = {1, 2, . . . , n} is the set of nodes and E is the set
of edges. We believe that V partitions into a small number of (disjoint)
subsets or “communities”. The nodes within the same community share
some common characteristics. The community labels are unknown to us
and the main interest is to estimate them.

An iconic example is the web blogs data [1], which was collected right after
the 2004 presidential election. Each node of the network is a web blog about
US politics, and each edge indicates a hyperlink between them (we neglect
the direction of the hyperlink so that the graph is undirected). In this net-
work, there are two perceivable communities: political liberal and political
conservative. It is believed that the web blogs share some common political
characteristics (liberal or conservative, one supposes) that are significantly
different between two communities, but are not significantly different among
the nodes in the same community.

1.1. Degree-corrected block model (DCBM). In the spirit of “all models
are wrong, but some are useful” [5], we wish to find a network model that
is both realistic and mathematically tractable.

The stochastic block model (BM) is a classic network model. The BM
is mathematically simple and relatively easy to analyze [3]. However, it is
too restrictive to reflect some prominent empirical characteristics of real
networks. For example, the BM implies that the nodes within each com-
munity have more or less the same degrees. However, this conflicts with
the empirical observation that in many natural networks, the degrees follow
approximately a power-law distribution [12, 19].

In a different line of development, there are the p∗ model and the ex-
ponential random graph model (ERGM) [12]. Compared to the BM, these
models are more flexible, but, unfortunately, are also more complicated and
so comparably much harder to analyze.

DCBM is a recent model proposed by [18], which has become increasingly
popular in network analysis [7, 8, 18, 30, 33]. Compared to the BM, DCBM
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allows for degree heterogeneity and is much more realistic: for each node, it
uses a free parameter to model the degree.

The comparison of DCBM with the p∗ model and the ERGM [12, 19]
is not obvious, given that all of them use a large number of parameters.
However, in sections below, we propose a new spectral method where we
show that in the DCBM, the degree heterogeneity parameters are largely
ancillary: as far as community detection concerns, it is almost unnecessary
to estimate these heterogeneity parameters. For this reason, the DCBM is
much easier to analyze than the p∗ or the ERGM model.

Perhaps the easiest way to describe the DCBM is to start with the case
of two communities (discussion on the case of K communities is in Section
2). Recall that N = (V,E) denotes an undirected network. We suppose the
nodes split into two (disjoint) communities as follows:

V = V (1) ∪ V (2).

Let X be the n × n adjacency matrix of N . In the DCBM, we fix (n + 3)
positive parameters (a, b, c) and {θ(n)(i)}ni=1 and assume that

• X is symmetric, with 0 on the diagonals (so there is no self connec-
tions);
• The coordinates on the upper triangular {X(i, j) : 1 ≤ i < j ≤ n} are

independent Bernoulli random variables satisfying

P (Xij = 1) = θ(n)(i)θ(n)(j)


a, i, j ∈ V (1),

c, i, j ∈ V (2),
b, otherwise.

As n ranges, we assume (a, b, c) are fixed but θ(n)(i) may vary with n. The
superscript “n” becomes tedious, so for simplicity, we drop it from now on.
We call {θ(i) : 1 ≤ i ≤ n} the degree heterogeneity parameters or hetero-
geneity parameters for short.

For identifiability, we assume

max{a, b, c} = 1, θmax ≤ g0,

where θmax = max1≤i≤n{θ(i)} and g0 ∈ (0, 1) is a constant.
It is probably more convenient if we rewrite the model in the matrix form.

The following notations are associated with the heterogeneity parameters
{θ(i)}ni=1 and are frequently used in this paper. Let θ and Θ be the n × 1
vector and the n× n diagonal matrix defined as follows:

(1.1) θ =
(
θ(1), θ(2), . . . , θ(n)

)′
, Θ(i, i) = θ(i), 1 ≤ i ≤ n.
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Moreover, for k = 1, 2, let 1k be the n×1 indicator vector such that 1k(i) = 1
if i ∈ V (k) and 0 otherwise. With these notations, we can rewrite

X = E[X] +W, W ≡ X − E[X],

where E[X] denotes the expectation of X (also an n× n matrix), and

E[X] = Ω− diag(Ω), Ω ≡ Θ
[
a111

′ + c121
′
2 + b(111

′
2 + 121

′
1)
]
Θ.

Note that the entries in the upper triangular of W are independently (but
not identically) distributed as centered-Bernoulli; such W is known as a
“Wigner”-type matrix [29]. Note also that, while it seems 1k are known,
they are not as they depend on the unknown community partition that is
of primary interest to us in this paper.

1.2. Where is the information: spectral analysis heuristics. In [28], John
Tukey mentioned an idea that can be served as a general guideline for statis-
tical inference. Tukey’s idea is that before we tackle any statistical problem,
we should think about “which part of the data contains the information”:
the “best” procedure should capture the most direct information containing
the quantity of interest.

In our setting, the quantities of the interest are the community labels.
Recall that

X = Ω− diag(Ω) +W.

Seemingly, Ω contains the most direct information of the community labels:
the matrix W only contains noisy and indirect information of the labels, and
the matrix diag(Ω) only has a negligible effect, compared to that of Ω.

In light of this, we take a close look on Ω. For k = 1, 2, let θ(k) be the
n× 1 vector such that

θ(k)(i) = θ(i) if i ∈ V (k), and θ(k)(i) = 0 otherwise, 1 ≤ i ≤ n.

For any vector x, let ‖x‖ denote the `2-norm. Write for short

dk = ‖θ(k)‖/‖θ‖, k = 1, 2.

Note that ‖θ(k)‖ can be interpreted as the overall degree intensities of the
k-th community.

Definition 1.1. We call an eigenvalue λ of a matrix A simple if the
algebraic multiplicity of λ is 1 [15].
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In most part of the paper, the eigenvalues of interest are simple. The
following lemma is a special case of Lemma 2.1, which is proved in Section
7 (note that Θ is the diagonal matrix as in (1.1)).

Lemma 1.1. If ac 6= b2, then the matrix Ω has two simple nonzero eigen-
values

1

2
‖θ‖2

(
ad21 + cd22 ±

√
(ad21 − cd22)2 + 4b2d21d

2
2

)
,

and the associated eigenvectors η1 and η2 (with possible non-unit norms) are

Θ

(
bd22 · 11 +

1

2

[
cd22 − ad21 ±

√
(ad21 − cd22)2 + 4b2d21d

2
2

]
· 12
)
.

The key observation is as follows. Let r be the n × 1 vector of the
coordinate-wise ratios between η1 and η2 (up to normalizations)

r(i) =
η2(i)/‖η2‖
η1(i)/‖η1‖

, 1 ≤ i ≤ n.

Define the n× 1 vector r0 by

(1.2) r0(i) =


1, i ∈ V (1),

−
(
ad21−cd22+

√
(ad21−cd22)2+4b2d1d2
2bd1d2

)2

, i ∈ V (2).

Then by Lemma 1.1 and basic algebra,

r ∝ r0.

We are now ready to answer Tukey’s query on “where is the information”:
the sign vector of r is the place that contains the most direct information of
the community labels!

The central surprise is that, as far as community detection concerns, the
heterogeneity parameters {θ(i)}ni=1 are largely ancillary, and their influence
can be largely removed by taking the coordinate-wise ratio of η1 and η2 as
above (though r still depends on (θ, n), but the dependence is only through
the overall degree intensities d1 and d2). This allows us to successfully extract
the information containing the community labels without any attempt to
estimate the heterogeneity parameters.

Compared to many approaches (e.g., the modularity approach to be intro-
duced below) where we attempt to estimate the heterogeneity parameters,
our approach has advantages. The reason is that many real-world networks
(e.g., web blogs network) are sparse in the sense that the degrees for many
nodes are small. If we try to estimate the heterogeneity parameters of such
nodes, we get relatively large estimation errors which may propagate to
subsequent studies.
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1.3. SCORE: a new approach to spectral community detection. The above
observations motivate the following procedure for community detection,
which we call Spectral Clustering On Ratios-of-Eigenvectors (SCORE).

• (a). Let η̂1 and η̂2 be the two unit-norm eigenvectors of X associated
with the largest and the second largest eigenvalues (in magnitude),
respectively.
• (b). Let r̂ be the n×1 vector of coordinate-wise ratios: r̂(i) = η̂2(i)/η̂1(i),

1 ≤ i ≤ n.
• (c). Clustering the labels by applying the k-means method to the vec-

tor r̂, assuming there are ≤ 2 communities in total.

The key insight is that, under mild conditions, we expect to see that,

η̂1 ≈ η1/‖η‖1, η̂2 ≈ η2/‖η2‖,

where η1 and η2 are the two eigenvectors of Ω as in Lemma 1.1. Comparing
with (1.2), we expect to have

r̂ ≈ r ∝ r0.

In Step (c), we use the k-means method. Alternatively, we could use the
hierarchical clustering method [13]. For most of the numeric study in this pa-
per, we use the k-means package in matlab. In comparison, the performance
of the k-means method and the hierarchical method are mostly similar, and
that of the latter is slightly worse some times.

Note that since r̂ is one-dimensional, both methods are equivalent to sim-
ple thresholding. That is, for some threshold t, we classify a node i, 1 ≤ i ≤ n,
to one community if r̂(i) > t, and to the other community otherwise. Seem-
ingly, the simplest choice is t = 0. Alternatively, one could use a recursive
algorithm to determine the threshold: (a) estimate the community labels by
applying the simple thresholding to r̂ with t = 0, (b) update the threshold
with the estimated labels, say, following (1.2) with (a, b, c, d1, d2) estimated,
(c) repeat (a)-(b) with the threshold updated recursively.

1.4. Applications to the web blogs data and the karate club data. We
investigate the performance of the SCORE with two well-known networks:
the web blogs network and the karate club network. The web blogs network is
introduced earlier in the paper. The network has a giant component which
we use for the analysis. The giant component consists of 1222 nodes and
16714 edges. Each blog is manually labeled either as liberal or conservative
in [1] which we use as the ground truth. The karate club network can be
found in [31]. The network consists of 34 nodes and 136 edges, where each
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node represents a member in the club. Due to the fission of the club, the
network has two perceivable communities: Mr Hi’s group and John’s group.
All members are labeled in [31, Table 1] which we use as the ground truth.

Consider the web blogs network first. In the left panel of Figure 1, we
plot the histogram of the vector r̂, which clearly shows a two mode pattern,
suggesting that there are two underlying communities. In the right panel of
Figure 1, we plot the entries of r̂ versus the indices of the nodes, with red
crosses and blue circles representing the nodes from the liberal and conserva-
tive communities, respectively; the plot shows that the red crosses and blue
circles are almost completely separated from each other, suggesting that two
communities can be nicely separated by applying simple thresholding to r̂.
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Fig 1. The vector r̂ (web blogs data). Left: histogram of r̂. Right: plot of the entries of r̂
versus the node indices (red cross: liberal; blue circle: conservative).

The error rate of the SCORE is reasonably satisfactory. In fact, if we use
the procedure following steps (a)-(c), the error rate is 58/1222. The error rate
stays the same if we replace the k-means method in (c) by the hierarchical
method (for both methods, we use the built-in functions in matlab; the
linkage for the hierarchical method is chosen as “average” [13]).

Alternatively, we can use simple thresholding in step (c). In fact, the k-
means method is equivalent to simple thresholding with t = −0.7. Moreover,
the error rate is 82/1222 if we set t = 0, and the error rate is 55/1222 if we
set t = −0.6 (this is the “ideal threshold”, the threshold we would choose
if we know the true labels; if only!). The results are tabulated in Table 1,
along with error rates by some other methods, to be discussed below.

We consider the karate network next. Similarly, in Figure 2, we plot the
coordinates of r̂ associated with the karate data versus the node indices,
with red crosses and blue circles representing the nodes from the group of
Mr. Hi and the group of John [31], respectively. Our method has an error
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rate of 1/34 if in step (c) we either use the k-means method or the simple
thresholding with t = 0 (the error rate is 0/34 if we set t as the “ideal
threshold”). See Table 1 for details.
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Fig 2. Plot of the entries of r̂ versus the node indices (results are based on karate club
network; red cross: Mr. Hi’s group; blue circle: John’s group).

1.5. Comparison with classical spectral clustering methods. As a spectral
clustering approach, the success of the SCORE prompts the following ques-
tion: would classical spectral methods work well too? By classical spectral
method, we mean the following procedure.

• (a’). Obtain the two leading (unit-norm) eigenvectors η̂1 and η̂2 of X.
• (b’). Viewing (η̂1, η̂2) as a bivariate data set with sample size of n, ap-

ply the k-means method assuming there are at most two communities.

Alternatively, one may use the following variation, which is studied in [25].

• (a”). Obtain an n×n diagonal matrix S defined by S(i, i) =
∑n

j=1X(i, j),
1 ≤ i ≤ n.
• (b”). Apply (a’)-(b’) to S−1/2XS−1/2.

We call the two procedures ordinary PCA (oPCA) and normalized PCA
(nPCA), respectively; PCA stands for Principle Component Analysis.

It turns out that both PCA approaches work unsatisfactorily. In fact, for
the web blogs data, the error rates of oPCA and nPCA are 437/1222 and
600/1222, respectively, and for the karate data, the error rates are 1/34 for
both methods. See Table 1 for details.

The main reason why the two PCA methods perform unsatisfactorily is
that, different coordinates of the two leading eigenvectors are heavily affected
by the degree inhomogeneity; see Lemma 1.1. In the left panel of Figure 3,
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we display the two leading eigenvectors of X, based on the web blogs data.
The coordinates of two vectors are highly skewed to the right, reflecting
serious degree heterogeneity.
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Fig 3. Left: plot of the first leading eigenvector of X (x-axis) versus the second leading
eigenvector of X (y-axis). Middle: plot of the first leading eigenvector of S−1/2XS−1/2

(x-axis) versus the second leading eigenvector of S−1/2XS−1/2 (y-axis). Right: zoom in of
the middle panel. Results are based on the web blogs data, with red representing liberal and
blue representing conservative.

Somewhat surprisingly, though nPCA intends to correct degree hetero-
geneity, the correction is not particularly successful. In the right two panels
of Figure 3 (the rightmost panel is the zoom-in version of the panel to its
left), we plot the two leading eigenvectors of S−1/2XS−1/2. It is seen that
some of the coordinates of η̂2 are unduly large, compared to the remaining
coordinates.

The underlying reason for the unsatisfactory behavior of nPCA is two-
fold. First, many nodes in the web blogs data have very small degrees, so
S only contain relatively poor estimates for the heterogeneity parameters.
Second, even when the heterogeneity parameters are given, it is not always
helpful to correct them as in nPCA, because when we try to correct the
degree heterogeneity, we tend to increase the noise level at the same time.
See Section 2.8 for detailed discussion.

1.6. Comparison with modularity methods. Modularity methods are well-
known approaches to community detection. The methods have many vari-
ants, including the well-known approach by [18]. For this paper, we use the
recent approach by Zhao et al [33], which can be viewed as a variant of the
modularity method in [18]; the approach is reported to have similar behavior
to that in [18].
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Fig 4. Histogram of errors by modularity methods for the karate data (left) and the web
blogs data. The results are based on 100 independent repetitions.

In principle, modularity methods are computationally NP-hard [3], as it
searches exhaustively over all possible community partitions, and pick the
one that optimizes the so-called modularity functional. To mitigate this dif-
ficulty, many heuristic algorithms are proposed to approximate the theoretic
optimizer. In particular, Zhao et al. [33] proposes a heuristic algorithm of
this type which they call the tabu algorithm.

Compared to the SCORE and the classical spectral approaches, the tabu
algorithm is computationally much more expensive, and is increasingly so
when the size or complexity of the network increases. The tabu algorithm is
also relatively unstable: like most modularity methods, the tabu algorithm
depends on the initial guess of the community partition, and the algorithm
may not converge to the true partition with a “bad” initial guess. In theory,
the instability can be alleviated by increasing the number of searches, but
this is at the expense of substantially longer computational time.

The performance of the tabu algorithm for the karate network and web
blogs network is illustrated in Figure 4 (left: karate; right: web blogs), where
for each network, the histogram is based on 100 independent repetitions (the
error rates are random for each depends on the initial guess of the community
partition, generated randomly).

The most prominent problem of the tabu algorithm (and modularity
methods in general) is that, in quite a few repetitions (9 out of 100 for
the web blogs data, and 19 out of 100 for the karate data), the algorithm
fails to converge to the true community partition and yields poor results.
For the karate data, the number of clustering errors have a mean of 4.85 and
a standard deviation of 5.7. For the web blogs data, the number of clustering
errors have a mean of 104.5 and a standard deviation of 145.5. If we remove
the “outliers” (the 9 outlying repetitions for the web blogs data and the 19
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SCORE PCA Modularity
t = 0 t = −0.7 t = −0.6 ordinary normalized

web blogs 82 58 55 437 600 104.5 (SD: 145.4)

karate 1 1 0 1 1 4.9 (SD: 5.7)

Table 1
Comparison of number of errors. For SCORE, thresholding at t = −0.7 is the same as

k-means; t = −0.6 is the ideal threshold. The result of modularity method depends on the
starting point and is random, where mean and standard deviation (SD) are computed

based on 100 independent repetitions. The web blogs data has 1222 nodes and the karate
data has 34 nodes.

outlying repetitions of the karate data), then for the karate data, the errors
have a mean of 2.1 and a standard deviation of 0.6, and for the web blogs
data, the mean is 59, and the standard deviation of 2.4. See Table 1.

In summary, it is fair to say that compared to SCORE, the tabu algorithm
underperforms, especially as it is computationally much more expensive.

That the tabu algorithm is more stable for the web blogs data than the
karate data is unexpected (as the karate data has a relatively small size,
we expect that it is relatively easy for the tabu to find the true community
partition). One possible explanation is that the communities in the former
is more strongly structured, so the algorithm converges faster for the web
blogs data than for the karate data.

1.7. Summary. We propose SCORE as a new approach to network com-
munity detection when a DCBM is reasonable. The main innovation is to
use the coordinate-wise ratios of the leading eigenvectors for clustering. In
doing so, we have taken advantage of the fact that the degree heterogeneity
parameters θ(i) are merely nuisance and we can largely remove their effects
without actually estimating them.

We have used the karate club data and the web blogs data to investi-
gate the performances four algorithms: SCORE, oPCA, nPCA, and tabu.
SCORE behaves much more satisfactory than the two PCA methods. It also
outperforms the tabu algorithm: it is much faster, more stable, and has a
smaller error rate.

The paper is closely related to [25] (see also [9]), but is different in im-
portant ways. The focus of this paper is on DCBM where the number of
communities K is small, while the focus of [25] is on BM where K is large.
Our analysis is also very different from that in [33], for we use a much broader
model for the degree heterogeneity parameters θ(i).
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1.8. Content. The remaining part of the paper is organized as follows. In
Section 2, we consider a K-community network with a fixed integer K ≥ 2.
By delicate spectral analysis as in Sections 2.1-2.6, we lay out the framework
under which the SCORE yields consistent estimates of the community labels.
In Sections 2.7, we address the stability of the SCORE, and in Section 2.8,
we re-investigate the nPCA by comparing the so-called Signal Noise Ratio of
the nPCA and that of the oPCA. In Section 3, we suggest some extensions of
the SCORE. The main results are proved in Section 4, where we outline main
technical devises required for the proofs. Numeric investigation is continued
in Section 5, where we compare the SCORE, two PCA approaches, and the
tabu algorithm on simulated data. Section 6 discusses connection between
SCORE and existing literatures. Secondary lemmas are proved in Section 7.

1.9. Notations. In this paper, for two vector u, v with the same size,
(u, v) denotes their inner product. For any fixed q > 0 and any vector x,
‖x‖q denotes the `q-norm. The subscript is dropped for simplicity if q = 2.
For any matrix M , ‖M‖ denotes the spectral norm and ‖M‖F denotes the
Frobenius norm. For two positive sequences {an}∞n=1 and {bn}∞n=1, we say
an ∼ bn if an/bn → 1 as n → ∞, and we say an � bn if there is a constant
c0 > 1 such that 1/c0 ≤ an/bn ≤ c0 for sufficiently large n.

In this paper, the notations θ and Θ are always linked to each other,
where θ denotes the n× 1 vector of degree heterogeneity parameters and Θ
denotes the n× n diagonal matrix satisfying that Θ(i, i) = θ(i), 1 ≤ i ≤ n.
Also, θmin = min1≤i≤n{θ(i)} and θmax = max1≤i≤n{θ(i)}. For a vector ξ,
when all coordinates are positive, we use OSC(ξ) to denote the oscillation
max1≤i,j≤n{ξ(i)/ξ(j)}. Throughout the paper, C denotes a generic positive
constant that may vary from occurrence to occurrence.

2. Main results. In this section, we consider the community detection
problem where the network N = (V,E) has K communities. We start by
describing the SCORE and the DCBM for K-community networks, followed
by spectral analysis on Ω and on X, as well as the consistency of SCORE.
We then address the stability of SCORE and conclude by re-investigating
the normalized PCA.

Throughout the paper, K ≥ 2 is a known integer. See Section 6 for dis-
cussion on the case where K is unknown.

2.1. SCORE when there are K communities. Given an (undirected) net-
work N = (V,E), we assume the network splits into K different communi-
ties. That is, the set of nodes V partitions to K different (disjoint) subsets:

V = V (1) ∪ V (2) . . . ∪ V (K).
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Let X be the adjacency matrix of N , and introduce

(2.3) Mn,K−1,K = {M : n× (K − 1) matrix that has ≤ K distinct rows}.

For convenience, we use the following terminology, so that whenever we
say “leading eigenvectors” or “leading eigenvalues”, we are comparing the
magnitudes of the eigenvalues, neglecting the ±1 signs.

Definition 2.1. Fix 1 ≤ k ≤ n and an n × n symmetric X. We say
λk is the k-th leading eigenvalue of X if λk has the k-th largest magnitude
among all eigenvalues of X, and we say ξk is the k-th leading eigenvector if
it is an eigenvector of X associated with λk.

The SCORE for K-community networks contains the following steps.

• Obtain the K (unit-norm) leading eigenvectors of X: η̂1, η̂2, . . . , η̂K .
• Fixing a threshold Tn, define an n× (K − 1) matrix R̂∗ such that for

all 1 ≤ i ≤ n and 1 ≤ k ≤ K − 1,
(2.4)

R̂∗(i, k) =


R̂(i, k), if |R̂(i, k)| ≤ Tn,
Tn, if R̂(i, k) > Tn,

−Tn, if R̂(i, k) < −Tn,
where R̂(i, k) =

η̂k+1(i)

η̂1(i)
.

• Let M∗ be the matrix satisfying

M∗ = argminM∈Mn,K−1,K
‖R̂∗ −M‖2F .

Write M∗ = [m1,m2, . . . ,mn]′ so that m′i is the i-th row of M∗. Note
that M∗ has at most K distinct rows, say, mi1 ,mi2 , . . . ,miK for some
indices 1 ≤ i1 < . . . < iK ≤ n. We partition all nodes into K commu-
nities V̂ (1), V̂ (2), . . . , V̂ (K) such that V̂ (k) = {1 ≤ j ≤ n : mj = mik}.

Note that the last step is the classical k-means method. We make the follow-
ing remarks. First, when M∗ has less than K distinct rows, we let V̂ (`) = ∅
for all (k + 1) ≤ ` ≤ K. Second, the choice of the threshold Tn is flexible,
and for convenience, we take

(2.5) Tn = log(n)

in this paper. We impose thresholding in (2.4) mainly for technical conve-
nience in the proof of Theorem 2.2. Numeric study in this paper suggests
that no coordinate of R̂ would be unduly large and so the thresholding
procedure in (2.4) is rarely necessary. Last, provided that the largest K
eigenvalues are all simple, the vectors η̂k are uniquely determined, up to a
factor of ±1. Correspondingly, all columns of R̂ are uniquely determined, up
to a factor of ±1; these factors do not affect the clustering results.
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2.2. DCBM when there are K communties. The DCBM forK-community
networks is a direct generalization of the DCBM for two-community net-
works. As before, we assume that the adjacency matrix X satisfies

(2.6) X = E[X] +W, W = X − E[X], E[X] = Ω− diag(Ω),

where Ω is a symmetric matrix, and W is the symmetric “Wigner”-type
matrix where all diagonals are 0 and the upper triangular entries are inde-
pendent centered-Bernoulli random variables with parameters Ω(i, j).

In the core of DCBM is a K ×K matrix

A =
(
A(i, j)

)
1≤i,j≤K .

For positive parameters {θ(i)}ni=1 as before, we extend the n × n matrix Ω
to a more general form such that

(2.7) Ω(i, j) = θ(i)θ(j)A(k, `), if i ∈ V (k) and j ∈ V (`).

Similarly, for identifiability, we fix a constant g0 ∈ (0, 1) and assume that

(2.8) max
1≤i,j≤K

A(i, j) = 1, 0 < θmin ≤ θmax ≤ g0,

where θmin = min1≤i≤n{θ(i)} and θmax = max1≤i≤n{θ(i)}.
Throughout this paper, we assume

(2.9) A is symmetric, non-singular, non-negative and irreducible.

A matrix is non-negative if all coordinates are non-negative. See [15, Page
361] for the definition of irreducible.

In the analysis below, we use n as the driving asymptotic parameter,
and allow the vector θ (and so also the matrix Θ; see (1.1)) to depend
on n. However, we keep (K,A) as fixed. Consequently, there is a constant
C = C(A) > 0 such that ‖A−1‖ ≤ C, where ‖ · ‖ denotes the spectral norm.

Definition 2.2. We call Model (2.6)-(2.9) the K-community DCBM.

The DCBM we use is similar to that in [33] (see also [18]), but is different
in important ways. In their asymptotic analysis, Zhao et al. [33], model
θ(i) as random variables that have the same means and take only finite
values. In our setting, we treat θ(i) as non-random and only impose some
mild regularity conditions and moderate deviations conditions (see below).
Additionally, Zhao et al. [33] need certain conditions on A which we don’t
require. For example, in the special case of K = 2, they require A to be
positive definite, but we don’t. See [33, Page 7] for details.
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2.3. Spectral analysis of Ω. We start by characterizing the leading eigen-
values and eigenvectors of Ω. Recall that

θ = (θ(1), . . . , θ(n))′, V = V (1) ∪ V (2) ∪ . . . V (K).

Similar as before, for 1 ≤ k ≤ K, we let θ(k) be the n× 1 vectors such that

(2.10) θ(k)(i) = θ(i) or 0, according to i ∈ V (k) or not.

Let D be the K ×K diagonal matrix of the overall degree intensities

D(k, k) = ‖θ(k)‖/‖θ‖, 1 ≤ k ≤ K;

note that D depends on θ and so it also depends on n.
The spectral analysis on Ω hinges on theK×K matrixDAD, whereD and

A are as above. The following lemma characterizes the leading eigenvalues
and leading eigenvectors of Ω, and is proved in Section 7.

Lemma 2.1. Suppose all eigenvalues of DAD are simple. Let λ1/‖θ‖2,
λ2/‖θ‖2, . . ., λK/‖θ‖2 be such eigenvalues, arranged in the descending or-
der of the magnitudes, and let a1, a2, . . . , aK be the associated (unit-norm)
eigenvectors. Then the K nonzero eigenvalues of Ω are λ1, λ2, . . ., λK , with
the associated (unit-norm) eigenvectors being

ηk =
K∑
i=1

[ak(i)/‖θ(i)‖] · θ(i), k = 1, 2, . . . ,K.

Note that (ak, ηk) are uniquely determined up to a factor of ±1; such
factors do not affect clustering results.

2.4. Spectral analysis of X. In this section, we characterize the leading
eigenvalues and leading eigenvectors of X.

Consider the eigenvalues first. The study contains two key components,
one is to characterize the spectral norm of the noise matrix W , and the other
is to impose some conditions on the eigen-spacing of the matrix DAD so
that the space spanned by the K leading eigenvectors of Ω are stable up to
noise corruption.

For the first component, recall that θ may depend on n. We suppose

(2.11)
(
log(n)θmax‖θ‖1

)
/‖θ‖4 → 0, as n→∞.

Combining (2.11) with basic algebra, it follows that

(2.12) log(n)/‖θ‖2 → 0,
(
log(n)‖θ‖1‖θ‖33

)
/‖θ‖6 → 0,

which are frequently used in the proof section. The following lemma char-
acterizes the spectral norm of W − diag(Ω).
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Lemma 2.2. If (2.11) holds, then with probability at least 1 + o(n−3),

‖W − diag(Ω)‖ ≤ 4
√

log(n)θmax‖θ‖1.

Lemma 2.2 is proved in Section 7, where the recent result by [27] on
matrix-form Bernstein inequality is very helpful.

We wish that the K leading eigenvalues of X are properly spaced and
all of them are bounded away from 0. To ensure that, we need some mild
conditions on DAD. In detail, for any symmetric K×K matrix A, we denote
the minimum gap between adjacent eigenvalues of A by

(2.13) eigsp(A) = min
1≤i≤K−1

|λi+1 − λi|, λ1 > λ2 . . . > λK .

When any of the eigenvalues of A is not simple, eigsp(A) = 0 by convention.
We assume that there is a constant C > 0 such that for sufficiently large n,

(2.14) eigsp(DAD) ≥ C.

Additionally, we assume the degrees in each communities have comparable
“overall degree intensities”, in that there is a constant h2 > 0 such that

(2.15) max
1≤i,j≤K

{‖θ(i)‖/‖θ(j)‖} ≤ C.

As a result, D has a bounded condition number. Together with (2.9), this
implies that all eigenvalues of DAD are bounded away from 0 by a constant
C > 0. Combining these with Lemma 2.1, the following lemma is a direct
result of Lemma 2.2 and basic algebra (e.g., [2, Page 473]), the proof of
which is omitted.

Lemma 2.3. Consider a DCBM where (2.11), (2.14), and (2.15) hold.
Let λ̂1, λ̂2, . . ., λ̂K be the leading eigenvalues of X, and let λ1/‖θ‖2, λ2/‖θ‖2,
. . ., λK/‖θ‖2 be the nonzero eigenvalues of DAD, both sorted descendingly
in magnitudes. With probability at least 1+o(n−3), the K leading eigenvalues
of X are all simple, and

max
1≤k≤K

{
∣∣λ̂k − λk∣∣} ≤ 4

√
log(n)θmax‖θ‖1.

A direct result of Lemma 2.3 is that, with probability at least 1 + o(n−3),

(2.16) λk � ‖θ‖2, for all 1 ≤ k ≤ K.
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This result is frequently used in the proof section.
Next, we study the leading eigenvectors. From now on, we assume Condi-

tions (2.14)-(2.15) hold, and let λ̂1, λ̂2, . . ., λ̂K be the K leading eigenvalues
as in Lemma 2.3. For 1 ≤ k ≤ K, whenever λ̂k is not an eigenvalue of
W − diag(Ω), let B(k) be the K ×K matrix

B(k)(i, j) =
(
‖θ(i)‖‖θ(j)‖

)−1
(θ(i))′[In−(W−diag(Ω))/λ̂k]

−1θ(j), 1 ≤ i, j ≤ K.

If λ̂k is an eigenvalue of W − diag(Ω), let B(k) be the K ×K matrix of 0.

Lemma 2.4. Consider a DCBM where (2.11), (2.14), and (2.15) hold.
Let {λ̂k}Kk=1 be the eigenvalues of X with the largest magnitudes. There is
an event with probability at least 1 + o(n−3) such that over the event, for
each 1 ≤ k ≤ K, λ̂k is simple, and the associated eigenvector is given by

η̂k =
K∑
`=1

(âk(`)/‖θ(`)‖)[In − (W − diag(Ω))/λ̂k]
−1θ(`),

where âk is an (unit-norm) eigenvector of DADB(k), and λ̂k/‖θ‖2 is the
unique eigenvalue of DADB(k) that is associated with âk.

We remark that η̂k do not necessarily have unit norms, and they are
uniquely determined up to a scaling factor. Among them, η̂1 is particularly
interesting, where provided that the network N = (V,E) is connected, then
all entries of η̂1 are strictly positive (or strictly negative). Also, the associated
eigenvalue λ̂1 is always strictly positive. These results are due to Perron’s
powerful theorem [15, Page 508]; see Section 2.7 for more discussion.

2.5. Characterization of the matrix R̂∗. We now characterize the matrix
R̂∗, defined as in (2.4). Let η1, η2, . . . , ηK be the K leading (unit-norm)
eigenvectors of Ω as in Lemma 2.1. Define an n × (K − 1) matrix R as a
non-stochastic counterpart of R̂∗ by

R(i, k) = ηk+1(i)/η1(i), 1 ≤ k ≤ K − 1, 1 ≤ i ≤ n;

note that ‖ηk‖ = 1. Unlike R̂, |R(i, k)| ≤ C for all i and k (see Lemma 2.1),
so it is unnecessary to impose thresholding as that in (2.4).

We wish to characterize ‖R̂∗ − R‖F , where ‖ · ‖F denotes the Frobenius
norm. To do so, we need to characterize ‖η̂k − ηk‖ and ‖Θ−1(η̂k − ηk)‖ (the
latter is necessary because in the definition of R(i, k), we have η1(i) on the
denominator, which will be shown to be at the magnitude of θ(i); see Section
2.7 for details).
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Towards this end, we need to put some conditions on θ (or equivalently
on Θ), namely the Moderate Deviation conditions on Vectors (MDV) and
the Moderate Deviation conditions on Matrices (MDM), which are used to
control the moderate deviations of norms of vectors, say, Wθ, and norms of
matrices, say, Θ−1W , respectively. The MDV requires that
(2.17)
n∑
i=1

max
{
θ(i),

log(n)θ2max
‖θ‖33

}
≤ C‖θ‖1,

n∑
i=1

max
{ 1

θ(i)
,
log(n)θ2max
θ2(i)‖θ‖33

}
≤

n∑
i=1

C

θ(i)
,

for some constant C > 0, and the MDM requires that

(2.18)
log(n)

θ2min
≤ max{ 1

θmin
‖θ‖1, θmax

n∑
i=1

1

θ(i)
}.

The following short hand notation is used many times below.

(2.19) errn =
‖θ‖33
‖θ‖6

[ n∑
i=1

1

θ(i)
+

log(n)

θmin

(‖θ‖1
‖θ‖2

)2]
.

The following theorem is the corner stone for characterizing the behavior of
SCORE, and is proved in Section 4.

Theorem 2.1. Consider a DCBM where the three regularity conditions
(2.11), (2.14), and (2.15), and the two moderate deviation conditions (2.17)
and (2.18) hold. If Tn = log(n) is as in (2.5), then as n → ∞, with proba-
bility at least 1 + o(n−2), we have that

‖R̂∗ −R‖2F ≤ C log3(n)errn.

For general choice of Tn, the result continues to hold if we replace the
right hand side by C log(n)T 2

nerrn.

2.6. Hamming errors of SCORE. Recall that V = V (1) ∪V (2) . . .∪V (K)

is the true community partition. Introduce the n× 1 vector ` of true labels
such that

`(i) = k if and only if i ∈ V (k), 1 ≤ i ≤ n.

For any community detection procedure, there is a (disjoint) partition V =
V̂ (1)∪ V̂ (2) . . .∪ V̂ (K), so we can similarly define the n×1 vector of estimated
labels by

ˆ̀(i) = k if and only if i ∈ V̂ (k), 1 ≤ i ≤ n.

Especially, let ˆ̀sc = ˆ̀sc(X,Tn, n) be the vector of estimated labels by SCORE.
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For any ˆ̀, the expected number of mismatched labels is

Hp(ˆ̀, `) =
n∑
i=1

P
(
ˆ̀(i) 6= `(i)

)
.

With that being said, we must note that the clustering errors should not
depend on how we label each of the K communities. Towards this end, let

(2.20) SK = {π : π is a permutation of the set {1, 2, . . . ,K}}.

Also, for any label vector ` where the coordinates take value from {1, 2, . . . ,K}
and any π ∈ SK , let π(`) denote the n× 1 label vector such that

π(`)(i) = π(`(i)), 1 ≤ i ≤ n.

With these notations, a proper way to measure the performance of ˆ̀ is to
use the Hamming distance as follows:

Hammn(ˆ̀, `) = min
π∈SK

Hp

(
ˆ̀, π(`)

)
,

For k = 1, 2, . . . ,K, let nk be the size of the k-th community:

nk = |V (k)|.

The following theorem is proved in Section 4, which says that SCORE is
consistent under mild conditions, and is the main result of the paper.

Theorem 2.2. Consider a DCBM where both the three regularity condi-
tions (2.11), (2.14), and (2.15) and the two moderate deviation conditions
(2.17) and (2.18) hold. Suppose as n→∞,

log3(n)errn/min{n1, n2, . . . , nK} → 0,

where errn is as in (2.19). For the estimated label vector ˆ̀sc by the SCORE
where the threshold Tn = log(n) is as in (2.5), there is a constant C > 0
such that for sufficiently large n,

Hammn(ˆ̀sc, `) ≤ C log3(n)errn.

Similarly, for general Tn, the theorem continues to hold if we replace the
right hand side by C log(n)T 2

nerrn.
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2.7. Stability of SCORE. The performance of SCORE hinges on the ma-
trix R̂ defined in (2.4):

R̂(i, k) = η̂k+1(i)/η̂1(i), 1 ≤ i ≤ n, 1 ≤ k ≤ K − 1.

Seemingly, SCORE could be unstable if the denominator η̂1(i) is small (or
even worse, equals to 0) for some i. Fortunately, this is not the case, and un-
der mild conditions, for most i (or for all i with slightly stronger conditions),
η̂1(i) � η1(i) � θ(i). Below, we further characterize the vector (η̂k−ηk), with
emphasis on the case of k = 1.

We start with a lemma on η̂1, which says a coordinate of η̂1 can never be
exactly 0, as long as the network is connected.

Lemma 2.5. Let X be the adjacency matrix of a network N = (V,E), let
λ̂1 be the eigenvalue with the largest magnitude, and let η̂1 be the associated
eigenvector where at least one coordinate is positive. If N is connected, then
both λ̂1 and all coordinates of η̂1 are strictly positive.

Lemma 2.5 is the direct result of Perron’s theorem [15, Section 8.2] on
non-negative matrices, so we omit the proof.

Next, for any n× 1 vector ξ with strictly positive coordinates, define the
coordinate oscillation by

OSC(ξ) = max
1≤i,j≤n

{ξ(i)/ξ(j)}.

The following lemma is proved in Section 7 (note that the i-th coordinate
of Θ−1η1 is η1(i)/θ(i)).

Lemma 2.6. Consider a DCBM where (2.14)-(2.15) holds. We have

OSC(Θ−1η1) ≤ C.

The following lemmas constitute the key component of the proof of The-
orem 2.1, but can also be used to obtain upper bounds for the number of
“ill-behaved” coordinates of η̂1. These lemmas are proved in Section 7.

Lemma 2.7. Consider a DCBM where the conditions of Theorem 2.1
hold. With probability at least 1 + o(n−3), for all 1 ≤ k ≤ K,

‖η̂k − ηk‖2 ≤ C log(n)‖θ‖1‖θ‖33/‖θ‖6.
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Lemma 2.8. Consider a DCBM where the conditions of Theorem 2.1
hold. With probability at least 1 + o(n−3), for all 1 ≤ k ≤ K,

‖Θ−1(η̂k − ηk)‖2 ≤ C log(n)errn.

Recall that errn is defined in (2.19). For Lemma 2.8, a weaker bound is
possible if we simply combine Lemma 2.7 and the fact that ‖Θ−1‖ ≤ 1/θmin.
The current bound is much sharper, especially when only a few θ(i) are small.

We now obtain an upper bound on the number of “ill-behaved” entries of
η̂1. Recall that OSC(Θ−1η1) ≤ C. Fixing a constant c0 ∈ (0, 1), we call the
i-th enty of η̂1 well-behaved if |η̂1(i)/η1(i)− 1| ≤ c0 (say). Let

(2.21) Ŝ = Ŝ(c0, η̂1, η1;X,Ω, n) = {1 ≤ i ≤ n : |η̂1(i)/η1(i)− 1| ≤ c0}.

The following lemma is a direct result of Lemma 2.6 and Lemma 2.8, so we
omit the proof.

Lemma 2.9. Consider a DCBM where the conditions of Theorem 2.1
hold. Fix c0 ∈ (0, 1) and let Ŝ be as in (2.21). Then with probability at least
1 + o(n−3), |V \ Ŝ| ≤ C log(n)errn.

Therefore, as long as log(n)errn/n → 0 when n → ∞, the fraction of
“ill-behaved” coordinates of η̂1 tends to 0 and is negligible.

In principle, provided that some stronger conditions are imposed, the
techniques in this paper (especially those in the proof of Lemmas 2.7-2.8)
can be used to show that with probability at least 1 + o(n−3),

max
1≤i≤n

∣∣∣∣ η̂1(i)η1(i)
− 1

∣∣∣∣ ≤ c0,
where c0 ∈ (0, 1) is a constant. In this case, Theorem 2.2 can be strengthened
into that of with probability at least 1 + o(n−2),

Hammn(ˆ̀sc, `) = 0.

Using terminology in the literature of variable selection [10], this says that
the SCORE has the oracle property, means that it achieves exact recovery
with overwhelming probabilities.

2.8. Remarks on normalized PCA (nPCA). We revisit the normalized
PCA (nPCA) discussed in Section 1.5. In the DCBM, on may expect that
the normalization in the nPCA reduces the effects of degree heterogeneity.
Somewhat surprisingly, this is not always the case. The point is that, when
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we try to correct the degree heterogeneity, we tend to inflate the noise level
at the same time.

Perhaps the best way to appreciate this is to consider the “oracle” sit-
uation where θ(i) are known. In this case, nPCA is almost equivalent to
applying the ordinary PCA (oPCA) to the matrix Θ−1/2XΘ−1/2. Write

Θ−1/2XΘ−1/2 = Θ−1/2ΩΘ−1/2 + Θ−1/2[W − diag(Ω)]Θ−1/2.

We call the ratio between the smallest eigenvalue of Θ−1/2ΩΘ−1/2 (in mag-
nitude) and the spectral norm of Θ−1/2[W −diag(Ω)]Θ−1/2 the Signal Noise
Ratio for nPCA, denoted by nSNR.

Similarly, we use oSNR to denote the Signal Noise Ratio in the case
without normalization (i.e., the ratio between the smallest eigenvalue of Ω
(in magnitude) and the spectral norm of W −diag(Ω)). If the normalization
helps, then we should have nSNR > oSNR.

Now, first, by Lemmas 2.1-2.2, we can roughly say that

(2.22) oSNR = ‖θ‖2/
√

log(n)θmax‖θ‖1.

Additionally, we have the following observations.

• Write Θ−1/2ΩΘ−1/2 = Θ1/2[
∑K

i,j=1A(i, j)1i1
′
j ]Θ

1/2. A direct exten-

sion of Lemma 2.1 is that, if λk is a nonzero eigenvalue of Θ−1/2ΩΘ−1/2,
then λk � ‖θ‖1, 1 ≤ k ≤ K.
• A direct extension of Lemma 2.2 is that, ‖Θ−1/2[W−diag(Ω)]Θ−1/2‖ ≤
C
√

log(n)n, with probability at least 1 + o(n−3).

Therefore, roughly say,

(2.23) nSNR = ‖θ‖1/
√

log(n)n.

Comparing the right hand sides of (2.22) and (2.23), in order for nSNR�
oSNR, we need

‖θ‖1√
log(n)n

� ‖θ‖2√
log(n)θmax‖θ‖1

⇐⇒ θmax‖θ‖31 � n‖θ‖4.

Unfortunately, θmax‖θ‖31 � n‖θ‖4 in many situations. Therefore, the nor-
malization in nPCA does not always help, even in such an oracle situation.

3. Variants of SCORE. The key idea underlying the SCORE is that,
in a broad context, the K leading eigenvectors of the adjacency matrix X
approximate those of the non-stochastic matrix Ω, where the latter are

Θ

( k∑
`=1

[ak(`)/‖θ(`)‖]1`
)
, k = 1, 2, . . . ,K.
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SCORE SCOREq
q = 1 q = 2

web blogs (n = 1222) 58 61 64

karate (n = 34) 1 1 1

Table 2
Comparison of number of errors for the SCORE and the SCOREq.

It is seen that

• The information of the community labels is contained in the term
within the bracket, which depends on {θ(i)}ni=1 only through the over-
all degree intensities ‖θ(k)‖/‖θ‖.
• The diagonal matrix Θ does not contain any information of the com-

munity labels.
• Therefore, {θ(i)}ni=1 are almost nuisance parameters, the effect of which

can be removed by many scaling invariant mappings, to be introduced
below.

Definition 3.1. Let W ⊂ RK be a subset such that when x ∈ W , then
ax ∈ W for any a > 0. We call a mapping M from W to RK scaling
invariant if M(ax) = M(x) for any a > 0 and x ∈W .

The following are some examples of scaling invariant mappings.

• (a). W = {x ∈ RK , x(1) 6= 0}, and Mx = x/x(1); x(1) is the first
coordinate of x.
• (b). W = RK \ {0}, Mx = x/‖x‖q, where q > 0 is a constant.

Given a scaling invariant mapping M, we have the following extension of
SCORE.

• Obtain the K leading (unit-norm) eigenvectors of X. Arrange them in
an n×K matrix R̂ as follows so that ξ′i is the i-th row of R̂, 1 ≤ i ≤ n:

R̂ = [η̂1, η̂2, . . . , η̂K ] = (ξ1, ξ2, . . . , ξn)′.

• Obtain an n×K matrix R̂∗ where the i-th row of R̂∗ is (Mξi)
′.

• Apply the k-means method to the matrix R̂∗ for clustering with ≤ K
classes.

For example, if we view each row of R̂ as a point in Rk and apply M in
(a), then we have the R̂ matrix in (2.4) associated with the original SCORE
(except for that in (2.4), the first column is removed for it is the vector of 1
and is thus non-informative for clustering).
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For another example, we take M as the mapping in (b), and call the
resultant procedure SCOREq, where q is the parameter in the mapping
x→ x/‖x‖q.

We have investigated the performances of SCORE and SCOREq with the
karate club data and the web blogs data, where we pick q = 1 and q = 2.
The performances are largely similar, but SCORE is slightly better for the
web blogs data. See Table 2 for details. In Section 5, we further investigate
these methods on simulated data.

A natural question is what could be the best M. In principle, this can be
studied using the techniques developed in this paper, but the study involves
higher order asymptotics and would be rather tedious. For this reason, we
leave it for the future work.

4. Proof of the main theorems. In this section, we prove Theorems
2.1-2.2. The key for the proof is Lemmas 2.7-2.8, which contain bounds on
‖η̂k − ηk‖ and ‖Θ−1(η̂k − ηk)‖, respectively. To show Lemmas 2.7-2.8, we
need tight moderate deviation bounds on matrices and vectors involving the
noise matrix W . Below, we first describe such moderate deviation bounds,
and then give the proofs for Theorems 2.1-2.2. The proofs of Lemmas 2.7-2.8
are given in Section 7.

4.1. Moderate deviation inequalities on vectors and matrices. The fol-
lowing theorem is proved in [27], which is the extension of the well-known
Bernstein’s inequality from the case of random variables to the case of ran-
dom matrices. Recall that ‖ · ‖ denotes the spectral norm.

Theorem 4.1. Consider a finite sequence {Zk} of independent, random,
symmetric (real-valued) n × p matrices. Assume that each random matrix
satisfies E[Zk] = 0 and ‖Zk‖ ≤ h0 almost surely. Then for all t ≥ 0,

P (‖
∑
k

Zi‖ ≥ t) ≤ (n+ p)exp

(
− t2/2

σ2 + h0t/3

)
,

where σ2 = max{‖
∑

k E[ZkZ
′
k]‖, ‖

∑
k E[Z ′kZk]‖}.

The following lemma provides moderate deviation bounds on ‖Θ−1W‖.

Lemma 4.1. If the Moderate Deviation condition on Matrices (2.18)
holds, then ‖Θ−1W‖2 ≤ C log(n) max{θ−1min‖θ‖1, θmax

∑n
i=1

1
θ(i)}, with prob-

ability at least 1 + o(n−3).
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The following lemma provides moderate deviation bounds on the norms
of various vectors. The lemma is proved in Section 7, where the classical
Bennett’s inequality is the key [26] (recall that θ(k) is defined in (2.10)).

Lemma 4.2. If the Moderate Deviation condition on Vectors (2.17) holds,
then with probability at least 1 + o(n−3), for all 1 ≤ k, ` ≤ K,

• ‖Wθ(k)‖2 ≤ C log(n)‖θ‖33‖θ‖1.
• ‖Θ−1Wθ‖2 ≤ C log(n)‖θ‖33

∑n
i=1

1
θ(i) .

• |(θ(k))′Wθ(`)|2 ≤ C log(n)[‖θ‖63 + log(n)θ4max].

We are now ready to show the two main theorems.

4.2. Proof of Theorem 2.1. Let {ηi}Ki=1 and {η̂i}Ki=1 be as in Lemma 2.1
and Lemma 2.4, respectively. Let Ŝ be the set of “well-behaved” nodes as in
(2.21), where c0 = 1/2 for simplicity. By Lemmas 2.7-2.9, there is an event
En such that P (Ecn) = o(n−3) and that over En, for all 1 ≤ k ≤ K,
(4.24)
‖η̂k − ηk‖2 ≤ C log(n)‖θ‖1‖θ‖33/‖θ‖6, ‖Θ−1(η̂k − ηk)‖2 ≤ C log(n)errn,

and

(4.25) |V \ Ŝ| ≤ C log(n)errn.

Especially, combining (4.24) and (2.12), ‖η̂k‖ ∼ ‖ηk‖ = 1. To show the claim,
it is sufficient to show that over the event En, ‖R̂∗ −R‖2F ≤ C log3(n)errn.

To this end, we write

‖R̂∗ −R‖2F = U1 + U2,

where U1 is the sum of squares of the `2-norms of all “ill-behaved” rows of
R̂∗ −R, and U2 is that of all “well-behaved” rows.

Consider U1. For any i /∈ Ŝ and 1 ≤ k ≤ K−1, it is seen that |R̂∗(i, k)| ≤
Tn and |R(i, k)| ≤ |ηk+1(i)/η1(i)| ≤ C, where Tn = log(n) and we have used
Lemma 2.1 and (2.15). Combining these with Lemma 2.9 and (2.14),

(4.26) U1 ≤ C log2(n)|V \ Ŝ| ≤ C log3(n)errn.

Consider U2. Recall that for any i ∈ Ŝ,

(4.27) |η̂1(i)/η1(i)− 1| ≤ 1/2.

Since |R(i, k)| ≤ C, |R̂∗(i, k)−R(i, k)| ≤ |R̂(i, k)−R(i, k)|. Write

(4.28) R̂(i, k)−R(i, k) =
‖η̂1‖
‖η̂k+1‖

η̂k+1(i)

η̂1(i)
− ηk+1(i)

η1(i)
=
‖η̂1‖
‖η̂k+1‖

(I+II+III),
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where

I = (η̂k+1(i)− ηk+1(i))/η1(i), II = η̂k+1(i)(η1(i)− η̂1(i))/(η̂1(i)η1(i)),

and
III = (1− ‖η̂k+1‖/‖η̂1‖)ηk+1(i)/η1(i).

Recall that ‖η̂k‖ ∼ 1 for all 1 ≤ k ≤ K.
Now, first, by Lemma 2.6,

(4.29) |I| ≤ C|η̂k+1(i)− ηk+1(i)|/θ(i).

Second, write II = IIa+ IIb, where

IIa =
ηk+1(i)(η1(i)− η̂1(i))

η̂1(i)η1(i)
, IIb =

[η̂k+1(i)− ηk+1(i)][η1(i)− η̂1(i)]
η̂1(i)η1(i)

.

By Lemma 2.1, Lemma 2.6, and (4.27), |ηk+1(i)/[η̂1(i)η1(i)]| ≤ C/θ(i) and
|[η1(i)− η̂1(i)]/[η̂1(i)η1(i)]| ≤ C/θ(i). Therefore, |IIa| ≤ C|η̂1(i)−η1(i)|/θ(i)
and |IIb| ≤ C|η̂k+1(i)− ηk+1(i)|/θ(i). Combining these gives

(4.30) |II| ≤ C
[
|η̂1(i)− η1(i)|+ |η̂k+1(i)− ηk+1(i)|

]
/θ(i).

Third, recalling ‖ηk‖ = 1 and ‖η̂k‖ ∼ 1 for all 1 ≤ k ≤ K and using triangle
inequality,∣∣1− ‖η̂k+1‖/‖η̂1‖

∣∣ . ∣∣‖η̂1‖ − ‖η̂k+1‖
∣∣ ≤ ∣∣‖η̂1‖ − ‖η1‖∣∣+

∣∣‖η̂k+1‖ − ‖ηk+1‖
∣∣,

where the right hand side does not exceed ‖η̂1−η1‖+‖η̂k−ηk‖. At the same
time, recall that ηk+1(i)/η1(i) ≤ C. Combining these gives

(4.31) |III| ≤ C[‖η̂1 − η̂k+1‖] ≤ C[‖η̂1 − η1‖+ ‖η̂k+1 − ηk+1‖].

Inserting (4.29)-(4.31) into (4.28), |R̂(i, k)−R(i, k)| does not exceed

C
( 1

θ(i)

[
|η̂1(i)− η1(i)|+ |η̂k+1(i)− ηk+1(i)|

]
+ ‖η̂1 − η1‖+ ‖η̂k+1 − ηk+1‖

)
.

Therefore, over the event En,

U2 ≤ C
K∑
k=1

(
‖Θ−1(η̂k − ηk)‖2 + n‖η̂k − ηk‖2

)
.

Combining this with (4.24) gives

(4.32) U2 ≤ C log(n)[errn + n‖θ‖33‖θ‖1/‖θ‖6].

Note that n‖θ‖1/‖θ‖2 ≤
∑n

i=1(1/θ(i)). Therefore, n‖θ‖33‖θ‖1/‖θ‖6 ≤ errn
by definitions. Combining this with (4.26) and (4.32) gives the claim.
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4.3. Proof of Theorem 2.2. Without loss of generality, assume K > 2.
The proof for the case K = 2 is the same, except for that R̂∗, R, and M∗

are vectors rather than matrices, so that we have to change the terminology
slightly. The following lemma is proved in Section 7.

Lemma 4.3. The n× (K−1) matrix R has exactly K distinct rows, and
the `2-distance between any two distinct rows is no smaller than

√
2.

We now show Theorem 2.2. For 1 ≤ i ≤ n, let r̂i, ri, and ci denote the
i-th row of R̂∗, R, and M∗ correspondingly. Fixing δ =

√
2/3, we introduce

a subset of V by W = {1 ≤ i ≤ n : ‖r̂i −mi‖ ≤ δ, ‖ri −mi‖ ≤ δ}. Recalling
that V partitions to K communities V (1), V (2), . . . , V (K), we note that W
has a similar partition W = W (1)∪W (2)∪ . . .W (K), where W (k) = V (k)∩W ,
1 ≤ k ≤ K.

By Theorem 2.1, there is an event B such that P (Bc) = o(n−2), and over
the event B,

(4.33) ‖R̂∗ −R‖2F ≤ C log3(n)errn.

Note that the n × (K − 1) matrix R has exactly K unique rows so R ∈
Mn,K−1,K . By how the k-means procedure is constructed, ‖R̂∗ −M∗‖F ≤
‖R̂∗−R‖F , and so ‖R−M∗‖F ≤ ‖R̂∗−R‖F + ‖R̂∗−M∗‖F ≤ 2‖R̂∗−R‖F .
Combining this with (4.33),

(4.34) ‖M∗ −R‖2F ≤ 4‖R̂∗ −R‖2F ≤ C log3(n)errn.

Combining this with (4.33), it follows from the definition of W that |V \W | ≤
C log3(n)errn. Comparing this with the desired claim, it is sufficient to show
that all nodes in W are correctly labeled; equivalently, this is to show that
for any i, j ∈W such that i ∈W (k) and j ∈W (`),

(4.35) mi = mj if and only if k = `.

We now show (4.35). First, by definitions and (4.33)-(4.34), the cardinality
of (V (k) \ W (k)) does not exceed δ−2

∑
i∈V (k)(‖r̂i − ri‖2 + ‖mi − ri‖2) ≤

C log3(n)errn. Recall that we assume log3(n)errn � min{n1, n2, . . . , nk}.
Combining these, W (k) is non-empty. Second, by Lemma 4.3 and definitions,
for any i, j ∈ W such that i ∈ W (k), j ∈ W (`), where 1 ≤ k, ` ≤ K and
k 6= `,

(4.36) ‖mi −mj‖ ≥ ‖ri − rj‖ − (‖mi − ri‖+ ‖mj − rj‖) ≥ δ.

Therefore, if mi = mj for some i, j ∈W , then there is a 1 ≤ k ≤ K such that
i, j ∈ W (k). Suppose we pick one node jk from each W (k), 1 ≤ k ≤ K. By
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(4.36), the K row vectors {mj1 , ...,mjK} are distinct. Note that the matrix
M∗ has at most K distinct rows, so if i, j ∈W (k) for some 1 ≤ k ≤ K, then
mi = mj . Combining these gives (4.35).

5. Simulations. We have conducted a small-scale simulation study.
The goal is to select a few representative cases to investigate the perfor-
mance of SCORE, two PCA approaches, and the modularity methods.

We compare 6 different algorithms, including three variants of SCORE,
two PCA approaches, and one modularity method. The three variants of the
SCORE are the original SCORE (SCORE), SCOREq with q = 1 (SCORE1),
and SCOREq with q = 2 (SCORE2). The two PCA approaches are the
ordinary PCA (oPCA) and the normalized PCA (nPCA). For modularity
method, we use the tabu algorithm (tabu). Note that SCORE, oPCA, nPCA
and tabu are studied in Section 1.

For each simulation experiment, we fix integers (n,K) and let m = n/K;
for simplicity, we pick (n, k) such that m is also an integer. Fix a K × K
matrix A and an n× 1 positive vector θ̃. For k = 1, 2, . . . ,K, we let V (k) =
{1 +m(k − 1), 2 +m(k − 1), . . . ,mk}, and let 1k be the indicator vector of
V (k) as before. Each simulation experiment contains the following steps.

• (a). Randomly permute the coordinates of θ̃ and denote the resultant
vector by θ. Let Θ be the n×n diagonal matrix such that Θ(i, i) = θ(i),
1 ≤ i ≤ n. Define the n× n matrix Ω by Ω = Θ[

∑K
k,`=1A(k, `)1k1

′
`]Θ.

• (b). Generate a symmetric n× n matrix W where all diagonals are 0,
and for all 1 ≤ i < j ≤ n, W (i, j) are independent centered-Bernoulli
with parameters Ω(i, j). Let X̃ = Ω − diag(Ω) + W , which can be
viewed as the adjacency matrix of a network, say, N = (V,E).
• (c). Remove all nodes that are not connected to any other nodes in
N , and denote the resultant network by N0 = (V0, E0). Let X be the
adjacency matrix of N0, and let n0 be the size of N0.
• (d). Apply all or a subset of the 6 aforementioned algorithms to X.

Record the Hamming errors of all methods under investigations.
• (e). Repeat (b)-(d) for rep times, where rep is a preselected integer.

In our study, n0 is usually very close to n so we do not report the exact
values. Also, we set the threshold Tn in (2.4) as∞ so that we do not truncate
any coordinates of R̂ as usually none of them is unduly large; setting Tn =
log(n) gives almost the same results. The simulation includes 4 different
experiments, which we now describe separately.

Experiment 1. In this experiment, we investigate how SCORE, oPCA,
nPCA, and tabu perform with the classical stochastic Block Model (BM).
We choose (n,K, rep) = (1000, 2, 50), A as the 2 × 2 matrix with 1 on
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Methods oPCA nPCA tabu SCORE

Mean (SD) .058 (.009) .055 (.010) .050 (.065) .058 (.009)

Table 3
Comparison of mean error rates (Experiment 1). In each cell, the number in the bracket

is the corresponding standard deviation (SD); same below.

Methods SCORE SCORE1 SCORE2

Mean (SD) .107 (.01) .107 (.01) .107 (.01)

.054 (.008) .054 (.008) .054 (.008)

.112 (.009) .111 .008 .111 (.008)

.122 (.119) .071 (.006) .071 (.006)

Table 4
Comparison of mean error rates (Experiment 2; from top to bottom: 2a-2d).

the diagonals and 0.5 on the off-diagonals, and θ̃ as the vector where all
coordinates are 0.2. This is a relatively easy case and all methods perform
satisfactory and have similar error rates. See Table 3 for the results.

It is noteworthy that in one of the repetitions, tabu fails to converge
and has an error rate of 49.8%. Such outlying cases are observed in most
experiments below; sometimes the fraction of outlying cases is much larger.

Experiment 2. In this experiment, we compare SCORE, SCORE1, and
SCORE2. The experiment contains four sub-experiments, Experiment 2a-
2d, with different network sizes, degrees of heterogeneity, and numbers of
communities, etc..

In Experiment 2a, we investigate with a BM model, where all coordinates
of θ̃ are 0.1. Additionally, we take (n,K, rep) = (2000, 2, 100), and A as
the 2× 2 matrix where two diagonals are 1 and two off-diagonals are 0.4. In
Experiment 2b, we take (n,K, rep) = (800, 2, 100), and A as the 2×2 matrix
where the diagonals are 1 and two off-diagonals are .5. Also, we take θ̃ to
be the vector where θ̃(i) = .025 + .475 × (i/n). In Experiment 2c, we take
(n,K, rep) = (1200, 2, 100) and let A be the same as in Experiment 2b, but
we take θ̃ to be the vector where θ̃(i) = .025 + .475× (i/n)2. In Experiment
2d, we take (n,K, rep) = (1500, 3, 100), and A as the 3×3 matrix where the
diagonals are 1, A(1, 2) = .4, A(2, 3) = .4, and A(1, 3) = .05. Also, we take
θ̃(i) = .015 + .785 × (i/n)2. The results are reported in Table 4, where it
suggests that the behavior of three versions of SCORE are similar in various
settings, except that in the last case, SCORE slightly underperforms than
SCORE1 and SCORE2.

Experiment 3. In this example, we compare the performance of oPCA,
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Methods oPCA nPCA tabu SCORE2

Mean (SD) .378 (.041) .165 (.084) .0636 (.123) .0695 (.004)

Table 5
Comparison of mean error rates (Experiment 3).

nPCA, tabu, SCORE2 in the case where we have three communities. We
take (n,K) = (1500, 3) and so m = n/K = 500. We take rep = 25 instead
of rep = 50 as the tabu algorithm is sort of time consuming. We take A as
the 3 × 3 symmetric matrix where we have 1 on the diagonals, A(1, 2) =
0.4, A(2, 3) = 0.4, and A(1, 3) = 0.05. We take θ̃ as the vector such that
θ̃(i) = .015 + .785× (i/n)2, 1 ≤ i ≤ n. The results are reported in Table 5,
which suggest that SCORE2 outperforms nPCA and oPCA in terms of error
rates. The error rates of SCORE2 and the tabu are similar, but SCORE2 is
comparably much more stable than the tabu.

Experiment 4. In this experiment, we investigate how the heterogeneity
parameters affect the performance of oPCA, nPCA, tabu and SCORE. We
take (n,K, rep) = (1000, 2, 50), and A to be the 2 × 2 matrix that has
1 on the diagonals and 0.5 on the off-diagonals. Fix c0 = 0.5 and d0 =
0.02. The experiment contains three sub-experiments, Experiment 4a-4c. In
Experiment 4a, we take θ̃ to be the vector such that θ̃(i) = d0+(c0−d0)(i/n),
1 ≤ i ≤ n. In Experiment 4b, we take θ̃ to be the vector such that θ̃(i) =
d0 + (c0−d0)(i/n)2, 1 ≤ i ≤ n. In Experiment 4c, we take θ̃ to be the vector
such that θ̃(i) = c0 for 1 ≤ i ≤ n/2 and θ̃(i) = 0.02 for n/2 < i ≤ n. Note
that the heterogeneity effects are mild in Experiment 4a, but are much more
severe than that in Experiment 4b-4c.

The results are tabulated in Table 6. The error rates of oPCA and nPCA
are usually higher than that of the tabu and the SCORE. The average
error rates of the tabu and the SCORE are similar, but the tabu usually
has a much larger standard deviation (some times ten times as large). The
instability of the tabu algorithm is due to that it depends on an initial guess
(generated randomly), and when the initial guess is “bad”, the tabu may
fail to converge to the true labels.

In conclusion, the SCORE methods (include the original SCORE and
two variants) have error rates much smaller than those of the two PCA
approaches. The error rates of the SCORE and the tabu are usually compa-
rable on average, but the stand deviation of the latter is usually a few times
larger, showing that the tabu is comparably less stable. Additionally, the
computation time of the tabu is much longer than that of the SCORE in
matlab code. Therefore, it is fair to say that the SCORE outperforms both
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Methods oPCA nPCA tabu SCORE

Mean (SD) .066 (.021) .066 (.107) .042 (.064) .043 (.006)

.292 (.014) .431 (.122) .138 (.080) .140 (.010)

.254 (.034) .476 (.049) .139 (.074) .130 (.010)

Table 6
Comparison of error rates (Experiment 4; from top to bottom: 4a-4c).

the two PCA approaches and the tabu algorithm.

6. Discussion. We propose SCORE as a novel spectral approach to
community detection with a DCBM. The method is largely motivated by
the observation that the degree heterogeneity parameters of the DCBM are
largely ancillary. If we obtain the first K leading eigenvectors of the adja-
cency matrix and arrange them in an n×K matrix R̂, then the heterogeneity
can be largely removed by applying a scaling-invariant mapping to each row
of R̂. SCORE is one of such methods.

Compared to many existing methods for DCBM (e.g. [18, 25, 33]), a
very different feature of SCORE is that it does not attempt to estimate the
heterogeneity parameters or to correct the heterogeneity. This is especially
important when many nodes of the network are sparse, in which case the
estimates of the heterogeneity parameters are inaccurate and the estimation
errors can largely affect subsequent studies. Additionally, when we tend
to correct the heterogeneity effects, we also tend to inflate the noise level,
resulting a smaller Signal Noise Ratio in spectral analysis.

The theoretic conditions required for the success of the SCORE is very
different from that in Zhao [33]. Zhao et al [33, Page 6] models the hetero-
geneity parameters as random variables that assume only finite values and
have the same means, which is relatively restrictive. We model the hetero-
geneity parameter as non-stochastic vectors that may vary with the size of
the network, and we only need some conditions on regularity and moder-
ate deviations for consistency. Additionally, Zhao et al. [33] impose certain
conditions on the K ×K core matrix A which we don’t require.

The work can be extended to various directions. First, SCORE can be
extended to a large class of methods that utilize a scaling-invariant mapping
that operates on R̂ row by row. Second, the DCBM can be generalized to
more realistic models, where the spectral methods could continue to work
well. For example, in work in progress [17], we have extended the method
to bipartite networks and have seen nice results on the 110-th Senate and
House voting network. Third, the ideas developed here can be used to tackle
some other problems in network analysis (e.g., linkage prediction [12]).
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In this paper, we have assumed the number of communities K as known.
In many applications (e.g., the web blogs data and the karate club data), we
have a good idea on how many perceivable communities are there, and such
an assumption makes sense. In some other applications (e.g., coexpression
genetic network [21, 20]), the situation is more complicated and we may not
have a good idea on how large K is. Community detection for the case where
K is unknown is an unsolved problem, even for low-dimensional clustering
problems. A possible approach is to try our methods for different K, and
see for which K the results give the best fit to the data. The study along
this line is non-trivial and we leave it to the future work.

Intellectually, this work is connected to the recent interest on low-rank
matrix recovery and matrix completion; see for example [6]. In the area of
low-rank matrix recovery, there is a tendency of using the so-called methods
of nuclear-norm penalization to replace spectral clustering. Our finding says
the contrary: spectral clustering can be effective, and what it takes to make
it effective is some careful adjustment. Such findings are resonated in our
forthcoming manuscript [16], where we show that spectral clustering can be
very effective in cancer clustering with microarray data provided that we
add a careful feature selection step. In spirit, this is connected to several
recent papers by Boots and Gordon; see for example [4].

7. Proofs. In this section, we prove all the lemmas in the preceding
sections.

7.1. Proof of Lemmas 2.1. Fix 1 ≤ k ≤ K. Let λk be the nonzero eigen-
value of Ω with the k-th largest magnitude, let ηk be one of the (unit-norm)
eigenvector associated with λk, and let ak be the K × 1 vector such that
ak(i) = (θ(i)/‖θ(i)‖, ηk). In our model, we can rewrite Ω as

(7.37) Ω = ‖θ‖2
K∑

i,j=1

(DAD)(i, j)
( θ(i)

‖θ(i)‖
)( θ(j)
|θ(j)‖

)′
,

and so by basic algebra and notations,
(7.38)

Ωηk = ‖θ‖2
K∑

i,j=1

(DAD)(i, j)(
θ(j)

‖θ(j)‖
, ηk)

θ(i)

‖θ(i)‖
= ‖θ‖2

K∑
i,j=1

(DAD)(i, j)ak(j)
θ(i)

‖θ(i)‖
.

At the same time, since Ωηk = λkηk,

(7.39) ak(i) = (θ(i)/‖θ(i)‖, ηk) =
1

λk
(θ(i)/‖θ(i)‖,Ωηk).
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Note that {θ(i)/‖θ(i)‖}Ki=1 is an orthonormal base. Inserting (7.38) to the
right hand side of (7.39) gives ak(i) = (‖θ‖2/λk)

∑K
j=1(DAD)(i, j)ak(j), or

in matrix form,

(7.40) DADak = (λk/‖θ‖2)ak.

This says that λk/‖θ‖2 is an eigenvalue of DAD and ak is one of the asso-
ciated eigenvector. Moreover, inserting (7.40) into to the right hand side of
(7.38) and recalling Ωηk = λkηk,

ηk =
1

λk
Ωηk =

K∑
i=1

ak(i)θ
(i)/‖θ(i)‖,

and so ‖ak‖2 = ‖ηk‖2 = 1. By our assumptions, all eigenvalues of DAD are
simple. It follows that ak is unique determined up to a factor of ±1.

7.2. Proof of Lemma 2.2. By the definition of DCBM and (2.8), we have
that ‖diag(Ω)‖ ≤ θ2max, where θmax ≤ g0 < 1. Note that by (2.11)-(2.12),
θmax‖θ‖1 →∞. It follows that

‖diag(Ω)‖ = o(
√

log(n)θmax‖θ‖1).

Therefore, to show the claim, it is sufficient to show that with probability
at least 1 + o(n−3),

‖W‖ ≤ 3
√

log(n)θmax‖θ‖1.

Let ei be the n × 1 vector such that ei(j) = 1 if i = j and 0 otherwise.
Write W =

∑
1≤i<j≤n Z

(i,j), where Z(i,j) = W (i, j)[eie
′
j + eje

′
i]. Let σ2 =

‖
∑

1≤i<j≤nE[(Z(i,j))2]‖. By elementary statistics and (2.8), E[W 2(i, j)] ≤
θ(i)θ(j). At the same time,

E[(Z(i,j))2] = E[W (i, j)2] · [eie′j + eje
′
i]
2 = E[W (i, j)2] · [eie′i + eje

′
j ].

Combining these gives that σ2 ≤ θmax‖θ‖1. Fix q > 0. Applying Theorem
4.1 with Z(i,j) = W (i, j)[eie

′
j + eje

′
i], h0 = 1, σ2 = ‖

∑
i<j E[(Z(i,j))2]‖, and

t =
√

2q log(n)θmax‖θ‖1,

P (‖W‖ ≥
√

2q log(n)θmax‖θ‖1) ≤ 2nexp

[
− q log(n)

1 + (1/3)
√

2q log(n)/(θmax‖θ‖1)

]
.

Note that θmax‖θ‖1 ≥ ‖θ‖2, and that ‖θ‖2/ log(n)→∞ as in the assumption
(2.11). It follows that q log(n)/(θmax‖θ‖1) → 0, and the claim follows by
taking q = 9/2.
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7.3. Lemma 2.4. Let λ1 > λ2 > . . . > λK be the K nonzero eigenvalues
of Ω. By Lemma 2.3 and (2.14)-(2.15), for all 1 ≤ k ≤ K − 1, |λk+1 − λk| ≥
C‖θ‖2, At the same time, by Lemma 2.2 and (2.11), it follows from basic
algebra (e.g., [2, Page 473]) that with probability at least 1 + o(n−3),

(7.41) |λ̂k − λk|/‖θ‖2 = o(1),

and so all the K eigenvalues are simple.
Now, fixing 1 ≤ k ≤ K, let η̂k be an eigenvector (the norms of which are

not necessarily 1) associated with λ̂k. Writing for short θ̂(i,k) = [In − (W −
diag(Ω))/λ̂k]

−1θ(i), we let b̂k be the K × 1 vector such that

b̂k(i) = (θ(i)/‖θ(i)‖, η̂k), 1 ≤ i ≤ K,

and let
âk = (B(k))−1b̂k.

Since Xη̂k = λ̂kηk and X = Ω + (W − diag(Ω)), it follows that

η̂k = [λ̂kIn − (W − diag(Ω))]−1Ωη̂k.

Recall that (e.g., (7.37)) Ω = ‖θ‖2
∑K

i,j=1(DAD)(i, j)(θ(i)/‖θ(i)‖)(θ(j)/‖θ(j)‖)′.
Combining these and rearranging,

(7.42) η̂k = (
‖θ‖2

λ̂k
)
K∑
i=1

[( K∑
j=1

(DAD)(i, j)b̂k(j)

)
· θ̂

(i,k)

‖θ(i)‖

]
.

Recall that B(k)(`, i) = (θ(`))′[In−(W −diag(Ω))/λ̂k]
−1θ(i)/[‖θ(`)‖·‖θ(i)‖] ≡

(θ(`))′θ̂(i,k)/[‖θ(`)‖ · ‖θ(i)‖]. Taking the inner product of two sides in (7.42)
with θ(`)/‖θ(`)‖, it follows from the definitions of b̂k that for any 1 ≤ ` ≤ K,

b̂k(`) = (
‖θ‖2

λ̂k
)

K∑
i,j=1

B(k)(`, i)(DAD)(i, j)b̂k(j) = (
‖θ‖2

λ̂k
)

n∑
j=1

(B(k)DAD)(`, j)b̂k(j),

or in matrix form,

b̂k = (
‖θ‖2

λ̂k
)B(k)DADb̂k.

This means that λ̂k/‖θ‖2 is an eigenvalue of B(k)DAD and b̂k is one of the as-
sociated eigenvector. Recall that âk = (B(k))−1b̂k. By basic algebra, λ̂k/‖θ‖2
is an eigenvalue of DADB(k), and âk is one of the associated eigenvectors.
Especially,

(7.43) DADb̂k = DADB(k)âk = [λ̂k/‖θ‖2]âk.
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Inserting (7.43) into (7.42) and rearranging,

η̂k =

K∑
i=1

âk(i) · θ̂(i,k)/‖θ(i)‖.

We now check the uniqueness of λ̂k. By Lemma 7.1 to be introduced
below and (2.12), ‖B(k)−IK‖F ≤ C log(n)‖θ‖1‖θ‖33/‖θ‖6 = o(1). By similar
argument as in (7.41), eigsp(DAD) ≥ C. Combining these with basic algebra
(e.g., [2, Page 473]), all eigenvalues of DADB(k) are simple, and b̂k (and so
λ̂k, âk, and η̂k) are uniquely determined up to some scaling factors. If we
further require ‖âk‖ = 1, then âk, b̂k, and η̂k are all uniquely determined, up
to a common factor that takes values from {−1, 1}. This gives the claim.

7.4. Proof of Lemma 2.6. Recall that D is a diagonal matrix where the
k-th diagonal is the k-th coordinate of the K × 1 vector d(n), equalling
‖θ(k)‖/‖θ‖, 1 ≤ k ≤ K; the superscript “(n)” emphasizes the dependence

on n (same below). By Lemma 2.1, Θ−1η1 =
∑K

k=1[a
(n)
1 (k)/‖θ(k)‖]1k, where

a
(n)
1 is the eigenvector associated with the largest eigenvalue of DAD. By

(2.14), to show the lemma, it suffices to show that for sufficiently large n,

(7.44) OSC(a
(n)
1 ) ≤ C.

Note that in the special case where d(n) does not depend on n, the
claim follows directly by Perron’s theorem [15, Page 508], since DAD is
non-negative and irreducible. Consider the general case where d(n) may
depend on n. If (7.44) does not hold, then we can find a subsequence of
n ∈ {1, 2, . . . , } such that along this sequence, there are two K × 1 vectors

d0 and a such that (a) OSC(a
(n)
1 )→∞, (b) d(n) → d0, and (c) a

(n)
1 → a. By

the condition (2.15), OSC(d0) ≤ C, and a direct use of of Perron’s theorem
[15, Page 508] implies that OSC(a) ≤ C. This contradicts with (a). The
contradiction proves (7.44) and the claim follows.

7.5. Proof of Lemmas 2.7-2.8. Write θ̂(i,k) = [In−(W−diag(Ω))/λ̂k]
−1θ(i)

for short. In our notations,

(7.45) ηk =
K∑
i=1

[ak(i)/‖θ(i)‖]θ(i), η̂k =

K∑
i=1

[âk(i)/‖θ(i)‖]θ̂(i,k),

where ak are the eigenvectors ofDAD and âk are the eigenvectors ofDAD(B(k)).
To show the claim, we first characterize ‖âk − ak‖, and then characterize
‖θ̂(i,k) − θ(i)‖.
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Consider ‖âk − ak‖ first. Let IK be the K × K identity matrix. The
following lemma is proved below (implicitly, we assume that in Lemma 7.1,
the conditions of Lemmas 2.7-2.8 hold; same for Lemmas 7.3-7.4).

Lemma 7.1. With probability at least 1 + o(n−3),

‖B(k) − IK‖F ≤ C log(n)(‖θ‖1 · ‖θ‖33)/‖θ‖6.

Note that by (2.11), the right hand side tends to 0 as n→∞.
We also need a lemma on eigenvector sensitivity. Suppose U and Err are

both symmetric K×K matrix where ‖Err‖ < (1/2)eigsp(U), so that all the

eigenvalues of U and U + Err are simple. Let λ
(1)
1 > λ

(1)
2 > . . . > λ

(1)
K and

λ
(2)
1 > λ

(2)
2 > . . . > λ

(2)
K be the eigenvalues of U and U + Err, respectively,

and let ξ
(1)
2 , ξ

(1)
2 , . . . , ξ

(1)
K and ξ

(1)
1 , ξ

(2)
2 , . . . , ξ

(2)
K be the corresponding (unit-

norm) eigenvectors, of U and U +Err, respectively. The following lemma is
proved below.

Lemma 7.2. If ‖Err‖ < eigsp(U)/2, then for any 1 ≤ k ≤ K, ‖ξ(1)k −
ξ
(2)
k ‖ ≤ 2

√
2 ‖Err‖eigsp(U) .

Note that ‖DAD‖ ≤ C. Using Lemma 7.1 and basic algebra, with prob-
ability at least 1 + o(n−3),

‖DAD(B(k))−DAD‖ ≤ C‖(B(k))− IK‖ ≤ C log(n)(‖θ‖1 · ‖θ‖33)/‖θ‖6.

Applying Lemma 7.2 with U = DAD and Err = DAD[(B(k)) − IK ], it
follows from the eigen-space condition (2.14) that with probability at least
1 + o(n−3), for 1 ≤ k ≤ K,

‖âk − ak‖ ≤ C‖Err‖ ≤ C log(n)(‖θ‖1 · ‖θ‖33)/‖θ‖6.

By (2.11), the right hand side tends to 0, so

(7.46) ‖âk − ak‖2 ≤ ‖âk − ak‖ ≤ C log(n)(‖θ‖1 · ‖θ‖33)/‖θ‖6.

Next, we consider ‖θ̂(i,k)− θ(k)‖. The following lemmas are proved below.

Lemma 7.3. With probability at least 1 + o(n−3), for all 1 ≤ k, i ≤ K,

‖θ̂(i,k) − θ(i)‖2 ≤ C log(n)‖θ‖1‖θ‖33/‖θ‖4.
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Lemma 7.4. With probability at least 1 + o(n−3), for any 1 ≤ k, i ≤ K,

‖Θ−1(θ̂(i,k) − θ(i))‖2 ≤ C log(n)
‖θ‖33
‖θ‖4

[ n∑
i=1

1

θ(i)
+

1

θmin

log(n)‖θ‖21
‖θ‖4

]
.

We now show Lemmas 2.7-2.8. Consider Lemma 2.7 first. By (7.45) and
basic algebra,

‖η̂k − ηk‖2 ≤ C(I + II),

where I =
∑K

i=1 â
2
k(i)(‖θ̂(i,k)−θ(i)‖2/‖θ(i)‖2), and II =

∑K
i=1(âk(i)−ak(i))2 =

‖âk − ak‖2. Since âk has unit norm and ‖θ(i)‖2 ≥ C‖θ‖2, combining these
with (7.46) and Lemma gives

‖η̂k − ηk‖2 ≤ C log(n)[‖θ‖1 · ‖θ‖33]/‖θ‖6,

and the claim follows.
Next, consider Lemma 2.8. Similarly, ‖Θ−1[η̂k−ηk]‖2 ≤ C(I+ II), where

I =
∑K

i=1 â
2
k(i)(‖Θ−1[θ̂(i,k)−θ(i)]‖2/‖θ(i)‖2), and II =

∑K
i=1 |âk(i)−ak(i)|2‖1i‖2/‖θ(i)‖2.

By Lemma 7.4 and similar argument,

‖Θ−1[η̂k − ηk]‖2 ≤ C log(n)
‖θ‖33
‖θ‖6

[ n∑
i=1

1

θ(i)
+

log(n)

θmin

‖θ‖21
‖θ‖4

+
n‖θ‖1
‖θ‖2

]
.

Note that n‖θ‖1 ≤ ‖θ‖2
∑n

i=1
1
θ(i) , it follows that

‖Θ−1[η̂k − ηk]‖2 ≤ C log(n)
‖θ‖33
‖θ‖6

[ n∑
i=1

1

θ(i)
+

log(n)

θmin

‖θ‖21
‖θ‖4

]
,

and the claim follows by the definition of errn; see (2.19).

7.6. Proof of Lemma 4.1. Similar to that in the proof of Lemma 2.2, let
ei be the n × 1 vector such that ei(j) = 1 if i = j and 0 otherwise. Write
Θ−1W =

∑
i<j Z

(i,j), where Z(i,j) = W (i, j)Θ−1[eie
′
j + eje

′
i]. Let

σ2 = max{‖
∑

1≤i<j≤n
E[Z(i,j)(Z(i,j))′]‖, ‖

∑
1≤i<j≤n

E[(Z(i,j))′Z(i,j)]‖}.

First, by (2.8) and basic statistics, E[W 2(i, j)] ≤ θ(i)θ(j). It is seen

E[Z(i,j)(Z(i,j))′] = E[W 2(i, j)]Θ−1[eie
′
j+eje

′
i]
2Θ−1 = E[W 2(i, j)]Θ−1[eie

′
i+eje

′
j ]Θ
−1,

which is a diagonal matrix, where the i-th diagonal ≤ θ(j)/θ(i), the j-th di-
agonal≤ θ(i)/θ(j), and all other diagonals are 0. Therefore,

∑
1≤i<j≤nE[Z(i,j)(Z(i,j))′]
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is a diagonal matrix where the i-th coordinate does not exceed ‖θ‖1/θ(i),
and the matrix norm of which ≤ θ−1min‖θ‖1.

Second, we similarly have

E[(Z(i,j))′Z(i,j)] = E[W 2(i, j)][eie
′
j + eje

′
i]Θ
−2[eie

′
j + eje

′
i],

which is a diagonal matrix where the i-th coordinate does not exceed θ(i)/θ(j),
the j-th coordinate ≤ θ(j)/θ(i). As a result,

∑
1≤i<j≤nE[(Z(i,j))′Z(i,j)] is a

diagonal matrix where the i-th coordinate does not exceed θ(i)
∑n

j=1(1/θ(j)),
and the matrix norm ≤ θmax

∑n
i=1(1/θ(i)). Combining these gives

σ2 ≤ max
{ 1

θmin
‖θ‖1, θmax

n∑
i=1

1

θ(i)

}
≡ σ20.

Fix q > 0. Applying Theorem 4.1 with h0 = 1/θmin and t = σ0
√

2q log(n)
gives

P (‖Θ−1W‖ ≥ σ0
√

2q log(n)) ≤ 2nexp

[
− q log(n)

1 + (1/3)
√

2q log(n)θ−1min/σ0

]
.

By (2.18), log(n)θ−2min ≤ σ20, and the claim follows by picking q to be a
sufficiently large constant.

7.7. Proof of Lemma 4.2. Let Y1, Y2, . . . , Yn be independent random vari-
ables with |Yk| ≤ b, E[Yk] = 0, and var(Yk) ≤ σ2k for 1 ≤ k ≤ n. Write for
short σ2 = σ21 + . . . σ2n. We claim that with probability at least 1 + o(1/n3),

(7.47) |
n∑
i=1

Yi|2 ≤ C log(n) max{σ2, log(n)b2}.

In detail, using Bennett’s Lemma [26, Page 851], for all λ > 0,

P (|
n∑
i=1

Yi| ≥ λ) ≤
{

2exp(− c0
2σ2λ

2), λb ≤ σ2,
2exp(− c0

2
λ
b ), λb ≥ σ2.

where c0 = ψ(1), with ψ as in [26, Page 851]; note that c0 ≈ 0.773. Now,
when σ/b ≥ 2

√
2 log(n), we take λ = 2

√
2 log(n)σ. It is seen λb ≤ σ2, and

so

P (
∣∣ n∑
i=1

Yi
∣∣ ≥ λ) ≤ 2exp(−4c0 log(n)) = o(n−3).
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When σ/b < 2
√

2 log(n), we take λ = 8b log(n). It is seen λb ≥ σ2. It follows
that

P (
∣∣ n∑
i=1

Yi
∣∣ ≥ λ) ≤ 2exp(−4c0 log(n)) = o(n−3).

Combining these, except for a probability of o(n−3),

∣∣ n∑
i=1

Yi
∣∣ ≤ 2

√
2 log(n)σ1{σ/b ≥ 2

√
2 log(n)}+8b log(n)1{σ/b < 2

√
2 log(n)},

and (7.47) follows.
We now show Lemma 4.2. The last item follows directly from (7.47), and

the proofs for first two items are similar, so we only show the second item.
Let ei be the n × 1 vector such that ei(j) = 0 if i = j and 0 otherwise.
Write ‖Wθ(k)‖2 =

∑n
i=1(e

′
iWθ(k))2. For each fixed i, applying (7.47) to

Yj = W (i, j)θ(k)(j), b = θmax, and σ2 = E[(
∑

j∈V (k) θ(j)W (i, j))2], we have

that with probability at least 1 + o(1/n3),

|e′iWθ(k)|2 ≤ C log(n) max{σ2, log(n)θ2max}.

Now, direct calculation shows that σ2 ≤ θ(i)‖θ‖33. It follows that with prob-
ability at least 1 + o(n−2) that

‖Wθ(k)‖2 ≤ C log(n)
n∑
i=1

max{θ(i)‖θ‖33, log(n)θ2max},

and the claim follows by the first MDV assumption in (2.17).

7.8. Proof of Lemma 4.3. We expand R to be an n×K matrix by adding
a column of ones to the left. For notational simplicity, we still call the matrix
by R. It is sufficient to show that R has exactly K distinct rows, and the
`2-distance for each pair of such distinct rows is no smaller than

√
2.

With the new notations, since Θ is a diagonal matrix, for any 1 ≤ i ≤ n
and 1 ≤ k ≤ K,

R(i, k) =
ηk(i)

η1(i)
=

(Θ−1ηk)(i)

(Θ−1η1)(i)
,

where η1, η2, . . . , ηK are the K leading eigenvectors of Ω. Combining this
with Lemma 2.1 and recalling that dj = ‖θ(j)‖/‖θ‖,

R(i, k) =

∑K
j=1 ak(j)1j(i)/dj∑K
j=1 a1(j)1j(i)/dj

,
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which equals to ak(`)/a1(`) if and only if node i belongs to the `-th com-
munity V (`), ` = 1, 2, . . . ,K. It is now evident that R has K distinct rows,
each is one of the following row-vectors:

1

a1(`)

(
a1(`), a2(`), . . . , aK(`)

)
, ` = 1, 2, . . . ,K.

Fix k 6= `. The square of the `2-distance between the vector 1
a1(k)

(
a1(k), . . . , aK(k)

)
and the vector 1

a1(`)

(
a1(`), . . . , aK(`)

)
is

1

a21(k)

K∑
j=1

a2j (k) +
1

a21(`)

K∑
j=1

a2j (`)−
2

a1(k)a1(`)

K∑
j=1

aj(k)aj(`).

Since a1, a2, . . . , aK form an orthonormal base,
∑K

j=1 a
2
j (k) = 1,

∑K
j=1 a

2
j (`) =

1, and
∑K

j=1 aj(k)aj(`) = 0. Therefore, the square of the `2-distance between

these two vectors is a−21 (k) + a−21 (`) and the claim follows since |a1(k)| ≤ 1
and |a1(`)| ≤ 1.

7.9. Proof of Lemma 7.1. Write for short U = diag(Ω) and H = (W −
diag(Ω))/λ̂k. For 1 ≤ i, j ≤ K, B(k)(i, j) = (θ(i))′[In − H]−1θ(j)/(‖θ(i)‖ ·
‖θ(j)‖). By (2.15), for all 1 ≤ i ≤ K, ‖θ(i)‖ � ‖θ‖. All we need to show is
(7.48)∣∣(θ(i))′[(In −H)−1 − In]θ(j)

∣∣ ≤ C log(n)‖θ‖1‖θ‖33/‖θ‖4, 1 ≤ i, j ≤ K;

note that (θ(i))′θ(j) = ‖θ(i)‖2 if i = j and 0 otherwise.
Write

(7.49) (θ(i))′[(In −H)−1 − In]θ(j) = I + II,

where
I = (θ(i))′Hθ(j), II = (θ(i))′H[In −H]−1Hθ(j).

Consider I first. By H = (W − U)/λ̂k, we have

(7.50) I =
1

λ̂k
(Ia− Ib),

where Ia = (θ(i))′Wθ(j), Ib = (θ(i))′Uθ(j). First, by (2.8) and that all θ(i) ≤
1, |Ib| ≤ ‖θ‖44 ≤ ‖θ‖33 with probability at least 1 + o(n−3). Second, by
Lemma 4.2, Ia ≤ C

√
log(n) max{‖θ‖33,

√
log(n)θ2max}. Last, by (2.16), with

probability at least 1 + o(n−3), |λ̂k| � ‖θ‖2. Inserting these into (7.50) gives

(7.51) |I| ≤ C
√

log(n) max{‖θ‖33,
√

log(n)θ2max}/‖θ‖2.
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Consider II next. First, by Schwartz inequality, |II| ≤ ‖(In−H)−1/2Hθ(i)‖·
‖(In − H)−1/2Hθ(j)‖. Second, by (2.11) and Lemma 2.3, with probability
at least 1 + o(n−3), ‖In − H‖−1/2 . 1 and λ̂k � ‖θ‖2. Therefore, for any
1 ≤ i ≤ K, ‖(In −H)−1/2Hθ(i)‖2 does not exceed

1

λ̂2k
‖(In−H)−1/2(W−U)θ(i)‖2 ≤ C‖(W−U)θ(i)‖2/‖θ‖4 ≤ (IIa+IIb)/‖θ‖4,

where IIa = ‖Wθ(i)‖2 and IIb = ‖Uθ(i)‖2. Now, on one hand, by Lemma
4.2, with probability at least 1 + o(n−3),

‖Wθ(i)‖2 ≤ C log(n)‖θ‖1‖θ‖33.

On the other hand, by basic algebra and that ‖θ(i)‖∞ < 1,

‖Uθ(i)‖2 ≤ ‖θ‖66 ≤ ‖θ‖33.

Note that by (2.11)-(2.12), log(n)‖θ‖1 ≥ ‖θ‖4 � 1. Combining these gives
that with probability at least 1 + o(1/n2),

(7.52) |II| ≤ C log(n)‖θ‖1‖θ‖33/‖θ‖4.

Inserting (7.51) and (7.52) into (7.49) gives that with probability at least
1 + o(1/n2),
(7.53)∣∣(θ(i))′[(In−H)−1−In]θ(j)

∣∣ ≤ C log(n)

‖θ‖4
[max{‖θ‖33,

√
log(n)θ2max}‖θ‖2+‖θ‖1‖θ‖33].

Write max{‖θ‖33,
√

log(n)θ2max}‖θ‖2 ≤ ‖θ‖33‖θ‖2 +
√

log(n)θ2max‖θ‖2. First,
since ‖θ‖∞ < 1, ‖θ‖2‖θ‖33 ≤ ‖θ‖1‖θ‖33. Second, by (2.11),

√
log(n)θ2max‖θ‖2 ≤

‖θ‖4 ≤ ‖θ‖33‖θ‖1. Inserting these into (7.53) gives (7.48) and the claim fol-
lows.

7.10. Proof of Lemma 7.2. By the assumptions and elementary algebra,

it is seem that (λ
(1)
k , ξ

(1)
k ) and (λ

(2)
k , ξ

(2)
k ) take real values. By definitions,

(U + Err)ξ
(2)
k = λ

(2)
k ξ

(2)
k , and so

(ξ
(2)
k )′[λ

(2)
k IK − U ]2ξ

(2)
k = (ξ

(2)
k )′(Err)2ξ

(2)
k .

Since {ξ(1)1 , ξ
(1)
2 , . . . , ξ

(1)
K } constitute an orthonormal base, we have

(ξ
(2)
k )′[λ

(2)
k IK−U ]2ξ

(2)
k =

K∑
i=1

(λ
(2)
k −λ

(1)
i )2(ξ

(2)
k , ξ

(1)
i )2 ≥

∑
i 6=k

(λ
(2)
k −λ

(1)
i )2(ξ

(2)
k , ξ

(1)
i )2.
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Combining these gives

(7.54)
∑
i 6=k

(λ
(2)
k − λ

(1)
i )2(ξ

(2)
k , ξ

(1)
i )2 ≤ (ξ

(2)
k )′(Err)2ξ

(2)
k ≤ ‖Err‖

2.

By the assumption of ‖Err‖ ≤ (1/2)eigsp(U), for all 1 ≤ i ≤ K and i 6= k,

|λ(2)k − λ
(1)
i | ≥ (1/2)eigsp(U). Inserting this into (7.54) gives∑

i 6=k
(ξ

(2)
k , ξ

(1)
i )2 ≤ 4‖Err‖2/eigsp(U)2.

Since (ξ
(2)
k , ξ

(1)
k )2 = 1 −

∑
i 6=k(ξ

(2)
k , ξ

(1)
i )2, it follows that (ξ

(2)
k , ξ

(1)
k )2 ≥ 1 −

4‖Err‖2/eigsp(U)2, and the claim follows by basic algebra.

7.11. Proof of Lemma 7.3. Write for short U = diag(Ω) and H = (W −
diag(Ω))/λ̂k. Similarly, write

θ̂(i,k) − θ(i) = [(In −H)−1 − In]θ(i) = (In −H)−1Hθ(i).

By Lemma 2.3, with probability at least 1 + o(n−3), ‖H‖ = o(1),

(7.55) ‖θ̂(i,k) − θ(i)‖ ≤ ‖(In −H)−1‖‖Hθ(i)‖ . ‖Hθ(i)‖.

Next, by (2.16), with probability at least 1 + o(n−3), λ̂k � ‖θ‖2. It follows
from basic algebra that

(7.56) ‖Hθ(i)‖2 ≤ 1

λ̂2k
(I + II) ≤ C(I + II)/‖θ‖4,

where I = ‖Wθ(i)‖2 and II = ‖Uθ(i)‖2. Note that, first, since ‖θ‖∞ < 1,

(7.57) II ≤ ‖θ‖66 ≤ ‖θ‖33.

Second, by the assumption (2.17) and Lemma 4.2, with probability at least
1 + o(n−3),

(7.58) I ≤ C log(n)‖θ‖1‖θ‖33.

Combining (7.57)-(7.58) with (7.55)-(7.56) gives

(7.59) ‖θ̂(i,k) − θ(i)‖2 ≤ C log(n)(‖θ‖1 + 1)‖θ‖33/‖θ‖4.

By (2.11) and basic algebra, ‖θ‖1 ≥ ‖θ‖2 ≥ log(n), and so ‖θ‖1 + 1 ≤ 2‖θ‖1.
Inserting this into (7.59) gives the claim.
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7.12. Proof of Lemma 7.4. Write for short U = diag(Ω) and H = (W −
diag(Ω))/λ̂k. Since (In −H)−1 − In = H +H(In −H)−1H, it follows from
definitions and basic algebra that

(7.60) ‖Θ−1[θ̂(i,k) − θ(i)]‖2 = ‖Θ−1[(In −H)−1 − In]θ(i)‖2 ≤ 2(I + II),

where

I = ‖Θ−1Hθ(i)‖2, II = ‖Θ−1H(In −H)−1Hθ(i)‖2.

Consider I first. Similarly, by Lemma 2.3, with probability at least 1 +
o(n−3), λ̂k � ‖θ‖2, and so

(7.61) I =
1

λ̂2k
‖Θ−1Wθ(i) −Θ−1Uθ(i)‖ ≤ C

‖θ‖4
[Ia+ Ib],

where
Ia = ‖Θ−1Wθ(i)‖2, Ib = ‖Θ−1Uθ(i)‖2.

Now, first, since ‖θ‖∞ < 1,

(7.62) Ib ≤ ‖θ‖44 ≤ ‖θ‖33.

Second, by (2.17) and Lemma 4.2, with probability at least 1 + o(n−3),

(7.63) Ia ≤ C log(n)‖θ‖33
n∑
i=1

(1/θ(i)).

Inserting (7.62)-(7.63) into (7.61) gives that with probability at least 1 +
o(n−3),

(7.64) I ≤ C log(n)
‖θ‖33
‖θ‖4

·
[
1 +

n∑
i=1

1

θ(i)

]
≤ C log(n)

‖θ‖33
‖θ‖4

·
[ n∑
i=1

1

θ(i)

]
.

Next, we analyze II. By definitions, II = 1
λ̂4k
‖Θ−1(W−U)(In−H)−1(W−

H)θ(i)‖2. Recalling that λ̂k � ‖θ‖2 with probability at least 1 + o(n−3), and
so by basic algebra,

(7.65) II ≤ 1

‖θ‖8
‖Θ−1(W − U)(In −H)−1(W − U)θ(i)‖2 ≤ 1

‖θ‖8
IIa · IIb,

where IIa = ‖Θ−1(W − U)(I −H)−1‖2 and IIb = ‖(W − U)θ(i)‖2.
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Consider IIa first. By Lemma 2.2, with probability 1 + o(n−3), ‖H‖ =
o(1). Therefore,

IIa . ‖Θ−1(W − U)‖2 ≤ C
[
‖Θ−1W‖2 + ‖Θ−1U‖2

]
.

Next, by (2.18) and Lemma 4.1, we have with probability at least 1+o(n−3),

‖Θ−1W‖2 ≤ C log(n) max{θmax
n∑
i=1

1

θ(i)
,

1

θmin
‖θ‖1}.

At the same time, it is seen ‖Θ−1U‖2 ≤ 1, which is much smaller than the
right hand side of the equation above. Combining these gives

(7.66) IIa ≤ C log(n) max{θmax
n∑
i=1

1

θ(i)
,

1

θmin
‖θ‖1}.

Next, we consider IIb. Write

IIb = ‖(W − U)θ(i)‖2 ≤ C
[
‖Wθ(i)‖2 + ‖Uθ(i)‖2

]
.

On one hand, by Lemma 4.2, with probability at least 1 + o(n−3),

‖Wθ(i)‖2 ≤ C log(n)‖θ‖1 · ‖θ‖33.

On the other hand, since ‖θ‖∞ < 1, by definitions and direct calculations,

‖Uθ(i)‖2 ≤ ‖θ‖44 ≤ ‖θ‖33.

Recall that that (2.11) implies ‖θ‖1 ≥ ‖θ‖2 ≥ 1. Combining these gives

(7.67) IIb ≤ C log(n)[1 + ‖θ‖1]‖θ‖23 ≤ C log(n)‖θ‖1 · ‖θ‖33.

Inserting (7.66)-(7.67) into (7.65) gives

(7.68) II ≤ C log2(n)
‖θ1‖ · ‖θ‖33
‖θ‖8

max{θmax
n∑
i=1

1

θ(i)
,

1

θmin
‖θ‖1}.

Inserting (7.64) and (7.68) into (7.60), ‖Θ−1[θ̂(i,k) − θ(i)]‖2 does not exceed

C log(n)‖θ‖33
‖θ‖4

[ n∑
i=1

1

θ(i)
+

log(n)‖θ‖1
‖θ‖4

max{θmax
n∑
i=1

1

θ(i)
,

1

θmin
‖θ‖1}

]
.

By (2.11), log(n)θmax‖θ‖1/‖θ‖4 → 0, and so

‖Θ−1[θ̂(i,k) − θ(i)]‖2 ≤ C log(n)‖θ‖33
‖θ‖4

[ n∑
i=1

1

θ(i)
+

1

θmin

log(n)‖θ‖21
‖θ‖4

]
,

and the claim follows.
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