Market Liquidity and Funding Liquidity: An Overview

Sixth Annual Volatility Institute Conference

Lasse H. Pedersen

New York University, Copenhagen Business School, CEPR, NBER, and AQR Capital Management

Market Liquidity and Funding Liquidity

Overview of talk: market and funding liquidity drive

- \succ asset prices
 - portfolio choice
 - risk management
 - performance measurement
- derivative pricing
 - exercise behavior
- macro economics
- monetary policy

Standard theory of asset pricing vs. <u>liquidity risk drives asset prices</u>

Market and funding liquidity interact

Overview of Key Ideas, Continued

- Liquidity risk affects <u>risk management</u>
 - Cash management, position sizing based on market liquidity, risk limits
 - Examples:
 - LTCM
 - Metallgesellschaft
 - Pension funds hedging their long-term liabilities
 - Banks and mortgage institutions: run risk
- Liquidity risk affects <u>performance measurement</u>
 - Consider if performance is due to exposure to
 - Market liquidity risk
 - Tying up funding due to leverage (or potential future use of balance sheet)
- Liquidity risk affects the <u>macroeconomy</u>
 - Example: the liquidity risk in the banking system started the recession
- Liquidity risk affects monetary policy
 - Unconventional monetary policy attempts to fix this
- Liquidity risk can create <u>opportunities</u>

Roadmap of This Talk

- Market liquidity risk, crises, and asset prices
- Funding liquidity risk, crises, and asset prices
- Macro economics and monetary policy
- Liquidity spirals: when everyone runs for the exit
- Conclusion

Liquidity-Adjusted CAPM

Proposition. [Acharya and Pedersen (2005), Prop.1]

The CAPM holds for net returns $E(r^i-c^i)$

$$\mathbf{E}_{t}\left(r_{t+1}^{i}-c_{t+1}^{i}\right) = r^{f} + \lambda_{t} \frac{\operatorname{cov}_{t}\left(r_{t+1}^{i}-c_{t+1}^{i}, r_{t+1}^{M}-c_{t+1}^{M}\right)}{\operatorname{var}_{t}\left(r_{t+1}^{M}-c_{t+1}^{M}\right)}$$

which means that required gross returns $E(r^i)$ depend on expected market liquidity $E(c^i)$, market beta, and three market liquidity risks:

$$\mathbf{E}_{t}\left(r_{t+1}^{i}\right) = r^{f} + \mathbf{E}_{t}\left(c_{t+1}^{i}\right) + \lambda_{t}\left(\beta_{t}^{r^{i},r^{M}} + \beta_{t}^{c^{i},c^{M}} - \beta_{t}^{r^{i},c^{M}} - \beta_{t}^{c^{i},r^{M}}\right)$$

where

$$\beta_{t}^{r^{i},r^{M}} = \operatorname{cov}_{t}\left(r_{t+1}^{i}, r_{t+1}^{M}\right) / \operatorname{var}_{t}\left(r_{t+1}^{M} - c_{t+1}^{M}\right) \quad \text{market beta}$$

$$\beta_{t}^{c^{i},c^{M}} = \operatorname{cov}_{t}\left(c_{t+1}^{i}, c_{t+1}^{M}\right) / \operatorname{var}_{t}\left(r_{t+1}^{M} - c_{t+1}^{M}\right) \quad \text{commonality in liquidity}$$

$$\beta_{t}^{r^{i},c^{M}} = \operatorname{cov}_{t}\left(r_{t+1}^{i}, c_{t+1}^{M}\right) / \operatorname{var}_{t}\left(r_{t+1}^{M} - c_{t+1}^{M}\right) \quad \text{return sensitivity to aggregate liquidity}$$

$$\beta_{t}^{c^{i},r^{M}} = \operatorname{cov}_{t}\left(c_{t+1}^{i}, r_{t+1}^{M}\right) / \operatorname{var}_{t}\left(r_{t+1}^{M} - c_{t+1}^{M}\right) \quad \text{liquidity sensitivity to economic conditions}$$

> Option prices also affected by liquidity (Garleanu, Poteshman, Pedersen, RFS 2009)

Early Option Exercise: Never Say Never

- Classic results without frictions:
 - Never exercise an American call option, except at maturity before dividend payment (Merton's rule)
 - Never convert a convertible bond (Brennan and Schwartz (1977), Ingersoll (1977))
- "Early Option Exercise: Never Say Never" Jensen and Pedersen (2013)
 - Merton's rule overturned theoretically with liquidity frictions

Call option on ISHARES TRUST, Strike: 14, Expiry: 2010-01-16

Early Option Exercise: Never Say Never

- Model with frictions have predictions for exercise and conversions consistent with the evidence based on data on
 - Actual frictions
 - Prices
 - Actual exercises
 - Actual conversions

Roadmap of This Talk

- Market liquidity risk, crises, and asset prices
- Funding liquidity risk, crises, and asset prices
- Macro economics and monetary policy
- Liquidity spirals: when everyone runs for the exit
- Conclusion

Funding Liquidity: Margin CAPM

Proposition. [Garleanu and Pedersen, Prop. 2]

The equilibrium required return for any security s is:

$$E_t\left(r_{t+1}^s\right) = r^f + \beta_t^s \lambda_t + \psi_t x_t m_t^s$$

where ψ_t is the leveraged agents' Lagrange multiplier, measuring the tightness of funding constraints, x_t is the fraction of constrained agents, m_t^s is the margin requirement of security s, and λ_t is the risk premium:

$$\lambda_t = E_t \left(r_{t+1}^M \right) - r^f - \psi_t$$

➤ Tests:

- 1. Find securities with the same fundamental risk β and different margin requirement *m*.
 - Garleanu and Pedersen (2011) "Margin-Based Asset Pricing and Deviations from the Law of One Price", Ashcraft, Garleanu, and Pedersen (2010)
- 2. Find securities with the different fundamental risk β and the same margin requirement *m*.
 - Frazzini and Pedersen (2010, 2011), and Asness, Frazzini, and Pedersen (2011)

Evidence on Margin CAPM: Deviations from Law of One Price (LoOP)

- Spread (solid line) between the yield of
 - Corporate bonds with high margin requirements (and high yield during the crisis) vs.
 - CDS with similar fundamentals but lower margin requirement

> Time-series evidence: Deviation from LoOP lines up with funding liquidity measures:

- credit tightness (green line, from the Board of Governors survey)
- LIBOR-repo spread (pink line)

Evidence on Margin CAPM: Deviations from Law of One Price

- Law of One Price Deviation: Spread between CDS and corporate bonds
- Cross-sectional evidence:
 - The deviation from the LoOP was larger for high yield (HY) securities than for investment grade (IG) securities, consistent with margin requirements being higher for HY
 - Once margin requirements are adjusted for, deviations line up in the cross section:

Source: Garleanu and Pedersen (2011), "Margin-Based Asset Pricing and Deviations from the Law of One Price"

Evidence on Funding Liquidity: Deviations from LoOP

- Law of One Price Deviation: Covered interest-rate parity
- Deviation lines up with a measure of funding liquidity frictions, the TED spread:

Implications of Funding Liquidity: High Beta is Low Alpha

Proposition. [Frazzini and Pedersen, Prop. 1] When securities have the same margin requirement:

$$E_t\left(r_{t+1}^s\right) = r^f + \psi_t + \beta_t^s \lambda_t$$

where the risk premium is $\lambda_t = E_t(r_{t+1}^M) - r^f - \psi_t$, and ψ is the average Lagrange multiplier, measuring the tightness of funding constraints. A security's alpha with respect to the market decreases in the security's market beta:

$$\alpha_t^s = \psi_t \left(1 - \beta_t^s \right)$$

Source: "Betting Against Beta," Andrea Frazzini and Lasse Heje Pedersen (JFE, 2014)

Evidence on High Beta is Low Alpha: Black, Jensen, and Scholes (1972)

Theoretical and Empirical Security Market Lines of Ten Beta-sorted Portfolios (1931 to 1965)

Evidence on High Beta is Low Alpha: Updated Stock Sample

Theoretical and Empirical Security Market Lines of Ten Beta-sorted Portfolios (1926 to 2010)

Source: "Betting Against Beta," Andrea Frazzini and Lasse Heje Pedersen (JFE, 2014)

Evidence on High Beta is Low Alpha: Bonds

Theoretical and Empirical Security Market Lines of Seven Maturity-sorted U.S. Bond Portfolios (1952 to 2010)

Source: "Betting Against Beta," Andrea Frazzini and Lasse Heje Pedersen (JFE, 2014)

Evidence on High Beta is Low Alpha: Within Asset Classes

Source: "Betting Against Beta," Andrea Frazzini and Lasse Heje Pedersen (JFE, 2014)

Embedded Leverage

- "Embedded Leverage," working paper, Frazzini and Pedersen:
 - Institutional response to leverage constraints
 - Demand for securities that embed leverage, supplied at a cost
 - Test predictions for index options, equity options, leveraged ETFs
 - Broader implications for economics: security design, pooling and tranching, SIVs, regulation

	Equity Options					Index Options					ETFs
Embedded Leverage (t-1)	-0.72 -(5.40)	-1.53 -(9.37)	-1.90 -(10.88)	-1.85 -(10.39)	-1.70 -(10.26)	-1.21 -(7.30)	-1.43 -(8.57)	-1.53 -(8.31)	-1.53 -(8.38)	-1.40 -(7.55)	-0.26 -(2.35)
Log(open interest) (t-1)		-0.52 -(2.23)	1.57 (4.58)	1.47 (4.95)	1.56 (5.59)		0.02 (0.13)	0.38 (3.32)	0.42 (3.66)	0.56 (3.18)	
Log(total open interest) (t-1)	0.25 (0.65)	-0.92 -(3.67)	-1.13 -(1.34)	-1.12 -(1.46)		0.47 (1.78)	0.61 (2.56)	0.26 (0.22)	1.25 (0.77)	
Months to expiration (t-1)		-1.27 -(2.02)	-1.14 -(2.48)	-1.07 -(2.29)	-1.96 -(4.45)		-0.13 -(0.18)	-0.30 -(0.48)	-0.28 -(0.45)	-2.14 -(2.68)	
Moneyness (t-1)		-0.24 -(2.31)	-0.08 -(0.60)	-0.09 -(1.14)	-0.09 -(1.06)		-0.19 -(2.69)	0.00 (0.04)	0.06 (0.54)	0.14 (0.81)	
Implied volatility (t-1)		-36.28 -(7.36)	-45.13 -(10.25)	-44.22 -(6.25)	-43.73 -(6.42)		-39.33 -(1.30)	-63.06 -(2.58)	-63.17 -(2.60)	-38.76 -(0.98)	
1-Month spot volatility (t-1)	3.77 (0.69)	2.48 (0.58)	-2.49 -(0.65)	-2.08 -(0.59)		21.63 (0.46)	68.55 (0.97)	136.57 (3.23)	119.49 (1.80)	
12-Month spot volatility (t-	1)	10.48 (2.22)	6.77 (1.56)	7.30 (2.67)	6.50 (2.50)		-4.51 -(0.08)	-84.77 -(1.25)	-174.94 -(3.32)	-176.14 -(2.20)	
Option Vega (t-1)			-0.03 -(3.23)	-0.03 -(2.56)	-0.05 -(3.29)			-0.01 -(2.74)	-0.02 -(3.18)	-0.03 -(3.70)	
Option Gamma (t-1) *100			-0.35 -(1.32)	-0.20 -(1.66)	-0.24 -(2.18)			2.05 (3.08)	2.38 (3.10)	2.85 (2.49)	
Stock return (t)			-10.66 -(1.90)	-11.51 -(2.18)	-13.77 -(2.98)			173.48 (2.42)	-34.74 -(0.29)	-45.01 -(0.40)	
Option turnover (t)			8.73 (12.42)	8.62 (12.39)	10.08 (12.87)			0.98 (1.29)	1.02 (1.32)	2.03 (1.83)	
Total option turnover (t)			9.60 (3.30)	11.73 (4.56)	12.01 (5.13)			3.50 (2.50)	4.89 (2.34)	4.88 (2.27)	
Option B/A Spread (t-1)			14.37 (4.73)	14.62 (4.69)	17.16 (4.54)			4.68 (0.76)	4.39 (0.73)	8.37 (0.92)	
Total option B/A Spread (t-	1)		4.56	-4.40	-8.33			-11.53	-27.07	-52.79	

19

Funding Constraints Affect Portfolio Choice

Systematic deviation from CAPM-prediction that everyone holds the same portfolio

- Constrained investors hold risky assets
- Less constrained investors leverage safer assets
- Consistent with theory of Betting Against Beta
- Source: Betting Against Beta, Frazzini and Pedersen (2013), *JFE* forthcoming

Buffett's Alpha

- > The theory of liquidity and asset pricing can even help explain Buffett's alpha
- Buffett has delivered outstanding results over a very long time period
 - Unique access to leverage
 - Leverages low-risk, high-quality, value stocks
 - Short sells options, i.e. securities with embedded leverage

See "Buffett's Alpha," working paper, Frazzini, Kabiller, and Pedersen

Roadmap of This Talk

- Market liquidity risk, crises, and asset prices
- > Funding liquidity risk, crises, and asset prices

Macro economics and monetary policy

- Liquidity spirals: when everyone runs for the exit
- > Conclusion

Liquidity Risk and Monetary Policy

Evidence on Funding Liquidity: Effect of Monetary Policy

- Haircut cuts through central bank lending facilities alleviate funding liquidity frictions
 - by moving the affected securities down the haircut-return line
 - by flattening the whole haircut-return line as people's funding conditions are improved

Source: Ashcraft, Garleanu, and Pedersen (2010), "Two Monetary Tools: Interest Rates and Haircuts"

Evidence on Funding Liquidity: Effect of Monetary Policy

- Survey evidence from March 2009 on CMBS securities
- Demand sensitivity measured in terms of yields
 - Improving funding conditions can lower required returns by several percentage points
 - Note that the Fed had lowered the short rate from 5% to zero and hit the zero lower bound

Source: Ashcraft, Garleanu, and Pedersen (2010), "Two Monetary Tools: Interest Rates and Haircuts" 25

Evidence on Funding Liquidity: Effect of Monetary Policy

- Effect on market prices of CMBS securities of rejection from the TALF lending facility
 - Significant effect of the lending facility on market prices
 - The effect was larger in the earlier sample than in the later sample when the banking crisis had ended In the language of the model, ψ_t was larger in the early sample

Source: Ashcraft, Garleanu, and Pedersen (2010), "Two Monetary Tools: Interest Rates and Haircuts"

Roadmap of This Talk

- Market liquidity risk, crises, and asset prices
- Funding liquidity risk, crises, and asset prices
- Macro economics and monetary policy

Liquidity spirals: when everyone runs for the exit

> Conclusion

Liquidity Spirals

- Market and funding liquidity problems can reinforce each other, creating a systemic crisis
- Source: Brunnermeier and Pedersen (RFS 2009), "Market Liquidity and Funding Liquidity"

Implications of Liquidity Spirals

- Fragility and the risk of a "collateral run":
 - A small shock can lead to large changes in liquidity and prices
 - Because of liquidity spirals and discontinuous switch from liquid equilibrium to illiquid equilibrium
- Commonality in market liquidity:
 - Different securities' market liquidity co-move since they are driven by common funding shocks
- > Spillover effects:
 - A shock to one market spills over to the markets when it significantly impairs to capital of financial institutions
- Market liquidity risk related to market risk
 - Because funding terms are
- Flight to quality
- Negative skewness of assets held by leveraged investors and leveraged investors' portfolio returns
 - Since losses are amplified by liquidity spirals, while gains are not
- Source: Brunnermeier and Pedersen (RFS 2009)

When Everyone Runs for the Exit

> Theoretically predicted price path when everyone runs for the exit

- Prices decline more smoothly than random walk (because of the run for the exit)
- Prices suddenly rebound (this distinguishes a run from a fundamental shock)
- Prices end up lower than they started (because some investors left the market)
- Source: Brunnermeier and Pedersen (JF 2005)

When Everyone Runs for the Exit: Quant Event 2007

A. Minute-by-Minute Data from the Quant Event 2007

➤ August 2007:

- certain quantitative equity investors had funding liquidity problems
- others ran for the exit as well
- a value-momentum portfolio was severely affected in for U.S. large cap equities normally one of the world's most liquid markets
- the episode was almost invisible to non-quants: must be seen through the lens of a long/short portfolio
- Source: Pedersen (2009), "When Everyone Runs for the Exit" Lasse H. Pedersen

Spillover in the Beginning of the Global Financial Crisis

- > Spillover from
 - subprime credit, to
 - quant equity strategies in the U.S., to
 - quant equity strategies in certain global markets such as Japan, to
 - currency markets
- Source: Pedersen (2009)

When Everyone Runs for the Exit: Convertible Bond Crisis 2005

Year and month

- Many convertible bond hedge funds had large redemptions
 - Forced sell off
 - Bonds cheapened relative to theoretical value implied by arbitrage relation
 - Cheapening lead to losses, further redemptions, further sell offs, firing of convert desks
 - Eventually, sell off ended and strategy became very profitable
- Source: Mitchell, Pedersen, and Pulvino (2007), "Slow Moving Capital"

When Everyone Runs for the Exit: Flash Crash 2010

The hour 2-3PM ET

34

Conclusion: Some Practical Implications of Liquidity Risk

1. Higher required returns from assets with market liquidity risk

- If you can hold for the long term (low transaction costs, low risk of fire sales)
- Examples: small stocks, convertible bonds, (re)insurance, alternative risk premia, and private equity
- Market liquidity risk premium various over time: provide liquidity during crises
 - Understanding whether prices drop due to fundamentals vs. liquidity is important
 - Liquidity-driven drops are often followed by a rebound

2. High risk-adjusted return from assets with high margin requirements or low risk

- Betting against beta: risk parity, safe stocks, short maturity bonds, high-grade bonds, etc.

3. Portfolio choice and exercise behavior

- **Risk management**: worry about market and funding liquidity risk
 - Don't be forced into large and sudden fire sale
- Consider the financial *system*: are other institutions taking similar risks and are they highly leveraged?
- 4. **Performance measurement**: do returns arise from taking liquidity risk?

5. Monetary policy and the macro economy:

– Managing liquidity risk is central

Appendix: References for Models of Market Liquidity

Papers can be downloaded at http://www.lhpedersen.com/

- > Overview
 - Amihud, Mendelson, and Pedersen (2013)
- Market liquidity as trading costs
 - Liquidity level: Amihud and Mendelson (JFE 1986), Constantinides (1986), Vayanos (1998)
 - Liquidity level and risk: Acharya and Pedersen (JFE 2005)
- Market liquidity as search:
 - Duffie, Garleanu, and Pedersen (Econometrica 2005, RFS 2007), Garleanu and Pedersen (AER 2007),
 Weill (2007), Vayanos and Weill (JF 2008), Duffie and Strulovici (2009)
- Asset pricing with market liquidity as asymmetric information
 - Wang (1993), Garleanu and Pedersen (RFS 2004)

Appendix: References for Models of Funding Liquidity

- Margin requirements, asset pricing, and deviations from the Law of One Price:
 - Garleanu and Pedersen (2011)
- Margin requirements and leverage constraints and the returns of stocks, bonds, credit:
 - Frazzini and Pedersen (WP 2011, JFE 2014), Asness, Frazzini, and Pedersen (2011, FAJ forthcoming)
- Margin requirements, macro economics, and monetary policy:
 - Ashcraft, Garleanu, Pedersen (NBER Macroannual 2010)
- Funding liquidity and systemic risk
 - Acharya, Pedersen, Philippon, and Richardson (WP 2010)

Appendix: References for Models of Market and Funding Liquidity Interaction

- Liquidity spirals, fragility, and bank balance sheets as drivers of crises:
 - Brunnermeier and Pedersen (JF 2005, RFS 2009)
- Amplification when everyone tries to manage risk:
 - Garleanu and Pedersen (AER 2007)
- When everyone runs for the exit:
 - Pedersen (IJCB 2009)

Appendix: Other Related References (Incomplete List)

- Macro and general equilibrium models:
 - Bernanke and Gertler (1989), Constantinides and Duffie (1996), Geanakoplos (1997), Kiyotaki and Moore (1997,2008), Aiyagari and Gertler (1999), Lorenzoni (2008), Brunnermeier and Sannikov (2010), He and Krishnamurthy (2010)
- Monetary models with frictions:
 - Curdia and Woodford (2009), Gertler and Karadi (2009)
- Asset pricing and constraints:
 - Hindy (1995), Cuoco (1997), Detemple and Murthy (1997), Basak and Croitoru (2000), Coen-Pirani (2005), Gorton and Metrick (2009), Adrian and Shin (2010), Greenwood and Vayanos (2010)
- Limits of arbitrage:
 - Shleifer and Vishny (1997)
- Liquidity and welfare when arbitrageurs have margin constraints
 - Gromb and Vayanos (2002)
- Limited attention and slow moving capital:
 - Duffie (2010, AFA Presidential address)
- Corporate finance and banking:
 - Diamond and Dybvig (1983), Shleifer and Vishny (1992), Holmstrom and Tirole (1997, 2001), Acharya and Viswanathan (2010)
- Dynamic trading with predictable returns and transaction costs:
 - Garleanu and Pedersen (2008)
- Informational frictions in asset markets
 - Grossman and Stiglitz (1980)

Extra Slides

Liquidity Crises and Liquidity Risk: Definitions

Market liquidity risk:

- <u>Market liquidity</u> = ability to trade at low cost (conversely, market illiquidity = trading cost)
 - Measured as bid-ask spread or as market impact
- <u>Market liquidity risk</u> = risk that trading costs will rise
 - We will see there are 3 relevant liquidity betas

> Funding liquidity risk:

- <u>Funding liquidity for a security</u> = ability to borrow against that security
 - Measured as the security's margin requirement or haircut
- <u>Funding liquidity for an investor</u> = investor's availability of capital relative to his need
 - "Measured" as Lagrange multiplier of funding constraint
- <u>Funding liquidity risk</u> = risk of hitting margin constraint
 - Happens if margin requirement increases or capital decreases

> Liquidity crisis:

- <u>Liquidity spiral</u>: market and funding liquidity deteriorate in a mutually reinforcing process
- <u>Crisis are distinct from normal times</u>: Funding constraints are binding (vs. slack) for large institutions

Evidence on Market Liquidity Risk

The cross-section of stocks better explained by the liquidity-adjusted CAPM than the standard CAPM
Liquidity-adjusted CAPM

- Cross-section of U.S. stocks, portfolios of stocks sorted by the volatility of their liquidity
- Consistent evidence in other asset classes, e.g.
 - corporate bonds, Dick-Nielsen, Feldhutter, and Lando (JFE 2012)

Lasse H. Pedersen

Liquidity-Adjusted CAPM: Crises

Proposition. [Acharya and Pedersen (2005), Prop. 2-3]

If market liquidity worsens, required returns increase:

$$\frac{\partial}{\partial C_t^q} E_t(r_{t+1}^q - r^f) > 0$$

and contemporaneous prices fall:

 $\cos_t(c_{t+1}^q, r_{t+1}^q) < 0$

- Market liquidity crisis:
 - Higher illiquidity leads to price drops
 - Amihud (2002)