Mergers and Marginal Costs: New Evidence on Hospital Buyer Power

Stuart Craig*
University of Pennsylvania, The Wharton School stucraig@wharton.upenn.edu

Matthew Grennan University of Pennsylvania, The Wharton School & NBER grennan@wharton.upenn.edu

Ashley Swanson University of Pennsylvania, The Wharton School & NBER aswans@wharton.upenn.edu

March 27, 2019

Abstract

We estimate the effects of hospital mergers, using detailed data containing medical supply transactions (representing 23 percent of operating costs) from a sample of US hospitals 2009-2015. Pre-merger price variation across hospitals (Gini coefficient 7 percent) suggests significant opportunities for cost decreases. However, we observe limited evidence of actual savings. On average, targets realize 1.9 percent savings; acquirers realize no significant savings. Examining treatment effect heterogeneity to shed light on theories of "buyer power," we find that savings, when they occur, tend to be local, and potential benefits of savings may be offset by managerial costs of merging.

^{*}The data used in this paper were generously provided, in part, by the ECRI Institute (www.ecri.org). We gratefully acknowledge financial support from the Leonard Davis Institute, Wharton Dean's Research Fund and Public Policy Initiative, the Wolpow Family, and NSF Grant SES-1559485. We thank Zack Cooper, Martin Gaynor, Charlie Gray, Matthew Schmitt, and John Van Reenen for assistance in constructing the merger panel; and audiences at the Annual Health Economics Conference and Bates White Life Sciences Symposium for their insights. Harrison Byers, Caleb Diaz-Spatharos, and Gi Heung Kim provided excellent research assistance. Any errors are our own.

1 Introduction

In the last several decades, hospital systems have consolidated substantially through horizontal mergers (Cutler and Scott Morton 2013; Gaynor and Town 2012). Researchers and regulators have raised concerns about these mergers' potential negative welfare effects due to increased concentration, and hospital mergers are heavily represented in Federal Trade Commission investigations (Coate 2018; Dafny 2014). A typical justification for these (and many other) horizontal mergers is their potential to generate various "efficiencies," leading to lower prices, improved quality, enhanced service, and/or new product introductions, with a particular emphasis on price (U.S. Department of Justice and the Federal Trade Commission 2010; Vogt and Town 2006). A necessary, though not sufficient, condition for mergers to lower prices is that they first lower marginal costs. In this paper, we provide new estimates of the effects of hospital mergers on marginal costs, using unique data containing hospital supply purchase orders issued by a large sample of US hospitals from 2009-2015. These estimates are interesting not only as a window into potential downstream price effects, but also in that they allow us to investigate the mechanisms underlying "buyer power," an area with broad antitrust interest but little empirical evidence (Carlton and Israel 2011).

The hospital supply product markets in our full dataset account for 23 percent of hospital operating costs (34 percent, excluding labor). Thus, savings on supply input costs represent perhaps the largest potential merger-related savings that are unambiguously marginal.³ In calculating these potential savings, merging parties typically cite the wide variation in prices paid across hospitals and argue that the merged entity will be able to obtain discounts based on taking the best price among the merging parties, plus leveraging any "buyer power" the larger merged entity might possess. This variation is indeed large, with a Gini coefficient of 0.073 (or a coefficient of variation of 0.219) for the average category, across hospitals for the same exact brand-month.⁴ Together, the magnitude and variation in supply spending are also

¹Much of this consolidation took place during the merger wave of the 1990s; more recently, the Affordable Care Act (ACA) spurred another merger wave, with 105 deals reported in 2012 alone, up from 50 to 60 annually in the pre-recession years of 2005-2007 (Dafny 2014). The merger wave of the 1990s was coincident with the rise of managed care, though some researchers dispute that this relationship was causal (Town et al. 2007). The merger wave during the ACA years has been associated with hospitals anticipating the need for large, coordinated organizations to manage population health under payment reforms such as bundled payment and Accountable Care Organizations (Dafny 2014).

²Hospital supplies and devices accounted for a quarter of the growth in inpatient hospital spending between 2001 and 2006 (Maeda et al. 2012).

³When labor costs are cited as merger "efficiencies," they are often either administrative in nature or due to the shifting of services across facilities. The former are arguably less "marginal," while the latter may involve a quality tradeoff (Noether and May 2017).

⁴The Gini coefficient (defined as one half of the mean absolute difference between any randomly selected pair of hospitals) would only precisely align with theoretical expected savings in a very restrictive model of possible sources of contracting heterogeneity. However, it represents the type of expected savings calculation

substantial relative to both hospital profit margins and downstream costs of hospital care.⁵ However, whereas a hospital's exercise of market power as a supplier of health care services might entail renegotiation over a menu of prices with a handful of commercial insurers, that same hospital's exercise of market power as a buyer of medical and surgical supplies might entail renegotiations with hundreds of vendors and also might require substantial managerial effort obtaining buy-in from disparate end-users within the hospital.⁶ That is, it may be relatively costly to reduce costs.⁷

This paper builds on a large body of literature on the effects of hospital mergers, and particularly on recent work that estimates the effects of mergers on overall hospital costs (e.g., Dranove and Lindrooth 2003; Harrison 2010; Schmitt 2017) and on labor costs (Prager and Schmitt 2019).⁸ We follow this literature in estimating difference-in-differences models that compare cost trends at target and acquirer hospitals to control hospitals. The unique contribution of this paper relative to this prior literature is the fine-grained nature of the cost data, with precise prices and quantities paid across nearly all hospital supplies at the sample hospitals.

We find that, for a fixed basket of 37 of the most important hospital supply categories, the average merger target in our sample can expect to save 1.9 percent or \$214 thousand dollars per year (95 percent confidence interval [\$79,568, \$349,236]), while the average acquirer can expect no savings (point estimate -\$90 thousand "savings"; confidence interval [-\$158,518, -\$21,968]). To put this in context with a simple example, for a merger with the same size target and acquirer, this would suggest total savings across merging parties of $\frac{1.9-0.9}{2} = 0.5$ percent.⁹ If merging parties in this example were to claim expected savings based on a

merging hospitals might perform, as input prices are not typically shared during pre-merger due diligence.

⁵According to the American Hospital Association 2018 Trendbook, the average hospital operating margin in 1995-2016 was 4.4 percent (https://www.aha.org/system/files/2018-05/2018-chartbook-table-4-1.pdf). Regarding the potential for meaningful pass-through, the coefficient of variation in the cost of a knee replacement at hospitals in different markets is 0.32 (Cooper et al. 2019), for example, while the coefficient of variation across hospitals in our data for knee prostheses is 0.24.

⁶This price variation has been found to be driven by heterogeneity in hospital preferences and bargaining ability (Grennan 2013, 2014), and by variation in information and contracting frictions (Grennan and Swanson 2018, 2019).

⁷Following this logic, if savings on "important" product categories in our analysis here are easier to obtain than savings on the more than 3,000 medical supply categories in our data, our results are likely an upper bound on total supply savings achieved post-merger.

⁸The general literature to date on the effects of hospital concentration has not suggested that consolidation improves efficiency. While an exhaustive review of the evidence is outside the scope of this paper, the dominant narrative appears to be one of mergers decreasing quality (Beckert et al. 2012; Capps 2005; Ho and Hamilton 2000; Romano and Balan 2011; Town et al. 2006), increasing prices (Capps and Dranove 2004; Dafny 2009; Dafny et al. 2017; Haas-Wilson and Garmon 2011; Krishnan 2001; Sacher and Vita 2001; Tenn 2011; Thompson 2011), and weakly decreasing costs (Dranove and Lindrooth 2003; Harrison 2010; Schmitt 2017).

⁹Most mergers involve acquirers that are larger than targets, so the average merger would tend to involve

measure of price dispersion such as the Gini coefficient, this would translate into average realized savings that are about 7 percent of that claimed. If merging parties claimed higher expected savings based on supposed greater "buyer power" of the integrated entity, this ratio of realized savings to expected savings would be even lower.

In addition to being interesting in their own right, mergers also provide useful variation to examine economic mechanisms underlying "buyer power" at a scale beyond individual case studies, as they represent a shock to hospital system size that is plausibly uncorrelated with trends in any particular supply category market.¹⁰ As discussed in Section 3, the literature on buyer power points to multiple theoretical mechanisms via which increased buyer size might impact input prices, and we examine several of these through triple-difference specifications allowing for heterogeneity in the merger treatment effects.

Much like in markets for hospital services, prices in hospital input markets are typically determined via bilateral negotiations. In such an environment, the effects of mergers can be complex, depending on how they impact market structure and bargaining abilities (Dafny et al. 2017; Gowrisankaran et al. 2015; Grennan 2013; Lewis and Pflum 2015). Further, while market power in upstream supply markets may decrease input prices directly, an important countervailing indirect effect may occur: market power in downstream markets for hospital services may lead to higher downstream prices, and that greater overall pie may be "shared" with suppliers (Ho and Lee 2017). Finally, as managerial attention, skill, and incentives play an important role in supply contracting, mergers may have disruptive effects in the short run, and returns to scale may be positive or negative in the long run (Agrawal et al. 1992; Beckmann 1960; Fulop et al. 2002; Minemyer 2017).

To shed light on mechanisms underlying pricing, we explore heterogeneity in our reduced form merger treatment effects by: merging parties' size and market overlap, supply market concentration, and downstream market power. Our analyses consider whether cost reductions (if any) are achieved through lower negotiated prices, cost-reducing shifts in utilization, or both. We also examine the role of "standardization." Recent research has found that restrictive networks of health care providers (Gruber and McKnight 2016; Ho and Lee 2018), restrictive drug formularies (Duggan and Scott Morton 2010), and restrictive pharmacy networks (Starc and Swanson 2018) can lead to lower costs for insurers; similarly, hospitals argue that standardization of medical supply purchasing results in large savings (Noether

even smaller savings. And of course these are average treatment effect estimates, so the outcomes for any particular merger could differ.

¹⁰The product markets we consider vary in several dimensions that are likely to affect bargaining and mediate the effects of mergers: these include supplier concentration, the strength of brand preferences based on perceived heterogeneity in quality, and the relative importance of contracting intermediaries.

¹¹Throughout this paper, we follow industry terminology and use the term "standardization" to refer to hospitals' use of restrictive supply sets; e.g., use of one implant vendor for most joint replacement procedures.

and May 2017).

We find that target hospitals' post-merger savings are driven by a 3.4 percent decrease in prices negotiated within physician preference item (PPI) brands. PPIs are expensive implantable devices over which physicians typically have strong brand preferences, and are frequent targets in policy discussions around excessive spending on medical technologies and tensions between physicians and hospitals as coproducers of health care. This within-brand effect is slightly smaller, though not statistically different, from the within-category effect of 3.8 percent (which accounts for shifts in quantity utilized to different brands within the category). Thus, targets' PPI savings can be almost entirely accounted for by targets negotiating lower prices, rather than cost-saving changes in usage patterns. These savings are significantly larger for local mergers (5.9 percent). The point estimates are also larger when the acquiring system is large (4.3 percent). Targets do not show economically or statistically significant savings on relatively inexpensive non-PPI supplies. Finally, there is no effect of merging on targets' standardization rates.

By contrast, acquirers show little evidence of savings post-merger. We document a small but significant increase (1.7 percent within brand; 1.2 percent within category) in acquirers' PPI costs post-merger. These are only slightly counterbalanced by a small, marginally significant 1.2 percent reduction in acquirers' non-PPI prices. Interestingly, the cost increase point estimate for PPIs is larger for large acquirers than for small acquirers. Finally, we find some evidence that acquirers are more standardized after merging, though this finding is sensitive to specification.

In sum, the net effect of merging on a given party's costs depends on multiple counter-vailing forces, and these forces bear out unevenly across targets and acquirers. Our findings are consistent with mergers inducing an increase in buyer power that is (1) driven by local returns to scale, and (2) more influential for merger targets than for (even small) acquirers. The finding of a positive price effect for large acquirers is consistent with the costs of a merger disrupting management outweighing any benefit from improved buyer power, for merging parties experiencing small relative size increases.¹³ We find little evidence that savings, where they exist, are mediated by supplier concentration or by a change in downstream market power. Notably, in contrast to previous empirical findings on restrictive contracting by insurers, we find no evidence that merger savings are amplified when hospitals are

¹²Past efforts by hospitals to shift utilization of surgical materials and devices have encountered significant resistance from surgeons (Nugent et al. 1999). Navathe et al. (2017) estimate that one health system's participation in a bundled payment program led to substantial savings on joint implant costs, perhaps aided by that system's gainsharing arrangements with physicians.

¹³As discussed in Section 5.2.1, the positive price effect for acquirers does not reflect an increase in prices, but rather reflects a flatter downward trend post-merger, relative to matched controls.

standardized.

2 Data and Setting

2.1 Hospital Purchasing Data

The primary data used in this study come from a unique database of all supply purchases made by over 1,100 US hospitals during the period 2009-2015. The data are from the PriceGuideTM benchmarking service (hereafter, "PriceGuide data") offered by the ECRI Institute, a non-profit health care research organization. For each transaction, we observe price, quantity, transaction month, and supplier.

Our analyses consider price negotiations between hospitals and suppliers for a large number of important product categories. Throughout this draft, we use the term "product category" to refer to the "Universal Medical Device Nomenclature System (UMDNS)" grouping code included in the transaction files. The UMDNS system generally classifies products by intended purpose and mechanism of action (e.g., drug-eluting coronary stents have UMDNS code 20383). We use the term "brand" to refer to the "product" level at which prices are negotiated; e.g., Medtronic Resolute Integrity drug-eluting coronary stent. Finally, we use "product class" to refer to the distinction between FDA risk classes I-II, which tend to be commodities (e.g., dressings) and other medical/surgical products (e.g., catheters), vs. FDA risk class III, which are placed in this class because they are deemed "necessary for the sustainment of life" and thus tend to include high-tech physician preference items (e.g., coronary stents).

Our empirical analyses examine products that are among the top 50 product categories by *either* total spending *or* transactions. There are 71 such "top" categories total, but once we omit product categories that are too broad or with missing or inconsistent data, 37 remain.¹⁴

¹⁴Some categories in the UMDNS grouping are excessively broad and would not necessarily be used in the same procedures or by the same providers. Codes such as "food item," "office supplies," and various "kits" are flagged as too broad based on their descriptions. For example, "IVD Kits" include microbial detection kits costing \$2.14 on average, as well as tests for antibiotic-resistant bacteria colonization costing \$4,400 on average. We also excluded codes for which we could not confidently calculate price per unit due to missing conversion factors (e.g., 10 units per box) or inconsistent unit of measure (e.g., "box" vs. "case"). Other categories were omitted based on "reasonableness" of the observed price variation – categories for which the coefficient of variation in price exceeded 200 percent were excluded. See Appendix A and Grennan and Swanson (2019) for further details and examples.

2.2 Hospital and Merger Data

To perform the analysis in the current study, we obtained permission to contract a trusted third-party to match facilities in the PriceGuide data to outside data from the Centers for Medicare and Medicaid Services (CMS), the American Hospital Association, and a merger roster. The third-party then provided us with access to the merged data for analysis, with hospital-identifiable information removed.

We obtained merger data from Cooper et al. (2019), which contain nearly all hospital mergers from 2000-2014. The data were generated by correcting known problems in the AHA: errors in timing of mergers due to lagged survey response and erroneous combination of multiple facilities into single observations post-merger. These data were cross-checked against data from Schmitt (2017) and several business intelligence databases: Irving Levin Associates, Factset, and SDC Platinum. For more details on the merger data, see Appendix D of Cooper et al. (2019).

Each analytic sample includes facilities in the PriceGuide data that merged uniquely by name and location to general acute care hospitals in the AHA data. The PriceGuide data contain a large number (1,157) of hospitals; and the merger panel contains a large number of mergers over the same period (445 transactions impacting 661 targets and 1,753 acquirers). However, our analytic samples only include a given target/acquirer hospital if the merged PriceGuide data contain at least one calendar year of pre-merger and post-merger data. Because the PriceGuide members join the database in a staggered fashion over time, this requirement reduces our sample to 33 targets and 86 acquirers taking part in 80 unique transactions, and 433 non-merging controls. While this restriction is costly, our sample contains many merger case studies – whereas many analyses have considered single mergers in isolation (Kwoka 2015) – and the rich transaction-level cost information across 37 different product categories compensates in detail for this sample limitation.

Appendix A describes the effects of each of these steps on representativeness of our sample in detail. The mergers observed in our sample involve larger hospitals, hospitals using more technologies, and more high-priced hospitals, relative to the population of AHA member hospitals.

2.3 Price Variation, by Product Class

For each of the products in our data, prices are determined in negotiation. The contracting environment is described further in Grennan and Swanson (2019) and Appendix B. Negotiation can take place directly between a hospital administrator and a representative of the product's manufacturer, or hospitals may rely on group purchasing organizations (GPOs) to

negotiate their contracts for some products.¹⁵ Each product category in our analytic sample is summarized in Table 1.

Table 1: Summary of Product Categories

	% of		N_{himu}	N,	N_{tar}	N	N_i	HHI_v	\overline{q}_{hmy}	\overline{n} .	CV_{i+1}	$Gini_{h jmy}$
		\overline{spend}_{hmy}	<i>y</i>				,	_	-ning			
Nylon Sutures	0.1	1,111	45,931	524	29	77	201	0.25	325	8	0.27	0.06
Bone Wires	0.1	1,658	74,437	511	27	72	123	0.17	42	102	0.38	0.13
Surgical Drapes	0.2	2,146	94,979	523	31	71	310	0.31	841	11	0.28	0.08
Tracheal Tubes	0.1	2,558	64,621	530	27	75	176	0.26	443	63	0.54	0.15
Trocars	0.3	4,942	65,531	520	26	73	188	0.16	141	76	0.31	0.09
Suture Anchors	0.4	6,327	52,957	503	24	71	61	0.41	19	381	0.19	0.07
Drill Bits	0.4	7,104	235,142	509	26	72	335	0.26	51	189	0.22	0.08
Electrosurgical Forceps	0.6	9,076	42,604	492	22	63	93	0.10	28	905	0.40	0.12
Polymeric Mesh	0.5	8,867	$93,\!376$	528	32	75	385	0.17	16	977	0.20	0.06
Allografts	0.5	10,537	44,545	472	21	56	249	0.84	71	1,634	0.19	0.05
Bone Nails	0.5	10,938	$53,\!259$	480	23	65	123	0.29	8	1,558	0.19	0.07
Trauma Bone Plates	0.6	11,417	$187,\!557$	505	27	72	549	0.56	16	787	0.14	0.05
Surgical Staplers	0.7	10,897	77,544	511	26	69	238	0.20	51	367	0.24	0.08
Bone Implant Putty	0.5	$12,\!536$	$65,\!885$	475	23	60	229	0.22	12	1,114	0.16	0.05
Embolization Coil	0.5	13,908	54,766	408	20	57	186	0.40	33	955	0.12	0.04
Spinal Bone Plates	0.5	13,881	48,428	382	16	43	234	0.18	9	1,709	0.26	0.08
Guiding Cath.	0.8	13,949	251,790	502	26	73	324	0.17	276	226	0.26	0.09
Guide Wires	1.0	17,878	$352,\!437$	523	30	77	423	0.13	317	122	0.26	0.09
Trauma Bone Screws	0.9	19,272	369,396	514	29	75	317	0.52	195	154	0.19	0.08
Bone Grafts	0.8	20,465	40,058	455	21	53	141	0.98	741	2,562	0.16	0.04
Ablation/Mapping Cath.	0.8	28,121	64,080	329	13	41	107	0.27	28	1,188	0.18	0.07
Spinal Bone Screws	2.6	68,515	$158,\!571$	420	20	52	568	0.22	130	615	0.31	0.10
Non-PPIs: Total	13.3	240,093	2,537,894	551	33	85	5,560		3,382			
Non-PPIs: Average	0.6	13,459	$115,\!359$	483	24	66	253	0.32	172	714	0.25	0.08
Intraocular Lenses	0.2	6,786	31,855	327	14	33	39	0.55	34	293	0.13	0.05
Spinal Rod Implants	0.2	7,170	60,302	365	16	43	265	0.18	18	444	0.32	0.09
Mammary Prosth.	0.5	14,369	23,212	379	14	46	28	0.45	17	843	0.11	0.04
Acetabular Hip Prosth.	0.7	16,239	57,128	459	25	56	75	0.21	13	1,422	0.30	0.12
Spinal Stimulators	0.6	25,193	9,722	306	8	27	12	0.34	2	15,693	0.13	0.05
Tibial Knee Prosth.	1.2	27,858	101,896	467	25	60	206	0.19	23	1,371	0.23	0.08
Aortic Stents	1.0	27,664	27,442	380	18	49	67	0.33	5	6,144	0.09	0.03
Femoral Hip Prosth.	1.3	31,404	$144,\!116$	471	25	60	437	0.21	20	1,767	0.30	0.10
Pacemakers	1.3	30,878	41,529	419	16	53	33	0.43	7	4,409	0.14	0.07
Cardiac Valve Prosth.	0.7	31,703	16,842	254	11	42	10	0.40	6	5,752	0.15	0.07
Femoral Knee Prosth.	1.4	34,459	90,243	463	25	60	221	0.21	17	2,355	0.21	0.07
Spinal Spacers	1.4	43,020	69,580	370	16	39	486	0.14	14	3,524	0.22	0.06
Cardioverter Defib.	1.6	$45,\!482$	16,700	336	12	42	31	0.45	3	15,594	0.13	0.05
Resynchronization Defib.	1.7	49,308	11,314	324	12	38	10	0.47	2	20,897	0.12	0.05
Drug Eluting Stents	2.1	71,965	33,151	348	16	53	15	0.32	49	1,543	0.08	0.04
PPIs: Total	15.7	327,278	735,032	506	29	74	1,935		172			
PPIs: Average	1.0	30,900	49,002	378	17	47	129	0.33	15	5,470	0.18	0.06
Notes: Summary statistics for	i	1			1 1		C		:1. 1.4.		ala mua dirat	

Notes: Summary statistics for main analysis sample. Authors' calculations from PriceGuide data. For each product category: "% of spend" is percent expenditure in entire PriceGuide database; \overline{spend}_{hmy} is average monthly spending; $N_{jhmy}, N_h, N_{tar}, N_{acq}$ and N_j are total number of observations, hospitals, target hospitals, acquirer hospitals, and brands; HHI_v is vendor Herfindahl-Hirschman Index (HHI); \overline{q}_{hmy} is average monthly quantity; \overline{p}_{hjmy} is average unit price; $CV_{h|jmy}$ is within-brand-month coefficient of variation across hospitals, averaged across all brand-months; $Gini_{h|jmy}$ is within-brand-month Gini coefficient of price, averaged over brand-months. "Total" rows contain aggregate statistics for all categories in each product class; unweighted average statistics across category-level analyses listed in the "Average" rows.

The top panel of Table 1 contains non-PPIs. Non-PPI products can be used in a hospital setting by staff members with a variety of roles and scopes of practice. Some of these are essentially commodities (e.g., surgical drapes): conditional on a few characteristics, such as

¹⁵GPO prices are typically used as a starting point for direct hospital-manufacturer negotiations for physician preference items and capital equipment (Schneller 2009).

material, we do not expect particular manufacturers to be strongly preferred. Some are used by physicians in moderately invasive procedures and brands may vary in perceived quality (e.g., surgical staplers), but they tend to be less critically linked to patient outcomes than Class III PPIs. The average non-PPI category is purchased by 483 sample hospitals. A non-PPI product costs \$714 per unit on average, and the average sample hospital spent \$13,459 per month on the average non-PPI. These averages obscure substantial heterogeneity. For example, nylon sutures cost \$8 per unit, while bone grafts cost \$2,562 per unit.

The bottom panel of Table 1 contains physician preference items. For PPIs, usage is driven by brand preferences of physicians, often surgeons, choosing which brand to use to treat a given patient. PPIs tend to be expensive cardiac and orthopedic surgical implants used in advanced procedures and are not purchased by all hospitals: only 378 sample hospitals purchased the average PPI, and only 254 purchased "Cardiac Valve Prostheses." PPIs are also used less frequently by hospitals that purchase them: the average PPI category sees 15 products used per month vs. 172 for non-PPIs. Nevertheless, purchasing hospitals spend twice as much per month on the average PPI category (\$30,900 vs. \$13,459), due to PPIs' higher average prices. PPIs are more likely to be sold and distributed by highly specialized sales representatives whose relationships and expertise are valued by physicians. In some cases, representatives are even present in the operating room during procedures.

The competitive landscape varies dramatically across these classes. There are more brands to choose from in non-PPIs (253) vs. PPIs (129). For PPIs, each brand is typically purchased directly from its manufacturer (there are 17 in the average category), and hospitals/systems tend to negotiate their own prices. By contrast, the average non-PPI is available from 39 vendors, brands produced by a particular manufacturer may be sold by multiple vendors, and hospitals are more likely to rely on GPO pricing (Schneller 2009). Despite these differences, both classes are highly concentrated according to the standards typically applied by the US Department of Justice (DoJ) and Federal Trade Commission (FTC), and there is a great deal of price dispersion: the average coefficient of variation, controlling for brand-month fixed effects, is 0.25 in non-PPIs and 0.18 in PPIs. The analogous Gini coefficient is 0.08 in non-PPIs and 0.06 in PPIs. This variation in prices across hospitals could imply large potential savings to be captured by merging parties, if the merged entity can achieve equivalent or better pricing than the best of the pre-merger contracts. To the extent that a larger merged party will have more "buyer power", savings could be even larger. Whether this will indeed happen depends upon the economic mechanisms at work.

3 Mechanisms of Interest

The welfare effects of any merger "efficiencies" driven by input cost reductions will depend on the underlying mechanisms (Carlton and Israel 2011). In evaluating proposed mergers, the FTC and DoJ consider whether cost savings are likely to be large, whether they are likely to pass through to consumers, and whether they are "likely to be accomplished with the proposed merger and unlikely to be accomplished in the absence of either the proposed merger or another means having comparable anticompetitive effects" (that is, whether they are "merger-specific" (U.S. Department of Justice and the Federal Trade Commission 2010)). Thus, the agencies' consideration of cost savings focuses for the most part on potential welfare gains in the downstream market.

Input cost savings could also be welfare-neutral – a transfer between upstream and down-stream firms – or themselves welfare-reducing. Hemphill and Rose (2018) distinguish cases where mergers increase monopsony power or bargaining leverage from cases where there are real resource savings, such as reduced waste. They conclude that the former cases reduce competition and should not be viewed by regulators as cognizable efficiencies.¹⁶

Hospital costs include substantial fixed and variable components. The variable portion of hospital costs scales with the number and severity of patients treated, the quantity of labor and "capital" inputs used per patient, and the prices of those inputs. The prices of inputs are, in turn, determined by brand choice and the price negotiated within each brand. Mergers may in theory impact any part of the hospital's cost function. However, fixed costs are unlikely to pass through to patients in the short run, changes in patient mix raise a battery of questions regarding agency and quality of care, and potential negative effects of monopsony power on labor costs are not rated kindly by antitrust authorities.¹⁷ Thus, in this study, we focus on variable costs that are truly marginal in the sense that they are incurred along with the provision of additional patient care – those costs most likely to impact downstream prices. Specifically, we examine whether mergers lead to economies of scale in variable supply costs due to changes in negotiated prices and/or input choices.

Analyzing prices requires close attention to the details of hospital procurement. In hospital input markets, prices are determined via bilateral negotiations between suppliers and hospitals, perhaps with GPOs acting as proxy for groups of hospitals. For products purchased through a GPO, we would predict a merger to impact purchasing if it moved the combined entity to a more favorable GPO membership tier, or if it induced a change in

¹⁶One potential harm cited is dynamic inefficiency, in which upstream firms reduce investment and innovation due to increased downstream monopsony power.

¹⁷See discussion in Gaynor and Town (2012), regarding the DoJ's allegation of competitive harm in the purchase of physician and nursing services.

GPO and there is variation in purchasing across GPOs. Neither of these conditions is obviously met. For products whose prices are determined separately for each hospital/system, a larger merged entity might negotiate lower prices than either the target or acquirer would alone.

The effect of mergers on bilateral bargaining is ambiguous in the economics literature. When there is a monopoly supplier, larger firms may obtain better prices if the bargaining-surplus function is concave, in which case the supplier's surplus in bargaining with two independent firms is smaller at the margin than the average surplus in bargaining jointly with an integrated firm (Chipty and Snyder 1999; Horn and Wolinsky 1988; Inderst and Wey 2007; Stole and Zwiebel 1996). Further, larger buyer firms may spur competition among multiple suppliers (Dana 2012; Gans and King 2002; Marvel and Yang 2008; Snyder 1996, 1998). These potential improvements in an integrated buyer's bargaining position may be reinforced by an increase in bargaining power/ability (the share of gains from trade obtained, conditional on bargaining positions). In work on insurer-hospital bargaining, Lewis and Pflum (2015) find that bargaining power is a greater determinant of post-merger markups than bargaining position.

Post-merger changes in bargaining power may be driven by various factors, including firm organizational structure, information, incentives, management, and leadership. These same factors may impact the efficiency of input utilization within firms. It is important to note that these effects may be positive or negative. On the one hand, Bloom et al. (2014) find that larger hospitals have better management practices. Conversely, mergers may have disruptive impacts on management, organizational culture, or earnings (Agrawal et al. 1992; Beckmann 1960; Fulop et al. 2002; Minemyer 2017).

Finally, input choice and input pricing may interact. Dana (2012) posits that buyer groups' primary advantage results from their commitment to purchase from a single supplier in differentiated product markets. We see evidence of this in the hospital-insurer bargaining world: Sorensen (2003) shows that insurers' steering ability impacts pricing more than insurers' size; Gowrisankaran et al. (2015) model how insurers steer patients towards cheaper hospitals; and Ho and Lee (2018) note that restrictive hospital networks could reduce insurers' prices by up to 30 percent.

4 Empirical Specification and Identification

We estimate two difference-in-differences price specifications. First, using a dataset containing unit prices for each product category (UMDNS code) u, hospital h, brand j, month m,

year y, we estimate:

$$lnP_{uhjmy} = \alpha_u * \mathbb{1}[y = \tau_h] + \beta_u * \mathbb{1}[y > \tau_h] + \theta_{hj} + \theta_{jmy} + X_{hmy}\theta^X + \varepsilon_{uhjmy}$$
 (1)

where τ_h is the year of hospital h's merger (if any), θ_{hj} is a hospital-brand fixed effect, and θ_{jmy} denotes brand-month-year fixed effects (with j implicitly uj as brands do not span categories by construction). 18 $X_{hmy}\theta^X$ can in principle control for any further time-varying hospital characteristics, but in our baseline analyses it contains a single dummy variable to indicate month-years after the hospital joins the benchmarking database, so that join effects are not conflated with merger effects. 19 The month of merger is unknown, so we estimate separate treatment effects for the merger year (α_u) and the post-merger period (β_u) . 20,21 We estimate separate regressions for acquirers and targets; the acquirers regression excludes targets, and vice versa. Finally, within each hospital-UMDNS code, we hold quantity weights across brands fixed at those observed for the hospital's first year in the analytic sample. Intuitively, this regression examines the weighted average within-brand effect of mergers on negotiated prices, for brands purchased both before and after the merger.

Next, using the same dataset, we estimate:

$$lnP_{uhjmy} = \alpha_u * \mathbb{1}[y = \tau_h] + \beta_u * \mathbb{1}[y > \tau_h] + \theta_{uh} + \theta_{jmy} + X_{hmy}\theta^X + \varepsilon_{uhjmy}$$
 (2)

where θ_{uh} denotes a set of hospital fixed effects (that vary by category in regressions where we pool categories). To avoid overweighting products purchased in small quantities in this specification, we weight each hospital-brand-year using the brand's quantity share within

¹⁸Brand-specific time trends are necessary to control for the presence of brands both early and late in their life cycles in these data.

¹⁹67 percent of hospitals are post-join for at least one year prior to the merger event in which they are used. Appendix Table A9 includes estimates using only such hospitals. The results are slightly larger in absolute magnitude, though broadly consistent with our main findings.

²⁰In our baseline results, we report specifications focusing on one year pre-merger, the year in which the merger occurs, and one year post-merger. Appendix G also contains analyses for alternative time horizons. In each specification, we always limit our estimation sample to the set of hospitals with complete pre-and post-merger data over the specified timing support, and use only the specified range of years. This decision enables us to interpret the resulting treatment effect as the effect of merging on the average treated hospital over that time horizon. We consider this to be clean and transparent regarding how each of the many "experiments" in our data generate our estimates. The recent literature on difference-in-differences estimation with staggered treatment notes that two-way fixed effects difference-in-differences estimates are weighted averages of all possible 2X2 difference-in-differences in the sample, where the weight on a given "experiment" depends on the timing of treatment (Borusyak and Jaravel 2017; Goodman-Bacon 2018).

²¹Prior work has shown that these hospital supply contracts are typically renegotiated roughly annually (Grennan and Swanson 2019), and we find that the same is true across our focal product categories. Focusing on β_u allows us to estimate merger treatment effects that are unlikely to be biased downward by delayed price adjustments due to structured renegotiations. In unreported analyses, we estimate the effect of mergers on renegotiation timing and find no statistically significant effects at conventional levels.

the hospital-year. Intuitively, this regression examines the effect of mergers on negotiated prices per unit across all brands within-category. Whereas the estimates from (1) measure the extent to which renegotiation leads to lower prices for the same brand at the same hospital, (2) will further include the extent to which the hospital switches usage to different brands. We find this specification of interest because switching to cheaper brands could be one mechanism via which savings could be achieved. However, we interpret these results cautiously, as changes in usage patterns could affect welfare via mechanisms other than price changes, if there are average or patient-specific match quality differences across brands within a category.²² In all regressions where the dependent variable is price, standard errors are clustered by hospital-brand.

In addition to the product category-specific regressions, we also estimate pooled regressions across all categories within each class (PPI vs. non-PPI). We stack all category-specific data within each class and estimate specifications (1) and (2) with a single α and β for the class, weighting by the total expenditure share for each category across all years of the data.²³

4.1 Identification

Our empirical approach compares input price trends at merging hospitals to those at non-merging hospitals, around the time of the merger. In Table 2 below, we compare merging and non-merging hospitals in our final analytic sample. Columns in each panel of Table 2 compare the full set of controls (1) to merging target (3) and acquirer (5) hospitals.

Relative to all non-merging controls, target hospitals tend to be smaller (lower employment, fewer beds); they are also less likely to be teaching hospitals and more likely to have non-profit ownership. Although they are smaller than controls, they tend to use more technologies, and have higher monthly purchase quantities for the product categories they purchase.²⁴ Relative to the average control hospital, target relationships with payers are nuanced: they have above-average contracting with managed care organizations (proxied by count of contracts with health maintenance organizations (HMOs)); they rely relatively less on Medicaid and more on Medicare for admissions; and their average case-mix-adjusted price per inpatient admission is significantly lower.

 $^{^{22}\}mathrm{We}$ have made efforts to restrict our analysis to reasonably well-defined product categories in an effort to minimize extreme versions of this issue. For example, In-Vitro Diagnostic Kits include \$5 kits for simple tests and \$5,000 kits for rare and complex tests.

²³This approach allows us to frame our findings in terms of total potential savings associated with horizontal mergers. Implicitly, however, this approach downweights product categories with low spending shares and hospitals that tend to purchase less expensive product categories.

²⁴Following Acemoglu and Finkelstein (2008) and Cooper et al. (2019) we measure technologies using the complete list of 153 binary facility indicators available in the AHA. These vary widely, encompassing burn care, chemotherapy, Meals on Wheels, psychiatric child/adolescent services, and proton beam therapy.

Acquirers show a different pattern. Relative to controls, they: are larger; are more often teaching hospitals and more often non-profit; use more technologies; have more HMO contracts; and have a similar price per admission.

Table 2: Comparison of Merging and Non-Merging Hospitals

	(1)	(2)	(3)	(4)	(5)
	Controls	Target Controls (Matched)	Targets	Acquirer Controls (Matched)	Acquirers
Panel A: Non-PPI Purchase	rs				
FTEs	2,540	2,533	2,246	2,893	2,713
Technologies	74.26	77.69	76.13	79.28	79.53
Beds	355.08	333.62	306.37	406.51	404.91
Number of Unique Products	49.09	32.24	34.95	37.77	42.01
Average Monthly Quantity	244.80	326.99	356.36	229.31	220.11
Admissions	17,431	16,936	15,384	20,458	19,995
Teaching	0.55	0.49	0.39	0.63	0.60
Non-Profit	0.75	0.94	0.91	0.81	0.77
Number of HMO Contracts	1.68	1.95	2.05	1.89	1.85
Percent Medicaid	0.20	0.16	0.15	0.19	0.20
Percent Medicare	0.44	0.49	0.51	0.45	0.45
Output Price	12,440	12,397	9,518	12,624	12,593
Input Price Index (θ_h)	4.95	4.96	4.93	4.95	4.92
Number of Hospitals	433	286	33	369	85
Panel B: PPI Purchasers					
FTEs	2,674	2,484	2,366	2,945	2,897
Technologies	75.74	78.78	79.62	78.86	81.46
Beds	372.06	346.59	324.79	417.31	427.50
Number of Unique Products	23.68	15.08	16.50	15.12	18.73
Average Monthly Quantity	24.34	27.48	31.90	27.14	30.35
Admissions	18,336	17,258	16,314	$20,\!865$	20,964
Teaching	0.58	0.50	0.43	0.63	0.64
Non-Profit	0.75	0.95	0.93	0.80	0.75
Number of HMO Contracts	1.71	2.01	2.03	1.91	1.77
Percent Medicaid	0.20	0.16	0.15	0.19	0.20
Percent Medicare	0.44	0.48	0.50	0.45	0.44
Output Price	12,693	12,250	9,538	12,816	12,711
Input Price Index (θ_h)	7.22	7.21	7.19	7.21	7.17
Number of Hospitals	403	242	29	330	74

Notes: Each column reports the counts and characteristics of merging and non-merging hospitals in the data. Column (1) shows characteristics of all non-merging hospitals. Column (2) shows the subset of these controls that serve as the matched sample of controls for target hospitals. Column (3) shows characteristics of target hospitals. Column (4) shows the characteristics of matched controls for acquirer hospitals. Column (5) shows the characteristics of acquirer hospitals. Panel A shows the samples used for estimation for non-PPI products and Panel B shows the samples used for estimation for PPIs. Matching is at the hospital-UMDNS level, so N of matched samples is the superset of controls used in each class-merger type, and variable means are weighted the same as each hospital's weight in the pooled regressions. Data on beds, full time equivalent employees (FTEs), technologies, admissions, teaching status, non-profit status, number of HMO contracts, and Medicare and Medicaid share come from the AHA Annual Survey. Following Acemoglu and Finkelstein (2008) and Cooper et al. (2019) we measure technologies using the complete list of binary facility indicators available in the AHA. Output price is calculated using data from the CMS HCRIS and Medicare Impact Files as in Dafny et al. (2017).

Given these differences in composition, we might be concerned that merging and nonmerging hospitals exhibit very different purchasing patterns even prior to the merger, and more importantly, that they might have different latent trends in input purchasing (which would invalidate the core assumption behind the differences-in-differences research design). To address this issue, first we note that the input price indices for merging and non-merging hospitals are not very different. In Table 2, we see that, relative to non-merging control hospitals, targets have about 2-3 percent lower prices pre-merger, while acquirers have about 3-5 percent lower prices pre-merger.²⁵

We also address observed differences directly in our preferred specifications. We match both target and acquirer hospitals to a subset of non-merging hospitals in order to ensure that "treated" merging hospitals are similar to the "control" non-merging hospitals, at least along observable dimensions. Within each product category, we match each merging hospital to its 10 nearest non-merging neighbors using Mahalanobis distance. Distances are calculated based on the hospital's following characteristics as in Dranove and Lindrooth (2003): inputs and outputs (log admissions, log full-time equivalent (FTE) employment, log technologies, number of unique products purchased, and average monthly purchase quantity); number of beds; payer mix (Medicare and Medicaid share of discharges, number of HMO contracts); teaching hospital status; and non-profit ownership. The weighted average characteristics of the matched samples are included in columns (2) and (4) of Table 2. The matched samples for both the target and acquirer samples are closer on most observable dimensions within both PPIs and non-PPIs.

In implementing the preferred specification, we generate a dataset containing a copy of each transaction for each of the 10 neighbors along with the full set of data from each treated hospital. Each of the 10 neighbors is therefore weighted equally in specifications (1) and (2), though some control hospitals are used as a comparison for multiple treated hospitals. For the stacked class-level regressions, matching is performed within each product category.

As discussed in detail in Dafny (2009), we note that this reduced form identification approach cannot address endogenous selection of hospitals into the merger "treatment" on unobserved dimensions. In order to provide greater confidence that our results are not driven by differential trends across merging and control hospitals, we augment our results with detailed monthly event studies with different pre- and post-merger time horizons. The results are reassuring as to our main conclusions; and to the extent that endogeneity bias remains, it must be due to time-varying factors that are precisely contemporaneous with the mergers in our sample.

²⁵Input price indices are hospital fixed effects recovered from a stacked regression of log price on brand-month-year fixed effects and hospital fixed effects. Intuitively, they represent hospital-level residual price variation holding the basket of product categories and brands fixed.

²⁶Appendix D discusses the performance of alternative matching algorithms, and includes pooled regression results for a subset of matching approaches.

Lastly, we only observe mergers which were proposed and consummated. Implicitly, this subset of all potential mergers that might take place was deemed to have lower anti-competitive effects by antitrust enforcement agencies. In the event that cost savings were used as a defense for these mergers, the cost savings we estimate are likely an upper bound on what one might expect from the average proposed horizontal merger in this setting.

5 Estimates of Merger Effects on Input Prices

We discuss results in three subsections, beginning with the effect of mergers on prices for each product category. We then consider the pooled effects obtained by stacking the categories into a single regression for each product class. Finally, we use triple-differences versions of the pooled regressions to evaluate treatment effect heterogeneity corresponding with various potential buyer power mechanisms.

5.1 Product Category-Specific Effects

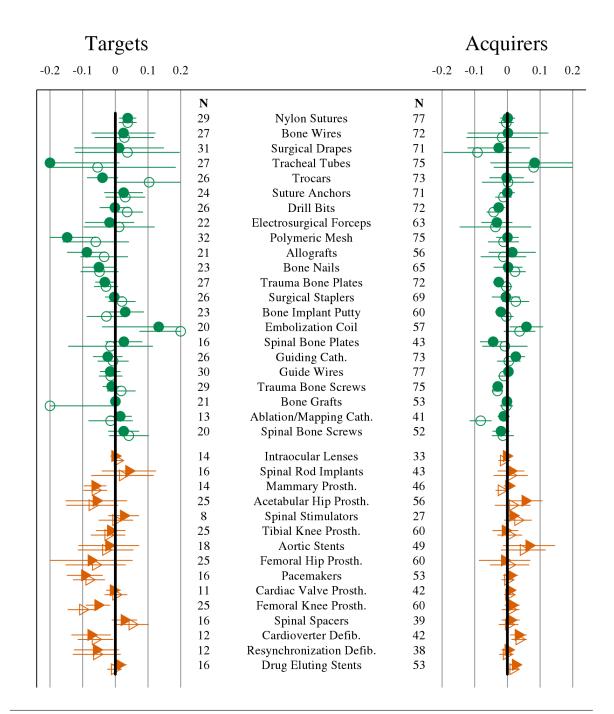
In Figure 1, product categories are grouped by class (non-PPIs vs. PPIs), then ordered from top to bottom in order of increasing total expenditure in the database. We show the estimated coefficients β_u and corresponding 95 percent confidence intervals for specifications (1 - hj) fixed effects; solid markers) and (2 - h) fixed effects; hollow markers).

The first pattern of interest is that, for both targets (left) and acquirers (right), the within-hospital-category estimates (hollow markers) closely mimic the within-hospital-brand estimates (solid markers), and the point estimates of the two are rarely statistically significantly different. This suggests that there is not a prevalence of large changes in composition of products purchased to higher or lower dollar products post-merger. Given this, and given our concerns that any such switching might have ambiguous welfare effects, we focus most of our discussion on within-hospital-brand differences moving forward.²⁷

Next, we focus on the left panel: merger effects on *target* hospitals. Among non-PPIs (circle markers), there is no discernible pattern of savings post-merger. Point estimates are a

 $^{^{27}}$ We have also examined the effect of mergers on purchase volume, motivated by the logic that reallocation of services across a merged entity may enable, say, a target to increase volume of implants purchased by that facility and extract greater discounts. We thank an anonymous referee for this comment. In Appendix Figure A5 and Table A12, we report the results of specifications with $ln(Q_{uhy})$ as the dependent variable for each product category, and for all categories in each product class, respectively. The results are quite noisy, with both large positive and large negative point estimates (which are rarely statistically significant). The summary results mostly suggest that there is no consistent effect of mergers on volume of supplies purchased; one exception is a positive and significant estimate for acquirers' purchase of PPIs, which is primarily driven by a large result for intraocular lenses. In any case, comparing Figure A5 to Figure 1, we do not find evidence that savings are greatest where quantity effects are more large and positive.

Figure 1: Merger Treatment Effects



Notes: Regression coefficients from specifications (1) and (2), post-merger year τ_h+1 only. Authors' calculations from PriceGuide data. Bars indicate 95% confidence interval with standard errors clustered at hospital-brand level. Left panel: Targets. Right panel: Acquirers. Circular/green markers: non-PPIs. Triangular/orange markers: PPIs. Solid markers: specification (1), within-brand price effects. Hollow markers: specification (2), within-category price effects.

near equal mix of positive and negative, with most small in magnitude and not statistically different from zero. Exceptions include significant price decreases within-hospital-brand of 3 and 15 percent, respectively, for trauma bone plates and polymeric mesh.

In contrast, among PPIs (triangle markers), the majority of within-hospital-brand price effect point estimates are negative. Also, several of these effects are significant at the category level, including decreases on the order of 5-9 percent for cardioverter defibrillators, femoral knee prostheses, mammary prostheses, and pacemakers.

We observe a dramatically different pattern for acquirers in the right panel of Figure 1. Price effects are generally more precise, as expected given the larger sample of acquirers. The point estimates are also clustered much closer to zero for both non-PPI products and PPI products. Among non-PPI products, we observe several negative and significant results on the order of 2-4 percent for bone implant putty, drill bits, spinal bone plates, trauma bone plates, and trauma bone screws. Second, in contrast to the target results, the coefficient estimates for some PPIs are positive, ranging from 2-5 percent for acetabular hip prostheses, cardioverter defibrillators, drug eluting stents, and spinal stimulators.

5.2 Pooled Product Class Effects

Given the large number of coefficients estimated across the individual product categories, it is useful to turn to the stacked regressions presented in Table 3 in order to shed light on average patterns at the hospital level. The left columns of Table 3 show pooled coefficient estimates for target hospitals, for each specification and class. These results indicate that targets obtain no significant price decreases on non-PPI product categories post-merger. However, they obtain more meaningful within-hospital-brand savings of 3.4 percent on PPIs. Finally, the within-hospital-brand coefficient is only slightly smaller than the within-hospital-category coefficient. This indicates that, on average, nearly all savings can be accounted for by renegotiations, rather than brand switching.²⁸

The pooled acquirer results are summarized in the right columns of Table 3. The non-PPI coefficients are again fairly precise zeros. Prices go up slightly (1.7 percent within-hospital-brand, 1.2 percent within-hospital-category) post-merger for acquirers' purchase of PPIs. This result is interesting because, although there are several managerial and economic theo-

²⁸We have also run specifications examining changes in product usage patterns as well as prices. What can be done on usage is in part limited by the fact that for most of our mergers, we have detailed purchasing data for either the target or acquirer, not both, so we cannot examine "convergence" between merging parties with any precision. In Appendix C, we examine the extent to which there are post-merger effects on "standardization" of purchasing with a single supplier. The effects are noisy and sensitive to specification, and so we relegate them to the Appendix rather than the body of the paper. We explore how standardization mediates price effects in Section 5.3.

Table 3: Merger Treatment Effects - Pooled

Dependent Variable:	$\ln(Price)_{uhjmy}$							
Non-PPIs	-0.006	0.003	-0.004	-0.012**				
	(0.008)	(0.011)	(0.004)	(0.005)				
PPIs	-0.034†	-0.038†	0.017†	0.012**				
	(0.010)	(0.009)	(0.006)	(0.005)				
Fixed Effects:	$ heta_{uhj} + heta_{jmy}$	$\theta_{uh} + \theta_{jmy}$	$ heta_{uhj} + heta_{jmy}$	$ heta_{uh} + heta_{jmy}$				
Treatment:	Tar	gets	Acquirers					

Notes: Authors' calculations from PriceGuide data. * p < 0.10, ** p < 0.05, † p < 0.01. Standard errors clustered at the hospital-brand level in parentheses. Coefficients estimated from pooled specifications (1) and (2). The dependent variable $\ln(\text{Price})$ is the logged transaction price measured at the hospital-brand-month-year. All price specifications include brand-month-year fixed effects.

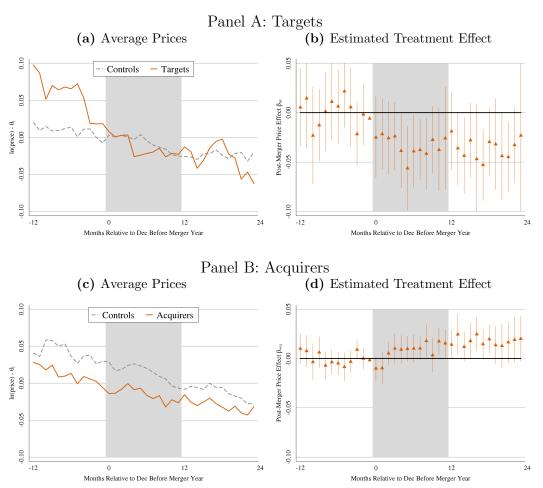
ries via which mergers might increase input prices (relative to non-merging control hospital trends), we might expect most of these mechanisms to perhaps be less prevalent among acquirers, who are typically the larger (sometimes significantly larger) or more dominant entity involved in the merger. We return to how we interpret this result as we examine event study evidence, robustness to matching and inference decisions, and treatment effect heterogeneity.

5.2.1 Event studies of merger treatment timing

We next examine whether the results above are (1) driven by preexisting differential trends in prices among merging facilities; or (2) biased due to merger effects that develop slowly over time (e.g., due to fixed contracts that take time to renegotiate as in Grennan and Swanson (2019)). In Figure 2 below, the left panels show pooled raw average price trends, controlling only for brand-category fixed effects to account for the fact that hospitals may use very different amounts of various products. The right panels show the pooled event studies for the within-brand version of the above difference-in-differences specification, fully controlling for hospital-brand effects and brand-specific time trends. We focus on PPI prices for targets (top panels) and acquirers (bottom panels); the analogous results for non-PPIs are in Appendix Figure A2. In each panel, we show one full calendar year pre- and post-merger; the year of merger is highlighted in gray.²⁹

²⁹The first and second panels of Appendix Table A10 compare our baseline difference-in-differences results, in which the treatment effect of merging is identified by comparing the post-merger year $\tau_h + 1$ to the premerger year $\tau_h - 1$, to an alternative set of estimates comparing τ_h and $\tau_h + 1$ to $\tau_h - 1$. Intuitively, the latter imposes $\alpha = \beta$ in specification (1). The point estimates are slightly smaller in magnitude in the specification with $\alpha = \beta$, indicating that most, but not all, of the treatment effect of interest is realized in the merger year.

Figure 2: Merger Treatment Effects – Event Studies, PPIs



Notes: Authors' calculations from PriceGuide data. The left panels present the raw average price for treated hospitals and matched controls, adjusted for the composition of products using a product-category-brand fixed-effect. The right panels present regression coefficients from pooled event study version of specifications (1), each month within one year of merger year τ_h . Hold-out date is December of last pre-merger year; all coefficients represented relative to pre-merger year mean. Bars indicate the 95% confidence interval with standard errors clustered by hospital-brand.

As expected in markets with evolving technology and new product entry, PPI prices are decreasing for both targets and acquirers. In panel (a), it appears that targets have a steeper negative trend pre-merger than their matched controls. However, this may be driven by any number of features that differ between targets and controls, such as different patterns in when expensive brands are purchased throughout the year. Indeed, in panel (b), which controls for such compositional differences, there is little evidence of remaining pre-trends in our preferred specification, and there is a clear trend break in which targets' PPI prices decrease more steeply in the merger year and post-merger year. For acquirers, we observe in panels (c) and (d) that acquirers' and control hospitals' prices are on a parallel downward

trend in the pre-merger year, consistent with our identifying assumption. Interestingly, it appears that the positive price effects for acquirers purchasing PPIs are driven by a slightly flatter trend among acquirers in the merger year than we observe for non-merging controls. Finally, in both panels (b) and (d), the trend in treatment effect estimates is flat in the post-merger year, indicating that, where merger effects exist, they are not continuing to evolve at the end of the time horizon observed.

In all of these results, we have focused on the largest sample for which we have complete pre- and post-merger years: a panel of treated and matched control hospitals in the years $\{\tau_h - 1, \tau_h, \tau_h + 1\}$. These results are, for the most part, robust to estimation on (smaller) samples of hospitals with longer pre- and post-merger periods. First, Appendix Figure A3 confirms that there are no differential pre-trends in targets' prices in the two years prior to the merger year; Appendix Figure A4 confirms analogously that there is no evidence of differential pre-trends in acquirers' prices for PPIs. There is a stronger negative pre-trend in acquirers' non-PPI prices, but it appears to be contained within the year $\tau_h - 2$ and would not be a source of bias in our main specifications.

Appendix Figures A3 and A4 also examine whether price effects are continuing to evolve after $\tau_h + 1$. The strongest evidence of this is in panel (b) of Appendix Figure A3, in which targets' non-PPI prices exhibit some larger negative point estimates two years after the merger.

We summarize the estimated treatment effects with alternative timing supports in Appendix Table A10. While the results are qualitatively similar to our baseline results, we note a few key differences. First, the subsample of targets for which we observe two pre-merger years exhibits larger non-PPI and PPI savings. Second, neither of our subsamples of acquirers with extended timing support shows evidence of positive, significant PPI price effects; thus, we interpret this result with some caution.

5.2.2 Robustness

We have examined the sensitivity of our results to several decisions regarding modeling, regression sample, and inference. In Appendix Table A5, we present estimates from specifications (1) and (2) using different matching approaches. Panel A presents the baseline estimates for reference. Panel B presents the non-matched results, using all non-merging hospitals as controls. Panel C uses a 10 neighbor Probit version of the match as in Dranove and Lindrooth (2003). Panel D uses a 1-to-1 Mahalanobis match as in Schmitt (2017) — these results are the most notable in that all merger effect estimates are significantly noisier, with the target PPI savings no longer statistically significant. The alternative matching approaches generally track our preferred estimates, with largest savings for targets' purchase

of PPIs and positive treatment effects for acquirers' purchase of PPIs. However, none of the estimates is statistically significantly different from those in our main results, indicating that observed compositional differences do not generate large differences in input price or trends between treated (merging) and control (non-merging) hospitals.

Next, while the matching exercises described above focus on selecting the best comparison groups for our in-sample mergers to ensure internal validity, they do not address external validity: our data only include hospitals that voluntarily joined a benchmarking database, which may be different in observable and unobservable ways from the average merging hospital. In Appendix E, we estimate our main merger specification from equation (1), with sample treated hospitals re-weighted to be representative of the distribution of the full sample of targets and acquirers in the AHA based on (a) bed size, or (b) ownership and teaching status. These results are qualitatively similar, with point estimates that are slightly smaller in magnitude.

We also attempt to directly address any potential confounding of merger effects and database join effects. Our baseline analyses contain a dummy variable to indicate month-years after the hospital joins the benchmarking database, so that join effects are not conflated with merger effects. Appendix Table A9 shows a slightly cleaner specification, estimated only on hospitals whose three focal periods $\{\tau_h - 1, \tau_h, \tau_h + 1\}$ are entirely post-join.³⁰ The results are slightly larger in absolute magnitude, but confirm our main findings.

Next, we address potential bias introduced by hospitals' involvement in multiple mergers. Our main specification identifies the first merger for each of our treated hospitals over the sample period 2009-2015. At baseline, we impose that treated hospitals have no merger in $\tau_h - 1$, and that matched control hospitals have no merger in $\{\tau_h - 1, \tau_h, \tau_h + 1\}$. In Panel C of Appendix Table A9, we implement a stricter version of this restriction, ensuring that no mergers occur between $\tau_h - 2$ and $\tau_h + 1$ except for the focal merger in τ_h , applying this rule to both treated and matched control hospitals. The results are qualitatively similar to our main estimates in Table 3.

Lastly, Appendix Table A11 explores various alternative approaches to standard errors: a wild bootstrap method as well as alternative clustering at the hospital-vendor and system-UMDNS levels. Our main findings are stable across approaches to standard errors.

5.3 Treatment Effect Heterogeneity and Mechanisms

In this Section, we examine heterogeneity in treatment effects along several dimensions in order to shed light on mechanisms. For the sake of brevity, we continue to focus discussion on

 $^{^{30}}$ We also remove matched controls when their associated treated hospital is removed from the data based on this restriction.

within-hospital-brand price effects, as our previous results indicated that these were where the strongest evidence of merger-driven savings were concentrated. Within-hospital-category results are available in Appendix Table A13.

5.3.1 Size effects

As noted previously, much of the literature regarding mergers and cost savings focuses on advantages associated with firm size. Within our sample, we observe substantial variation in the firm size change induced by the merger: almost all of our transactions involve 1-2 target hospitals, but our acquirer systems range from very small (1 or 2 hospitals) to large (over 70 hospitals). The effect of target and acquirer size on purchasing is ex ante ambiguous. Theories such as that of Chipty and Snyder (1999) and others would predict that – if the surplus function is concave – we should see the largest effects for small targets joining large systems, with small or zero effects for large acquirers. On the other hand, price decreases may be driven by improved management practices, and there may be economies or diseconomies of scale in sharing management between merging hospitals (Beckmann 1960).

The top two rows in each panel of Table 4 show separate results for mergers involving small (1-3 hospitals) vs. large (4+ hospitals) acquirers. For both targets and acquirers, point estimates of merger price effects for non-PPIs are small and negative (2.1 percent for targets and 0.6 percent for acquirers) when the merger involves small acquirers. The positive treatment effect previously documented for acquirers' PPI prices appears to be driven by large acquirers. The savings on PPIs for targets is slightly larger for large acquirer mergers, but not statistically significantly so. These estimates are consistent with mergers involving countervailing effects of improved buyer power and managerial disruption, such that the net effect is small and negative for merging parties with the largest size change, but small and positive for merging parties with the smallest size change.

5.3.2 Geographic proximity

Next, as noted in Schmitt (2017), many of the mergers in the recent "great reconsolidation" involve hospital systems acquiring hospitals in distant geographic markets. We next split the treatment effects according to whether any of the merging hospitals share a hospital referral region (HRR). Heterogeneity in merger effects by market overlap may be due to local economies of scale in management or distribution of inputs, to local diffusion of management practices, or to the relative roles of bargaining power vs. bargaining position in mediating merger-related cost savings.

We compare treatment effects for in- vs. out-of-market mergers in the second pair of rows

Table 4: Merger Treatment Effects – Heterogeneity, Within Brand

		Targets		Acquirers			
	N_{tar}	β	SE	N_{acq}	β	SE	
Panel A: Non-PPIs							
Acquirer Size							
Small	13	-0.021*	(0.012)	26	-0.006	(0.006)	
Large	20	0.007	(0.012)	59	-0.000	(0.006)	
Market Exposure							
In HRR	14	-0.025**	(0.011)	36	-0.007	(0.005)	
Out of HRR	19	0.011	(0.012)	49	0.003	(0.007)	
Vendor Market Structure							
High HHI	33	-0.004	(0.013)	85	-0.003	(0.006)	
Low HHI	33	-0.008	(0.010)	85	-0.006	(0.005)	
Controlling for Output Price							
Post-Merger	33	0.000	(0.008)	85	-0.005	(0.004)	
ln(Output Price)		0.023	(0.018)		0.003	(0.005)	
Standardization Interaction							
Post-Merger	30	-0.013	(0.009)	80	0.000	(0.005)	
Post X Std.		0.015	(0.016)		-0.009	(0.008)	
Panel B: PPIs							
Acquirer Size							
Small	12	-0.023	(0.015)	26	0.009	(0.006)	
Large	17	-0.043**	(0.018)	48	0.026**	(0.010)	
Market Exposure							
In HRR	12	-0.059†	(0.018)	35	0.014**	(0.007)	
Out of HRR	17	-0.012	(0.011)	39	0.023**	(0.009)	
Vendor Market Structure							
High HHI	29	-0.046†	(0.014)	74	0.019**	(0.008)	
Low HHI	29	-0.026*	(0.014)	74	0.016**	(0.008)	
Controlling for Output Price							
Post-Merger	29	-0.037†	(0.011)	74	$0.018\dagger$	(0.006)	
ln(Output Price)		0.034*	(0.018)		$0.020\dagger$	(0.008)	
Standardization Interaction							
Post-Merger	28	-0.054**	(0.024)	65	0.007	(0.009)	
Post X Std.		0.031	(0.027)		0.016	(0.012)	

Notes: Authors' calculations from PriceGuide data. * p < 0.10, ** p < 0.05, † p < 0.01. Standard errors clustered at the hospital-brand level in parentheses. Coefficients estimated from pooled specification (1). The dependent variable is the logged transaction price measured at the hospital-brand-month-year. Small acquirers are hospital systems consisting of 1-3 hospitals pre-merger, and large acquirers are hospital systems with more than 3 hospitals. A target is categorized as "In HRR" if there is at least one hospital in the acquiring system in the same HRR, and vice versa. A product category is classified as "High" concentration if its vendor HHI is above the median within its product class. $\ln(\text{Output Price})$ is estimated using the HCRIS as in Dafny et al. (2017). Standardization is an indicator for whether the hospital purchased at least 75% of all units in a product category from a single vendor in its first sample year.

in each panel of Table 4. The strongest merger savings previously documented – for targets' purchase of PPIs – are concentrated in in-market mergers, where we see a price decrease postmerger of 6 percent, relative to the control trend. Targets also achieve larger reductions on non-PPIs when there is market overlap (2.5 percent savings, versus price increases of 1.1 percent for out of HRR mergers). Acquirers show price increases for both in- and out-of-market

mergers; point estimates are smaller, but not significantly so, for in-market mergers. These results stand in contrast to the large out-of-market merger effects documented in Schmitt (2017), in which merger effects were strongest for targets in out-of-market acquisitions, perhaps due to the differing nature of the marginal costs of inputs in our purchasing data from hospital costs more broadly construed.³¹ Instead, they echo Dranove and Lindrooth (2003), in which cost savings are greatest when previously independent hospitals integrate under a single license and consolidate facilities. They are also consistent with theories of concavity and economies of scale, given the qualitative fact that some non-PPIs and almost all PPIs tend to be sold by highly specialized, regional sales representatives who spend large amounts of time with a few local accounts. Finally, our results are consistent with Farrell and Shapiro (2001)'s argument that the agencies should give consideration to "efficiencies based upon the close integration of specific, hard-to-trade assets owned by the merging parties," while noting that "the same conditions that tend to make synergies more merger-specific and more beneficial to consumers also tend to make the merger itself more problematic." I.e., we find evidence of greater savings associated with local mergers; unfortunately, Cooper et al. (2019) and others also find evidence of greater anticompetitive effects of local hospital mergers in the downstream markets for hospital services.

5.3.3 Supplier market structure

We also examine whether merger effects are mediated by supply-side market structure. To this end, we separate UMDNS codes within each product class into those above or below the median HHI for the class. As noted in Table 1, the product categories analyzed in this paper are almost all moderate-high concentration according to typical FTC and DoJ standards. That said, the mean "High HHI" non-PPI has an HHI of 0.419, vs. 0.179 among the "Low HHI" non-PPIs; the same measures among PPIs are 0.497 and 0.227, respectively. The third pair of rows in each panel of Table 4 show that there is no economically or statistically significant difference in price effects as a function of supplier competition.

5.3.4 Downstream hospital-insurer market power

The fourth pair of rows in each panel of Table 4 examines whether the cost effects documented above are muted due to mergers causing hospitals' supply side and demand side market power

³¹A natural concern in comparing these estimates is that differences may be driven by the subset of hospitals we use rather than the measure of cost. If we estimate post-merger price effects using our subset of mergers and the HCRIS-based cost measure employed by Schmitt (2017), the effect for targets is 0.000 (standard error 0.034) and the effect for acquirers is 0.001 (standard error 0.020). That is, we find smaller point estimates, but standard errors are such that our results are not statistically significantly different from the estimates in Schmitt (2017).

to increase concurrently. For example, if merger-enabled market power allowed hospitals to exercise monopoly power and increase procedure prices, some of that pie could be shared with suppliers, mitigating cost decreases due to increased monopsony power. To that end, we estimate our same input price regression specifications, controlling for output prices. We employ the method described in Dafny et al. (2017) to infer hospital prices from HCRIS reports. The results indicate that, while hospitals' downstream price changes tend to be positively correlated with upstream price changes, this does not change the estimated merger treatment effect.

5.3.5 Standardization and renegotiation

The final set of rows in each panel of Table 4 examines the interaction between merger effects and standardization. We estimate a simple modification of the above specifications, in which the year-of and post-merger dummies are interacted with a dummy for pre-merger standardization at the hospital-category-level. That is, this specification indicates whether merger-induced savings are larger for hospitals that were standardized pre-merger.

The results confirm our previous result that targets receive savings on PPIs after merging.³² However, the merger price effect is not significantly amplified for hospital-categories that are standardized, for any combination of product class and type of merging entity. For targets, standardization appears to diminish post-merger savings, if anything.

6 Conclusion

The US hospital industry has experienced a large amount of contentious consolidation via mergers over the last several decades. Marginal cost savings have been perhaps the most common justification offered for these mergers, often appealing to the large input price variation across hospitals and notions that "buyer power" is increasing in hospital system size. Prior research examining aggregated accounting measures of hospital costs has found mixed results.

In this study, we use data on all purchase orders issued by a large set of US hospitals 2009-15 in order to conduct a detailed examination of the effects of mergers on the prices paid for medical/surgical supplies, an important component of hospital marginal costs. The most robust finding is target savings of 3.4 percent on targets' purchase of physician preference items. Across our 37 product categories, targets save an estimated \$214,402 per year (1.9 percent) due to within-brand price decreases after horizontal mergers, whereas acquirers

³²This correlation is significant for acquirers' non-PPI prices, and marginally significant for targets' PPI prices.

experience an (insignificant) average net price increase of \$90,243.³³ Perhaps the simplest way to summarize these findings is that, given the precision of our estimates, we can rule out average input price savings of greater than 3.1 percent at the 95 percent level for both targets and acquirers. This seems modest relative to the cross-sectional price variation across hospitals and claims of potential savings via increased "buyer power."

The variety of product categories in the data allows us to look more closely at merger effects and examine mechanisms underlying "buyer power" (which has previously been studied in theory and in case studies of specific product markets). We examine heterogeneity in merger treatment effects across different product categories, and by acquirer size, market overlap, and vendor market concentration. We find that the observed target savings on PPIs is driven by local mergers. These savings may be consistent with local returns to scale in sales and distribution or transfer of managerial practices. Merger treatment effects on targets are also larger when acquirers are larger, consistent with savings driven by concavity in the surplus function as in Chipty and Snyder (1999), though the size comparison is not statistically significant. These findings are echoed in the results for acquirers' purchase of PPIs, in which price increases are smallest for small acquirers (where the relative size increase is larger) and for local mergers. While there are multiple factors that may drive cost increases after a merger – e.g., managerial attention – the countervailing force of increased buyer power is most powerful for local mergers involving larger relative size changes.

Antitrust agencies consider a merger's "efficiencies" to be cognizable if they are likely to occur if the merger proceeds, and unlikely to occur if it does not. The agencies also ask whether efficiencies are large and/or likely to pass through to consumers (Farrell and Shapiro 2001). We have limited ability in our data to speak to the merger-specificity of the savings we document, or to potential pass-through. However, on average, our estimates of post-merger savings are small. Moreover, estimated savings are largest for local mergers where hospitals' market power vis à vis insurers is also likely to increase (Cooper et al. 2019). Finally, the largest estimated savings, by targets on PPIs, can entirely be attributed to renegotiation, rather than brand switching, in that savings estimates within hospital-brand are statistically equivalent to estimates within hospital-category. This transfer of surplus from device manufacturers to hospitals is suggestive of increased monopsony power and may not increase efficiency. For example, it may negatively impact dynamic incentives of suppliers to innovate or maintain product quality or manufacturing reliability (see discussion in Hemphill and Rose (2018)). While each proposed merger should certainly be judged on its

³³Calculation details in Appendix F. For comparison, a recent AHA-sponsored study documented a decrease in operating expenses of 2.5 percent for acquired hospitals (Noether and May 2017); our estimate is lower, though our 95 percent confidence interval would include 2.5 percent.

own merits, given its specific context, each of these features of our findings urges skepticism of the use of hospital purchasing efficiencies as justification for horizontal hospital mergers.

We offer these and all results with the caveat that our sample size of mergers is smaller than we would like due to the relative newness of purchasing order data availability. However, we believe the detail and breadth of the purchasing data brings new light to the study of hospitals and buyer power broadly, and mergers specifically.

For hospital mergers in particular, another important phenomenon to consider is the simultaneity of input market negotiation and output market negotiation. We control for this using a proxy for hospital output prices. However, a more detailed study would require matching hospital purchasing data with private insurer claims, and modeling demand and negotiated prices explicitly in both upstream and downstream markets. We see this as an important area for future research.

References

- Acemoglu, D. and Finkelstein, A. (2008). Input and technology choices in regulated industries: Evidence from the health care sector. *Journal of Political Economy*, 116(5):837–880.
- Agrawal, A., Jaffe, J. F., and Mandelker, G. N. (1992). The post-merger performance of acquiring firms: A re-examination of an anomaly. *Journal of Finance*, XLVII(4):1605–1621.
- Beckert, W., Christensen, M., and Collyer, K. (2012). Choice of NHS-Funded hospital services in England. *The Economic Journal*, 122(560).
- Beckmann, M. J. (1960). Some aspects of returns to scale in business administration. *Quarterly Journal of Economics*, 74(3):464–471.
- Bloom, N., Sadun, R., and VanReenen, J. (2014). Does management matter in healthcare? Stanford Mimeo.
- Borusyak, K. and Jaravel, X. (2017). Revisiting event study designs. Harvard University Working Paper.
- Capps, C. (2005). The quality effects of hospital mergers. In *Economic analysis group discussion paper*, volume 5-6. U.S. Dept. of Justice, Antitrust Division.
- Capps, C. and Dranove, D. (2004). Hospital consolidation and negotiated PPO prices. *Health Affairs*, 23(2):87–109.

- Carlton, D. W. and Israel, M. (2011). Proper treatment of buyer power in merger review. Review of Industrial Organization, 39(1/2):127–136.
- Chipty, T. and Snyder, C. M. (1999). The role of firm size in bilateral bargaining: A study of the cable television industry. *The Review of Economics and Statistics*, 81(2):326–340.
- Coate, M. B. (2018). The merger review process at the federal trade commission from 1989 to 2016. Available at SSRN: https://ssrn.com/abstract=2955987 or http://dx.doi.org/10.2139/ssrn.2955987.
- Cooper, Z., Craig, S., Gaynor, M., and Van Reenen, J. (2019). The price ain't right? Hospital prices and health spending on the privately insured. *Quarterly Journal of Economics*, 134:51–107.
- Cutler, D. M. and Scott Morton, F. (2013). Hospitals, market share, and consolidation. JAMA, 310(18):1964–70.
- Dafny, L. (2009). Estimation and identification of merger effects: An application to hospital mergers. The Journal of Law and Economics, 52:523–550.
- Dafny, L. (2014). Hospital industry consolidation still more to come? New England Journal of Medicine, 370:198–199.
- Dafny, L., Ho, K., and Lee, R. S. (2017). The price effects of cross-market mergers: Theory and evidence from the hospital industry. Mimeo.
- Dana, J. (2012). Buyer groups as strategic commitments. Games and Economic Behavior, 74(2):470–485.
- Dranove, D. and Lindrooth, R. (2003). Hospital consolidation and costs: Another look at the evidence. *Journal of Health Economics*.
- Duggan, M. and Scott Morton, F. (2010). The impact of Medicare Part D on pharmaceutical prices and utilization. *American Economic Review*, 100(1):590–607.
- Farrell, J. and Shapiro, C. (2001). Scale economies and synergies in horizontal merger analysis. *Antitrust Law Journal*, 68:685–710.
- Fulop, N., Protopsaltis, G., Hutchings, A., King, A., Allen, P., Normand, C., and Walters, R. (2002). Process and impact of mergers of NHS trusts: multicentre case study and management cost analysis. *BMJ*, 325.

- Gans, J. S. and King, S. P. (2002). Exclusionary contracts and competition for large buyers. International Journal of Industrial Organization, 20(9):1363–1381.
- Gaynor, M. and Town, R. J. (2012). Competition in health care markets. In McGuire, T. G., Pauly, M. V., and Barros, P., editors, Handbook of Health Economics, volume 2, pages 499–637. Elsevier B. V.
- Goodman-Bacon, A. (2018). Difference-in-differences with variation in treatment timing. Working paper.
- Gowrisankaran, G., Nevo, A., and Town, R. (2015). Mergers when prices are negotiated: Evidence from the hospital industry. *The American Economic Review*, 105(1):172–203.
- Grennan, M. (2013). Price discrimination and bargaining: Empirical evidence from medical devices. *American Economic Review*, 103(1):145–177.
- Grennan, M. (2014). Bargaining ability and competitive advantage: Empirical evidence from medical devices. *Management Science*, 60(12):3011–3025.
- Grennan, M. and Swanson, A. (2018). Diagnosing price dispersion. Working paper.
- Grennan, M. and Swanson, A. (2019). Transparency and negotiated prices: The value of information in hospital-supplier bargaining. *Journal of Political Economy*. forthcoming.
- Gruber, J. and McKnight, R. (2016). Controlling health care costs through limited network insurance plans: Evidence from Massachusetts state employees. *American Economic Journal: Economic Policy*, 8(2):219–50.
- Haas-Wilson, D. and Garmon, C. (2011). Hospital mergers and competitive effects: Two retrospective analyses. *International Journal of the Economics of Business*, 18(1):17–32.
- Harrison, T. D. (2010). Do mergers really reduce costs? Evidence from hospitals. *Economic Inquiry*, 49(4):1054–1069.
- Hemphill, C. S. and Rose, N. L. (2018). Mergers that harm sellers. *The Yale Law Journal*, 127(1).
- Ho, K. and Lee, R. S. (2017). Insurer competition in health care markets. *Econometrica*, 85(2):379–417.
- Ho, K. and Lee, R. S. (2018). Equilibrium provider networks: Bargaining and exclusion in health care markets. Manuscript.

- Ho, V. and Hamilton, B. H. (2000). Hospital mergers and acquisitions: Does market consolidation harm patients? *Journal of Health Economics*, 19(3):408–419.
- Horn, H. and Wolinsky, A. (1988). Bilateral monopolies and incentives for merger. *RAND Journal of Economics*, 19:408–419.
- Inderst, R. and Wey, C. (2007). Buyer power and supplier incentives. *European Economic Review*, 51:647–667.
- Krishnan, R. (2001). Market restructuring and pricing in the hospital industry. *Journal of Health Economics*, 20:213–237.
- Kwoka, J. (2015). Mergers, Merger Controls, and Remedies: A Retrospective Analysis of U.S. Policy. The MIT Press, Cambridge, MA.
- Lewis, M. and Pflum, K. (2015). Diagnosing hospital system bargaining power in managed care networks. *American Economic Journal: Economic Policy*, 7(1):243–74.
- Maeda, J. L., Raetzman, S. O., and Friedman, B. S. (2012). What hospital inpatient services contributed the most to the 2001-2006 growth in the cost per case? *Health Services Research*, 47(5):1814–1835.
- Marvel, H. P. and Yang, H. (2008). Group purchasing, nonlinear tariffs, and oligopoly. *International Journal of Industrial Organization*, 26(5):1090–1105.
- Minemyer, P. (2017). Geisinger's turnaround offers lessons on integrated delivery. *Fierce-Healthcare*.
- Navathe, A. S., Troxel, A. B., Liao, J. M., Nan, N., Zhu, J., Zhong, W., and Emanuel, E. J. (2017). Cost of joint replacement using bundled payment models. *JAMA Internal Medicine*, 177(2):214–222.
- Noether, M. and May, S. (2017). Hospital merger benefits: Views from hospital leaders and econometric analysis. Technical report, Charles River Associates.
- Nugent, W. C., Kilo, C. M., Ross, C. S., Marrin, A. S., Berwick, D. M., and Roessner, J. (1999). Improving Outcomes and Reducing Costs in Adult Cardiac Surgery. Institute for Healthcare Improvement, Boston, MA.
- Prager, E. and Schmitt, M. (2019). Employer consolidation and wages: Evidence from hospitals. Working paper.

- Romano, P. S. and Balan, D. J. (2011). A retrospective analysis of the clinical quality effects of acquisition of Highland Park Hospital by Evanston Northwestern Healthcare. *International Journal of the Economics of Business*, 18(1):45–64.
- Sacher, S. and Vita, M. (2001). The competitive effects of a not-for-profit hospital merger: A case study. *Journal of Industrial Economics*, 49(1):63–84.
- Schmitt, M. (2017). Do hospital mergers reduce costs? *Journal of Health Economics*, 52:74–94.
- Schneller, E. S. (2009). The value of group purchasing 2009: Meeting the need for strategic savings. *Health Care Sector Advances*, *Inc.*
- Sela, R. J. and Simonoff, J. S. (2011). Reemtree: Regression trees with random effects. R package version 0.90.3.
- Snyder, C. M. (1996). A dynamic theory of countervailing power. Rand Journal of Economics, 27:747–769.
- Snyder, C. M. (1998). Why do larger buyers pay lower prices? Intense supplier competition. *Economics Letters*, 58:205–209.
- Sorensen, A. (2003). Insurer-hospital bargaining: Negotiated discounts in post-deregulation Connecticut. *Journal of Industrial Economics*.
- Starc, A. and Swanson, A. (2018). Preferred pharmacy networks and drug costs. Working paper.
- Stole, L. and Zwiebel, J. (1996). Intra-firm bargaining under non-binding contracts. *Review of Economic Studies*, 63:375–410.
- Tenn, S. (2011). The price effects of hospital mergers: A case study of the Sutter-Summit transaction. *International Journal of the Economics of Business*, 18(1):65–82.
- Thompson, E. (2011). The effect of hospital mergers on inpatient prices: A case study of the New Hanover-Cape Fear transaction. *International Journal of the Economics of Business*, 18(1):91–101.
- Town, R. J., Wholey, D. R., Feldman, R., and Burns, L. R. (2006). The welfare consequences of hospital mergers. *National Bureau of Economic Research*.

- Town, R. J., Wholey, D. R., Feldman, R., and Burns, L. R. (2007). Revisiting the relationship between managed care and hospital consolidation. *Health Services Research*, 42(1):219–238.
- U.S. Department of Justice and the Federal Trade Commission (2010). Horizontal merger guidelines. https://www.ftc.gov/sites/default/files/attachments/merger-review/100819hmg.pdf.
- Vogt, W. B. and Town, R. J. (2006). How has hospital consolidation affected the price and quality of care? Synthesis Report 9, Robert Wood Johnson Foundation.

ELECTRONIC APPENDICES – NOT FOR PRINT PUBLICATION

A Data Appendix

The primary data used in this study come from a unique database of all supply purchases made by over 1,200 US hospitals during the period 2009-2015. The data are from the PriceGuideTM benchmarking service (hereafter, "PriceGuide data") offered by the ECRI Institute, a non-profit health care research organization. For each transaction, we observe price, quantity, transaction month, and supplier for a wide range of product categories.

The reported data are of high quality because they are typically transmitted as a direct extract from a hospital's materials management database. Hospitals have strong incentives to report accurately because the analytics the benchmarking service's web portal provides are based on comparing the hospital's submitted data to that of others in the database.³⁴

The raw transactions data contain 116 million observations for 2,876 members across 3,394 product categories and 2.7 million stock keeping units (SKUs). Our analyses include 37 important product categories, defined by their UMDNS codes. We restricted to the top 50 categories by spending or number of transactions, yielding 71 categories total. From these, we excluded categories that were too broad or where data quality seemed to be an issue. We did this based on "reasonableness" of the observed price variation – categories for which the coefficient of variation in price exceeded 200 percent were excluded – and selected categories by hand that seemed excessively broad based on their UMDNS names: Industrial Supplies, Computer Supplies, Food Item, Stickers, Office Supplies, Tests, Solutions, Pharmaceuticals, Nutritional Supplements, IV Administration Kits, and In-Vitro Diagnostic (IVD) Kits.³⁵ Next, we rationalized the multiple units of measure in which different transactions' quantities were reported. Although many medical and surgical product categories are sold by the unit (e.g., a single coronary stent), others are sold in pairs, boxes, cases, etc. The transactions data indicates this distinction in the "unit of measure" field, and further notes how many subunits are in each unit of measure using a "conversion factor" field. In order to perform our analyses on the cleanest and most internally-consistent transactions data possible, we transformed all transactions into price per single unit and quantity of single units purchased.³⁶. Finally, we utilized machine learning methods to categorize SKUs into

³⁴Nonetheless, there is some evidence that the data are incomplete. For example, we find it unrealistic that some broadly used categories (e.g. examination gloves) do not include data from all hospitals.

³⁵For example, "IVD Kits" include microbial detection kits costing \$2.14 on average, as well as tests for antibiotic-resistant bacteria colonization costing \$4,400 on average.

³⁶This required excluding codes for which we could not confidently calculate price per unit due to missing conversion factors (e.g., 10 units per box) or inconsistent unit of measure. For example, some products were reported in "boxes" for some transactions and "cases" for others, such that we could ascertain units per box and boxes per case, but not units per case. For our analytic sample, we excluded product categories where the modal unit of measure accounted for less than one-half of the data or where the quantity conversion factor was missing for at least one-third of the data.

brand IDs, in order to appropriately control for brand-specific price trends. The next Section provides more detail on assignment of brand IDs.

A.1 Identifying Brands in the Transaction Data

The absence of a brand identifier in the database creates a problem of sparsity, in which many SKUs are purchased by only a small number of hospitals, or in only a small number of months. The most thorough method we employed to identify brands, for a subset of products, involved examining manufacturer catalogs, finding likely brand names, searching for similar strings within the item description field, and validating SKUs for those brands against the catalog numbers. This was infeasible for all product categories due to the large number of manufacturers and SKUs. Additionally, many manufacturers' websites were found to be difficult to navigate, particularly once we extended the analysis beyond high-dollar physician preference items. Finally, the item description field was often uninformative as to brand. Hence, we used an algorithmic approach to assign brand identifiers for the other product categories.

Our preferred algorithm implements the Random Effect Expectation-Maximization (RE-EM) estimation method from Sela and Simonoff (2011), which is an adaptation of a recursive partitioning tree algorithm to allow for group effects. With no particular assumption made about the significance of each letter within a SKU, recursive partitioning tree allows us to obtain overfitting-proof groupings that minimizes the 10-fold cross validation error. Furthermore, the group effects in the RE-EM estimation method allow us to control for systematic heterogeneity in price across hospital-time.

Given a transaction i = 1, ..., N where N is the size of the dataset within a UMDNS code, price p_i of the transaction, dummy matrix Z_i indicating each transaction's hospital-time group, group effect b_i , and attribute vector $D_i = \{d_{i1}, ..., d_{iL}\}$ where d_{il} is the lth digit of the SKU associated with transaction i, the RE-EM proceeds as follows:

- 1. Initialize estimated group effect $\hat{b_i}$ to zero.
- 2. Iterate through the following steps until the estimated hospital-time effect \hat{b}_i converges.
 - (a) Estimate a regression tree with recursive partitioning on price adjusted by hospitaltime group effect, $p_i - Z_i \hat{b_i}$ with attributes D_i . Take the terminal nodes, $j \in J$, of the tree and create an indicator variable, $I(D_i \in j)$.
 - (b) Fit a linear model, $p_i = Z_i b_i + I(D_i \in j) \mu_p + \epsilon_i$ and extract $\hat{b_i}$ from the model.
- 3. Once $\hat{b_i}$ converges, take the final grouping $j \in J$ and use it as the new product identifier for each i.

At each iteration of step (2a), the tree is pruned using 10-fold cross validation at each split; the model retains the simplest tree with cross validation error no more than one standard error away from the tree with the minimum cross validation error.

With this method, we categorized 149,543 SKUs across 37 UMDNS codes into 6,881 RE-EM brands. For surgical staplers and drug-eluting coronary stents, which we validated by hand, we identified 3.8 RE-EM brands per "true" stapler brand, 0.8 RE-EM brands per "true" drug-eluting stent brand.

A.2 Identifying Mergers

We combine our detailed transaction data with data from our M&A roster, which we obtained from Cooper et al. (2019). These data represent a detailed roster of hospital mergers from 2000-2014. Further information on this data can be found in the Online Appendix to Cooper et al. (2019). The first column of Table A1 displays the characteristics of hospitals involved in M&A transactions in the full sample of AHA data from 2000-2014. The second column focuses on transactions in the period for which we have hospital cost data: 2009-2014. In our main analysis, we limit to mergers for hospitals we were able to link to the PriceGuide database; the third column describes these transactions and hospitals. Finally, the fourth column limits the sample to the *first* transactions observed for each target or acquirer in the PriceGuide data, focusing on those transactions for which we observe at least one year of pre- and post-merger data.³⁷

Focusing on the first panel, the Table shows that about half of the mergers in 2000-2015 took place in 2009-2015, so this time period is highly relevant for the current analysis. The third column illustrates that the PriceGuide database covers approximately 28 percent of the hospitals involved in M&A transactions in 2009-2015. The most severe limitation is in the fourth column – because the PriceGuide members join the database over time, we only have both pre- and post-merger data for about 18 percent of the PriceGuide merger data. This is a substantial limitation, as these are the transactions and hospitals that will identify our differences-in-differences estimates. However, we still have 80 case studies – covering 33 target hospitals and 86 acquirers – for carefully examining the effects of mergers for a variety of product categories and consider this a meaningful sample on that basis.

The facilities in the purchase order data voluntarily joined a subscription service that allows them to benchmark their own prices and quantities to those of other members in the database and thus may not be a random sample of US hospitals. In particular, subscription is costly, so we expect hospitals with greater concerns about supply costs to be overrep-

³⁷Post-merger here refers to years following the year of the merger (i.e. $y > \tau_h$).

Table A1: Merger Sample Restrictions

	(1)	(2)	(3)	(4)
	Full Sample, 2001-2014	Full Sample, 2009-2014	ECRI Hospitals, 2009-2014	ECRI Hospitals, Full Support, 2009-2014
Transaction Characteristics				
Number of Transactions	828	445	256	80
Number of Targets	1,092	661	183	33
Number of Acquirers	2,199	1,753	390	86
Number of Controls	2,278	2,560	470	433
Median Acquirer Size	45	31	10	13
Median Target Size	1	1	1	2
Hospital Characteristics				
Beds	168.6	166.6	270.8	279.0
FTEs	914.1	960.3	1,773.6	1,841.8
Technologies	40.6	45.2	62.5	64.1
Teaching	0.231	0.245	0.401	0.415
Admissions	7,419.8	7,367.1	13,188.5	13,589.9
Non-Profit	0.611	0.610	0.783	0.740
Number of HMO Contracts	1.1	1.1	1.6	1.6
Percent Medicaid	0.165	0.172	0.191	0.198
Percent Medicare	0.495	0.505	0.463	0.456
Output Price	$9,\!256$	$9,\!256$	10,561	10,707

Notes: Each column reports the counts and characteristics of merging hospitals in the data at varying levels of sample restrictions. Column (1) reports counts and characteristics of all mergers in our combined merger roster from 2001-2014. Column (2) reports data on mergers that overlap with the timing of the ECRI data. Column (3) presents the mergers for which there exists any data in the ECRI database. And, Column (4) presents mergers in the ECRI data for which we have adequate pre and post data to perform our difference-in-difference estimation. In Columns (3) and (4), the median target size is calculated over the targets which exist in the ECRI data; median acquirer size is calculated over all merging hospitals (targets and acquirers) in the data. Data on beds, FTEs, technologies, admissions, teaching status, non-profit status, number of HMO contracts, Medicare and Medicaid share come from the AHA Annual Survey. Following Acemoglu and Finkelstein (2008) and Cooper et al. (2019), we measure technologies using the complete list of binary facility indicators available in the AHA. Output price is calculated using data from the CMS HCRIS and Medicare Impact Files as in Dafny et al. (2017).

resented in the database – for example, in a survey of database members, "cost reduction on PPIs" and "cost reduction on commodities" were the first and second (and nearly tied) most commonly cited reasons for joining. This is in accord with our own conversations with purchasing managers who cite a broad array of reasons and product areas as motivations for benchmarking. Table A1 shows that, on balance, our sample of mergers covers relatively larger hospitals, treating sicker patients, and more often in urban areas.

B Medical Supply Usage and Purchasing

For physician preference technologies, usage is driven by physicians choosing which brand to use to treat a given patient, while prices are determined in negotiation between a hospital administrator and a representative of the brand's manufacturer. Hospitals typically rely on the services of group purchasing organizations (GPOs) to negotiate contracts for many product categories, but GPO prices are used as a starting point for direct hospital-manufacturer negotiations for physician preference items and capital equipment (Schneller 2009). For PPIs, there is no "search" in the conventional sense, as a given brand can only be purchased directly from its manufacturer. For non-PPIs, a given brand may be sold by multiple vendors.

Contracts typically specify a single price for the contract duration, often a year. In the short run, hospitals are reimbursed a fixed amount by private or public insurers based on the services they provide, and so supply prices come directly from the hospital's bottom line.³⁸ In our conversations with industry participants, the purchasing practices via which these contracts are negotiated vary widely across organizations. Some hospitals have large materials management or purchasing departments with agents who specialize in negotiations. Sometimes a large business unit, such as a catheter lab in the case of stents, will coordinate its own purchasing separately from the rest of the hospital. Finally, hospitals vary in access to information on the prices other hospitals pay via GPOs, hospital system membership, or informal networks of peers.

³⁸In a subset of contracts with private payers, hospitals are reimbursed a fixed percent of charges associated with a given admission. In such cases, reimbursements will increase with marginal costs.

C Merger Treatment Effects on Standardization

We estimated the effects of mergers on hospitals' tendency to standardize purchasing within categories, hypothesizing that mergers incentivize systems to consolidate purchasing across vendors in order to achieve better discounts (Noether and May 2017). We estimate a version of specification (1) where the dependent variable is an indicator for whether a hospital had "standardized" purchasing; we categorize a hospital as standardized if it purchased at least 75 (or 90) percent of units in a product category from a single vendor in a given year.³⁹ These results are presented for each product class in Table A2. The first four panels show results for alternative matching strategies, for the 75 percent threshold; the fifth panel limits the sample to post-join hospital-years; the bottom panel uses the preferred matching strategy, with the 90 percent threshold. The results are generally quite noisy, and are sensitive to specification. For targets, we cannot generally rule out mergers inducing large positive or negative changes in standardization rates. The results for acquirers are more precise, given the larger sample: in the top panel, we document that acquirers are a statistically significant 7 percentage points more likely to standardize non-PPI products post merger, and a marginally significant 5 percentage points more likely to standardize PPIs post-merger. Unlike the broad robustness of our evidence on merger-related price effects, however, these results go away when we use alternative matching approaches, "cleaner" post-join sampling, or a more stringent standardization threshold.⁴¹

This limited evidence of greater standardization post-merger reinforces our previous finding that within-category price effects are generally similar in magnitude to within-brand price effects: mergers do not appear to lead to efficiency gains via strategic changes in utilization. At face value, this runs contrary to some prior literature (and conventional wisdom) suggesting that a primary advantage of mergers is to allow a larger integrated firm to standardize purchasing and extract greater discounts.

 $^{^{39}}$ These regressions are run at the hospital-year level and include u-specific hospital and year fixed effects. 40 To fix ideas, the baseline rates of "75 percent" standardization are 46 percent for non-PPIs, and 44 percent for PPIs.

⁴¹Table A3 shows alternative standard error calculations for the baseline matching, 75 percent standardization specification.

Table A2: Merger Treatment Effects - Standardization

	Targets	Acquirers
$\overline{\mathbf{Standardization} \equiv S}$		rioquirors
Mahalanobis, 10 Ne		ata
Non-PPIs	0.016	0.070†
	(0.032)	(0.022)
PPIs	-0.042	0.050*
	(0.049)	(0.030)
Non-Matched, All I	Data	
Non-PPIs	-0.018	$0.059\dagger$
	(0.033)	(0.022)
PPIs	-0.027	0.034
	(0.053)	(0.029)
Probit, 10 Neighbor	rs, All Data	
Non-PPIs	-0.003	0.042*
	(0.032)	(0.023)
PPIs	0.026	0.057*
	(0.051)	(0.032)
Malanobis, 1 Neighb	oor, All Data	
Non-PPIs	-0.084	0.048
	(0.080)	(0.036)
PPIs	-0.221†	0.032
	(0.078)	(0.044)
Mahalanobis, 10 Ne	ighbors, Post-	Join Data
Non-PPIs	0.020	0.037
	(0.037)	(0.027)
PPIs	0.053	0.002
	(0.054)	(0.035)
Standardization $\equiv S$	thare(Q) > 0.9	
Mahalanobis, 10 Ne	•	ata
Non-PPIs	0.022	0.019
	(0.035)	(0.016)
PPIs	-0.036	0.023
	(0.041)	(0.023)

Notes: Authors' calculations from PriceGuide data. * p < 0.10, ** p < 0.05, † p < 0.01. Standard errors clustered at the hospital level in parentheses. Coefficients estimated from pooled specifications with hospital and year fixed effects. Dependent variable is an indicator for whether the hospital bought at least Thresh% of all units in a product category from a single vendor in a given calendar year, with $Thresh \in \{75, 90\}$. Specification includes hospital and year fixed-effects.

Table A3: Merger Treatment Effects on Standardization – Pooled, Alternate Standard Error Calculations

	Targets	Acquirers
Clustered at the Hospital		
Non-PPIs	0.016	$0.070\dagger$
	(0.032)	(0.022)
PPIs	-0.042	0.050*
	(0.049)	(0.030)
Clustered at System X UN	IDNS Code	
Non-PPIs	0.016	0.070**
	(0.038)	(0.031)
PPIs	-0.042	0.050
	(0.055)	(0.032)
Clustered by Hospital (Wi	ld Bootstrap)	
Non-PPIs	0.016	$0.070\dagger$
	(-0.036, 0.071)	(0.032, 0.103)
PPIs	-0.042	0.050*
	(-0.118, 0.037)	(-0.002, 0.101)

Notes: Authors' calculations from PriceGuide data. * p < 0.10, ** p < 0.05, † p < 0.01. 95% confidence intervals generated from a wild bootstrap clustered at the hospital-brand level in parentheses (n = 1,000). Dependent variable is an indicator for whether the hospital bought at least 75% of all units in a product category from a single vendor in a given calendar year. Specification includes hospital and year fixed-effects.

D Matching Merging and Non-Merging Hospitals

Table A4 compares the performance of alternative matching approaches. The metric of interest is an index of the difference in hospital characteristics \mathbf{X}_{h,τ_h-1} between merging and non-merging hospitals; for a given merging hospital h, candidate matched controls are those with transactions in $[\tau_h - 1, \tau_h + 1]$ and the matching procedure is applied to characteristics data from the pre-merger year $\tau_h - 1$. We summarize performance across characteristics \mathcal{K} by the average standardized difference

$$\sum_{k \in \mathcal{K}} \frac{1}{K} \frac{\bar{X}_{ctrl,k} - \bar{X}_{treat,k}}{\sigma_k}$$

where $\bar{X}_{ctrl,k}$ is the mean of characteristic k in the matched control group, $\bar{X}_{treat,k}$ is the mean of characteristic k in the treated (merging) group, and σ_k is the standard deviation of characteristic k among treated hospitals. Each UMDNS-code-specific sample of treated and control hospitals is weighted by that UMDNS code's total expenditure share, to mimic the stacked regression weighting. Column (1) summarizes each matching approach by summing the difference index across the four target/acquirer-PPI/non combinations.

We followed Schmitt (2017) and Dranove and Lindrooth (2003) to select candidate matching algorithms. Following Schmitt (2017), we used M-to-1 optimal Mahalanobis matching along the eleven characteristics dimensions at the top of each panel in Table 2, for various values of M. Following Dranove and Lindrooth (2003), we also use Probit regressions of the probability of merging and match M control hospitals to treated hospitals using the resulting predicted propensity scores; in some cases, we also limit candidate controls to those whose characteristics are all within 20 percent (a 20 percent "caliper," in matching terminology) of the target's characteristics.

The results are shown in Table A4, in descending order of summary match performance. The 10-to-1 optimal Mahalanobis algorithm had the best performance, but was comparable to many Probit-based matches. The best matching algorithms improved upon the comparison without matching by a factor of nearly three standard deviations.

Table A5 shows the results of our baseline price regressions for alternative matching methods, as well as the non-matched sample.

Table A4: Comparison of Matching Results

	(1)	(2)	(3)	(4)	(5)
Sample	Composite	Non-	-PPIs	P	PIs
		Targets	Acquirers	Targets	Acquirers
Mahalanobis 10	3.699	1.230	0.607	1.013	0.849
Probit 15, no cal.	3.745	0.686	1.101	0.791	1.168
Probit 30, 20 pct cal.	3.769	0.689	1.114	0.797	1.170
Probit 15, 20 pct cal.	3.777	0.649	1.105	0.827	1.196
Probit 25, 20 pct cal.	3.800	0.690	1.121	0.823	1.165
Probit 5, no cal.	3.809	0.692	1.164	0.736	1.217
Probit 5, 20 pct cal.	3.818	0.661	1.181	0.778	1.197
Probit 10, no cal.	3.820	0.690	1.102	0.807	1.222
Probit 20, 20 pct cal.	3.827	0.682	1.106	0.849	1.189
Probit 30, no cal.	3.843	0.818	1.140	0.759	1.127
Probit 10, 20 pct cal.	3.854	0.675	1.155	0.808	1.216
Mahalanobis 15	3.856	1.204	0.619	1.049	0.984
Mahalanobis 5	3.916	1.334	0.757	1.028	0.797
Probit 20, no cal.	3.925	0.782	1.146	0.833	1.164
Probit 25, no cal.	3.938	0.853	1.131	0.810	1.145
Mahalanobis 20	4.113	1.172	0.717	1.082	1.141
Probit 1, 20 pct cal.	4.271	0.746	1.046	0.982	1.497
Mahalanobis 25	4.299	1.198	0.825	1.031	1.244
Probit 1, no cal.	4.332	0.775	1.065	1.008	1.484
Mahalanobis 30	4.467	1.147	0.938	1.063	1.319
Mahalanobis 1	5.555	2.014	1.124	1.303	1.113
Non-matched	10.633	3.873	1.348	4.028	1.384

Notes: Each cell presents the Euclidean distance of mean characteristics between the treatment and control group (i.e., the sum of mean differences between the treated and relevant control group, divided by the standard deviation in the treated group). Each row presents statistics for a given matching approach. Columns (2)-(5) present distance values for each of the four treatment-class categories. Column (1) presents the sum across all characteristics and treatment categories.

Table A5: Merger Treatment Effects on Price – Pooled, Alternative Matching Approaches

	Targets	Acquirers
Panel A: Mahalanobis, 10	Neighbors	
Non-PPIs	-0.006	-0.004
	(0.008)	(0.004)
PPIs	-0.034†	$0.017\dagger$
	(0.010)	(0.006)
Panel B: Non-Matched		
Non-PPIs	0.006	-0.005
	(0.009)	(0.005)
PPIs	-0.022**	0.015†
	(0.010)	(0.005)
Panel C: Probit, 10 Neighl	bors	
Non-PPIs	-0.016*	-0.001
	(0.009)	(0.005)
PPIs	-0.036†	0.020†
	(0.012)	(0.007)
Panel D: Mahalanobis, 1 N	Veighbor	
Non-PPIs	0.013	-0.009
	(0.022)	(0.009)
PPIs	-0.042	0.021*
	(0.029)	(0.011))

Notes: Authors' calculations from PriceGuide data. * p < 0.10, ** p < 0.05, † p < 0.01. Standard errors clustered at the hospital-brand level in parentheses. Coefficients estimated from pooled specifications (1). The dependent variable $\ln(\text{Price})$ is the logged transaction price measured at the hospital-brand-month-year. Matched characteristics include number of beds, Medicare and Medicaid share of discharges, teaching status, non-profit ownership, HMO penetration, and log inputs (FTEs and technologies) and outputs (admissions) as in Dranove and Lindrooth (2003). All price specifications include hospital-brand and brand-month-year fixed-effects.

E Generalizability

The matching exercises described in Appendix D focus on selecting the best comparison groups for our in-sample mergers to ensure internal validity. Here, we conduct multiple exercises aimed at testing the generalizability of our findings. Table A6 shows estimates for our main merger specification from equation (1), with sample treated hospitals re-weighted to match the national distribution of treated hospitals on various observable characteristics. Panel A presents our main estimates from Table 3 for reference.

Panel B of Table A6 displays the same results, where we have re-weighted the sample to match the national distribution of merging hospital bed sizes. To put this in perspective, Figure A1 displays the raw distribution of beds across targets and acquirers in our main regression sample (column (4) of Table A1) and in the overall AHA survey during 2009-2014 (column (2) of Table A1). The raw distributions are somewhat different: ECRI hospitals tend to be larger than average, but the mergers we observe in the PriceGuide data span the support of those in the overall AHA. Panel C of Table A6 alternatively re-weights our sample treated hospital to match the national distribution of targets and acquirers by teaching and non-profit status; recall from Table A1 that the ECRI sample treated hospitals are more likely than merging hospitals in the full AHA to be non-profit, and more likely to be teaching hospitals.

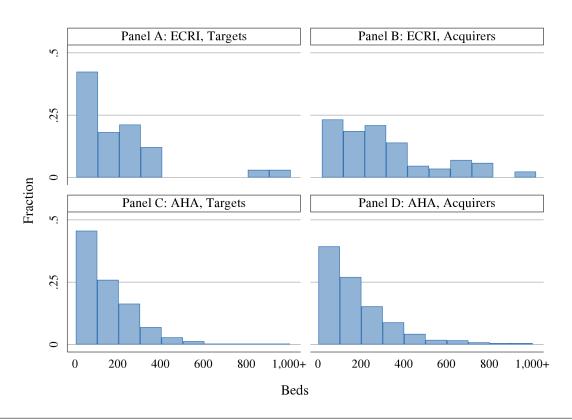
Re-weighting our sample targets and acquirers as described above, we find that the average merger, nationwide, may have a slightly smaller effect for targets' PPI prices than the average merger in the ECRI sample. However, no result is statistically different from our main results in Panel A.

Table A6: Merger Treatment Effects – Pooled, Re-weighting for Generalizability

	Targets	Acquirers
Panel A: Baseline Weighting		
Non-PPIs	-0.006	-0.004
	(0.008)	(0.004)
PPIs	-0.034†	0.017†
	(0.010)	(0.006)
Panel B: Re-weighted by Bed	'	,
Non-PPIs	-0.004	-0.000
	(0.008)	(0.004)
PPIs	-0.026**	0.017†
	(0.011)	(0.006)
Panel C: Re-weighted by Tea	aching X Non-Profit Ownersh	ip
Non-PPIs	0.002	-0.001
	(0.009)	(0.004)
PPIs	-0.029†	0.016†
	(0.011)	(0.006)

Notes: Authors' calculations from PriceGuide data. * p < 0.10, ** p < 0.05, † p < 0.01. Standard errors clustered at the hospital-brand level in parentheses. Coefficients estimated from pooled specifications (1). The dependent variable ln(Price) is the logged transaction price measured at the hospital-brand-month-year. All specifications include hospital-brand and brand-month-year fixed-effects. Panel B: observations in each quintile of ECRI bed size distribution reweighted by proportion of AHA hospitals in same quintile. Panel C: observations in each teaching X non-profit combination in ECRI data reweighted by proportion of AHA hospitals in same teaching X non-profit combination.

Figure A1: Distribution of Beds by Treatment Type



Notes: Authors' calculations from PriceGuide data and AHA Annual Survey. Each panel displays a histogram for the number of beds at each treated hospital.

F Deriving Estimated Savings from Treatment Effects

A main object of interest for this study is the estimated yearly savings a hospital might experience given the treatment effects we observe. In order to generate these numbers, we calculate average yearly savings for class C as:

$$\widehat{save}_{\mathcal{C}} = \sum_{u \in \mathcal{C}} \hat{\beta}_u * (\overline{spend}_{uhy|y < \tau_h}),$$

where β_u represents the target- or acquirer-specific treatment effect for UMDNS code u and $(\overline{spend}_{uhy|y<\tau_h})$ is the target- or acquirer-specific pre-merger average yearly spending per hospital. We aggregate these across categories within product class \mathcal{C} to obtain estimates of average yearly savings for target and acquirer hospitals. Table A7 shows the details for these estimates.

Alternatively, we could calculate estimated savings by broad product class using total average spending across UMDNS codes and the pooled estimates from our stacked regressions presented in Table 3. Table A8 shows the details for these estimates.

To clarify the source of the difference between the two approaches, note that Table 3 presents the treatment effect estimates from our stacked regressions, where β is estimated by pooling all UMDNS codes in a given class and weighting observations by average annual spending on each category.⁴² The covariance between spending and β_u across product categories generates the differences between our two methods of calculating total implied savings.

⁴²Results are similar if we instead simply average the category-specific coefficients in Table A7, weighting each coefficient by average annual spending.

Table A7: Estimated Savings Using Within-Brand Merger Effects

			Tar	gets			Acqı	iirers	
	$Gini_{uh jmy}$	\overline{spend}_{u}	β_u	SE_u	\widehat{save}_u	$\overline{}_{spend}_{u}$	β_u	SE_u	\widehat{save}_u
Nylon Sutures	0.064	8,999	0.038†	0.013	-341†	15,549	0.001	0.012	-14
Bone Wires	0.127	21,459	0.025	0.050	-537	18,124	0.002	0.063	-27
Surgical Drapes	0.080	34,507	0.011	0.070	-391	31,987	-0.026	0.049	847
Tracheal Tubes	0.146	26,843	-0.220*	0.118	5,894*	39,192	0.083	0.069	-3,266
Trocars	0.094	72,804	-0.039	0.024	2,863	80,086	-0.002	0.027	193
Suture Anchors	0.070	62,562	0.025	0.030	-1,580	98,318	-0.000	0.012	26
Drill Bits	0.083	65,296	-0.001	0.024	92	81,434	-0.027**	0.010	2,176**
Electrosurgical Forceps	0.123	100,609	-0.018	0.039	1,778	155,306	-0.032	0.024	5,024
Polymeric Mesh	0.061	89,673	$-0.147\dagger$	0.046	13,216†	148,059	0.000	0.018	-38
Allografts	0.054	121,461	-0.087†	0.031	10,585†	170,192	0.015	0.037	-2,552
Bone Nails	0.066	149,845	-0.050*	0.026	7,537*	132,104	0.002	0.023	-291
Spinal Bone Plates	0.077	184,493	0.026	0.029	-4,822	153,061	-0.044**	0.021	6,670**
Trauma Bone Plates	0.049	135,915	-0.032**	0.015	4,387**	133,282	-0.026†	0.009	3,502†
Embolization Coil	0.038	126,795	0.133	0.088	-16,805	190,202	0.058**	0.026	-11,070**
Surgical Staplers	0.080	161,796	-0.003	0.014	525	163,854	-0.005	0.022	785
Bone Implant Putty	0.052	207,381	0.030	0.029	-6,279	152,812	-0.020**	0.009	3,045**
Guiding Cath.	0.090	201,432	-0.023	0.023	4,664	186,996	0.026*	0.015	-4,795*
Ablation/Mapping Cath.	0.069	491,229	0.015	0.018	-7,346	398,176	-0.011	0.010	4,501
Guide Wires	0.086	225,899	-0.016	0.016	3,536	247,702	0.003	0.007	-787
Trauma Bone Screws	0.079	174,039	-0.011	0.014	1,928	231,470	-0.029†	0.009	6,816†
Bone Grafts	0.043	275,187	0.000	0.004	-99	352,701	-0.001	0.004	457
Spinal Bone Screws	0.097	783,374	0.026	0.024	-19,996	716,334	-0.020	0.013	14,034
Non-PPI Total		3,721,599			-1,193	3,896,942			25,235
Intraocular Lenses	0.046	85,130	-0.001	0.007	100	112,267	-0.003	0.006	291
Spinal Rod Implants	0.094	84,839	0.041	0.042	-3,520	78,096	0.011	0.021	-850
Mammary Prosth.	0.039	198,467	-0.062†	0.018	$12,314\dagger$	266,688	0.004	0.008	-1,119
Spinal Stimulators	0.052	514,980	0.026	0.024	-13,133	379,773	0.017**	0.007	-6,368**
Acetabular Hip Prosth.	0.115	212,804	-0.058	0.048	12,372	191,340	0.054**	0.027	-10,422**
Cardiac Valve Prosth.	0.071	419,883	-0.006	0.011	2,406	440,065	0.007	0.007	-3,068
Aortic Stents	0.029	370,289	-0.020	0.047	7,375	429,992	0.066	0.041	-28,520
Pacemakers	0.068	549,356	-0.093†	0.028	$51,327\dagger$	481,747	0.009	0.012	-4,571
Tibial Knee Prosth.	0.080	416,882	-0.014	0.023	5,966	305,852	-0.006	0.020	1,864
Femoral Hip Prosth.	0.095	$472,\!522$	-0.074	0.065	34,824	$351,\!485$	-0.008	0.040	2,959
Cardioverter Defib.	0.046	816,792	-0.074**	0.031	60,589**	720,423	0.034**	0.013	-24,265**
Resynchronization Defib.	0.052	852,969	-0.058	0.035	49,264	719,977	0.002	0.011	-1,625
Femoral Knee Prosth.	0.071	542,193	-0.053†	0.019	28,730†	415,035	0.014	0.012	-5,993
Spinal Spacers	0.057	596,326	0.028	0.020	-16,494	543,893	0.010	0.014	-5,456
Drug Eluting Stents	0.038	1,436,850	0.012	0.012	-16,526	1,140,904	$0.025\dagger$	0.009	-28,336†
PPI Total		7,570,282			215,595†	6,577,537			-115,478†
Grand Total		11,291,881			214,402†	10,474,480			-90,243†

Notes: Authors' calculations from PriceGuide data. Estimated savings numbers calculating by totaling expected savings across product categories as described in Appendix F. $Gini_{uh|jmy}$ presents Gini coefficient for the product category u, for prices calculated across hospitals within product-month and averaged across product-months. \overline{spend}_u presents the average pre-merger spending for target and acquirer hospitals. β_u presents the merger treatment effect as estimated from equation (1) and SE presents the corresponding standard error, clustered at the hospital-brand level. \widehat{save}_u denotes the estimated savings per hospital year based on β_u and the pre-merger spending levels.

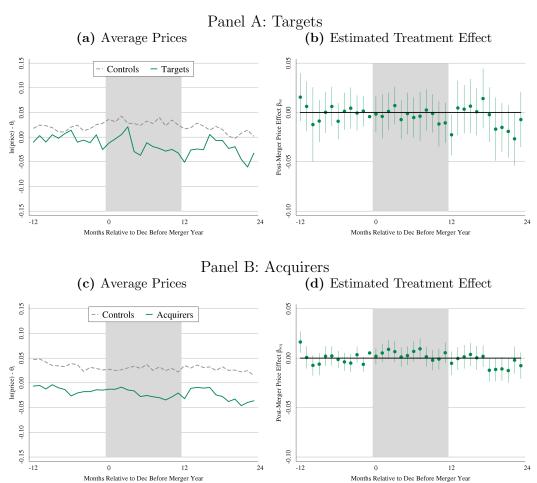
Table A8: Estimated Savings Using Pooled Coefficients

			Targets				Acquirers			
	$Gini_{\mathcal{C}h jmy}$	$\overline{spend}_{\mathcal{C}}$	$\beta_{\mathcal{C}}$	$SE_{\mathcal{C}}$	$\widehat{save}_{\mathcal{C}}$	$\overline{spend}_{\mathcal{C}}$	$\beta_{\mathcal{C}}$	$SE_{\mathcal{C}}$	$\widehat{save}_{\mathcal{C}}$	
Non-PPI Total	0.079	3,721,599	-0.006	0.008	23,600	3,896,942	-0.004	0.004	16,541	
PPI Total Grand Total	0.064	7,570,282 $11,291,881$	-0.034†	0.010	260,895† 284,494†	$\substack{6,577,537\\10,474,480}$	0.017†	0.006	-111,772† -95,230**	

Notes: Authors' calculations from PriceGuide data. Estimated savings numbers calculating by totaling average yearly spending across product categories and applying treatment effect estimates from equation (1) as described in Appendix F. $Gini_{\mathcal{C}h|jmy}$ presents Gini coefficient for product class \mathcal{C} , for prices calculated across hospitals within product-month and averaged across product-months. $\overline{spend}_{\mathcal{C}}$ presents the average pre-merger spending for target and acquirer hospitals. $\beta_{\mathcal{C}}$ presents the merger treatment effect as estimated from equation (1) and SE presents the corresponding standard error, clustered at the hospital-brand level. $\widehat{save}_{\mathcal{C}}$ denotes the estimated savings per hospital year based on $\beta_{\mathcal{C}}$ and the pre-merger spending levels.

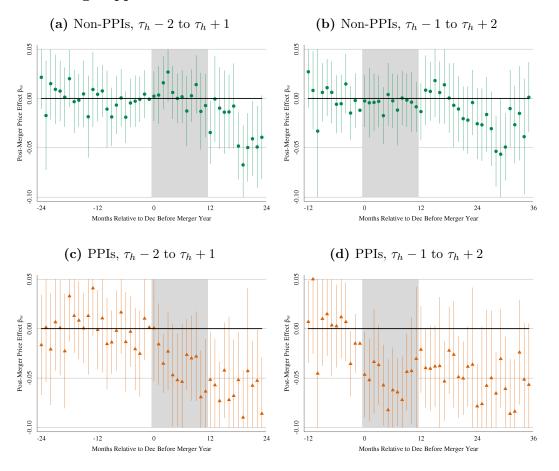
G Additional Tables and Figures

Figure A2: Merger Treatment Effects – Event Studies, Non-PPIs



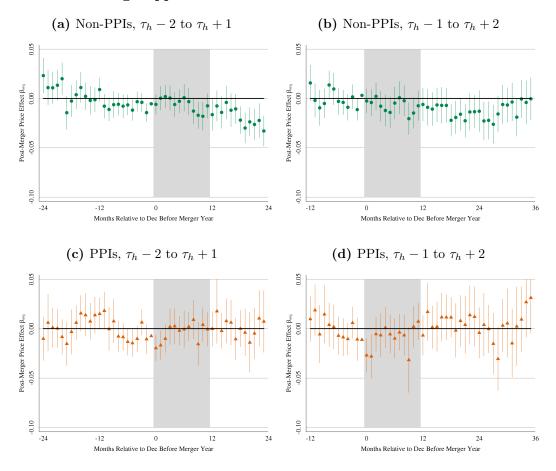
Notes: Authors' calculations from PriceGuide data. The left panels present the raw average price for treated hospitals and matched controls, adjusted for the composition of products using a product-category-brand fixed-effect. The right panels present regression coefficients from pooled event study version of specifications (1), each month within one year of merger year τ_h . Hold-out date is December of last pre-merger year; all coefficients represented relative to pre-merger year mean. Bars indicate the 95% confidence interval with standard errors clustered by hospital-brand.

Figure A3: Merger Treatment Effects for Targets – Event Studies using Alternative Timing Supports



Notes: Authors' calculations from PriceGuide data. Regression coefficients from pooled event study specifications, focusing on targets. Hold-out date is December of last pre-merger year; all coefficients represented relative to pre-merger year mean. Bars indicate the 95% confidence interval with standard errors clustered by hospital-brand. Circles indicate results for non-PPIs; triangles indicate results for PPIs. Left panels: the estimated series using data from two years prior to merger (τ_h-2) through one year after (τ_h+1) . Right panels: estimates using data from one year prior to the merger (τ_h-1) through two years after (τ_h+2) .

Figure A4: Merger Treatment Effects For Acquirers – Event Studies using Alternative Timing Supports



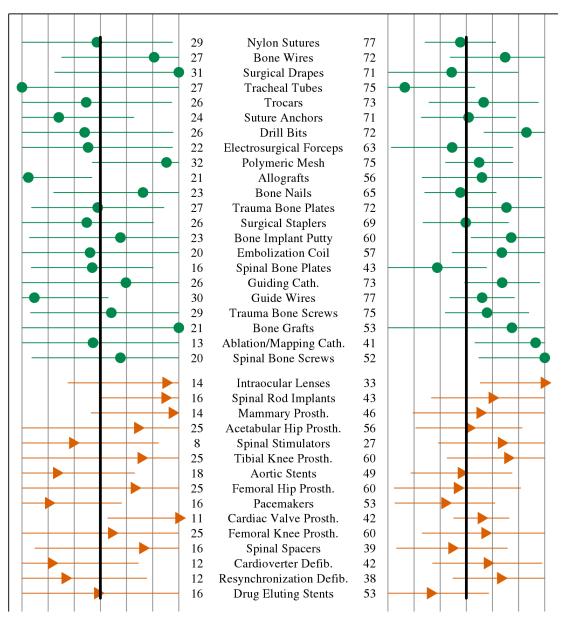
Notes: Authors' calculations from PriceGuide data. Regression coefficients from pooled event study specifications, focusing on acquirers. Hold-out date is December of last pre-merger year; all coefficients represented relative to pre-merger year mean. Bars indicate the 95% confidence interval with standard errors clustered by hospital-brand. Circles indicate results for non-PPIs; triangles indicate results for PPIs. Left panels: the estimated series using data from two years prior to merger (τ_h-2) through one year after (τ_h+1) . Right panels: estimates using data from one year prior to the merger (τ_h-1) through two years after (τ_h+2) .

Figure A5: Merger Treatment Effects on Purchase Quantity

Targets -0.3 -0.2 -0.1 0 0.1 0.2 0.3

Acquirers

-0.3 -0.2 -0.1 0 0.1 0.2 0.3



Notes: Authors' calculations from PriceGuide data. Regression coefficients from specifications (1), post-merger year τ_h+1 only. The dependent variable $\ln(Q)$ is the logged purchase quantity measured at the hospital-category-month-year. All specifications include category-hospital and category-month-year fixed-effects. Bars indicate 95% confidence interval with standard errors clustered at hospital level. Left panel: Targets. Right panel: Acquirers. Circular/green markers: non-PPIs. Triangular/orange markers: PPIs.

Table A9: Merger Treatment Effects – Pooled, Alternative Sample Restrictions

	Targets	Acquirers
Panel A: Baseline sample		
Non-PPIs	-0.006	-0.004
$(N_{tar} = 33, N_{aca} = 85)$	(0.008)	(0.004)
PPIs	-0.034†	0.017^{+}
$(N_{tar} = 29, N_{acq} = 74)$	(0.010)	(0.006)
Panel B: Using only post-join dat	a	,
Non-PPIs	-0.019**	0.006
$(N_{tar} = 23, N_{acq} = 47)$	(0.008)	(0.005)
PPIs	-0.039†	$0.022\dagger$
$(N_{tar} = 26, N_{acq} = 54)$	(0.012)	(0.007)
Panel C: No additional mergers fr	$\cot \tau - 2 \cot \tau + 1$,
Non-PPIs	-0.006	-0.005
$(N_{tar} = 28, N_{acq} = 69)$	(0.009)	(0.004)
PPIs	-0.025***	0.021^{+}
$(N_{tar} = 25, N_{acq} = 58)$	(0.013)	(0.006)

Notes: Authors' calculations from PriceGuide data. * p < 0.10, ** p < 0.05, † p < 0.01. Standard errors clustered at the hospital-brand level in parentheses. Coefficients estimated from pooled specifications (1). The dependent variable ln(Price) is the logged transaction price measured at the hospital-brand-month-year. All specifications include hospital-brand and brand-month-year fixed-effects. Panel B restricts the sample to only data after which hospitals obtained access to the database. Panel C restricts the sample to include only hospitals which did not experience a prior merger for at least 2 years before the current merger $(\tau - 2)$, and which did not experience a subsequent merger in $\tau + 1$.

Table A10: Merger Treatment Effects on Price – Pooled, Alternative Timing

	Targets	Acquirers
Using years $\tau - 1$ to $\tau + 1$, β only		-
Non-PPIs	-0.006	-0.004
$(N_{tar} = 33, N_{acq} = 85)$	(0.008)	(0.004)
PPIs	-0.034†	0.017†
$(N_{tar} = 29, N_{acq} = 74)$	(0.010)	(0.006)
Using years $\tau - 1$ to $\tau + 1$, $\alpha = \beta$		
Non-PPIs	-0.003	0.003
$(N_{tar} = 33, N_{acq} = 85)$	(0.006)	(0.003)
PPIs	-0.032†	0.007*
$(N_{tar} = 29, N_{acq} = 74)$	(0.009)	(0.004)
Using years $\tau - 2$ to $\tau + 1$, β only		
Non-PPIs	-0.027**	-0.011**
$(N_{tar} = 16, N_{acq} = 43)$	(0.011)	(0.006)
PPIs	-0.055†	0.003
$(N_{tar}=18, N_{acq}=50)$	(0.014)	(0.007)
Using years $\tau - 1$ to $\tau + 2$, β only		
Non-PPIs	-0.006	-0.012*
$(N_{tar} = 21, N_{acq} = 39)$	(0.009)	(0.007)
PPIs	-0.039†	0.007
$(N_{tar} = 25, N_{acq} = 41)$	(0.011)	(0.008)

Notes: Authors' calculations from PriceGuide data. * p < 0.10, ** p < 0.05, † p < 0.01. 95% confidence intervals generated from a wild bootstrap clustered at the hospital-brand level in parentheses (n = 1,000). Coefficients estimated from pooled specifications (1). The dependent variable ln(Price) is the logged transaction price measured at the hospital-brand-month-year. All specifications include hospital-brand and brand-month-year fixed-effects.

Table A11: Merger Treatment Effects on Price – Pooled, Alternate Standard Error Calculations

	Targets	Acquirers
Chartened at the Hagnital V Drag	June 4	
Clustered at the Hospital X Prod		0.004
Non-PPIs	-0.006	-0.004
	(0.008)	(0.004)
PPIs	$-0.034\dagger$	$0.017\dagger$
	(0.010)	(0.006)
Clustered at System X UMDNS	Code	
Non-PPIs	-0.006	-0.004
	(0.009)	(0.006)
PPIs	-0.034†	0.017**
	(0.013)	(0.008)
Clustered at Hospital X Vendor		
Non-PPIs	-0.006	-0.004
	(0.010)	(0.006)
PPIs	-0.034**	0.017**
	(0.015)	(0.007)
Clustered by Hospital X Product	(Wild Bootstrap)	
Non-PPIs	-0.006	-0.004
	(-0.018, 0.005)	(-0.010, 0.003)
PPIs	-0.034†	0.017†
	(-0.051, -0.020)	(0.008, 0.026)

Notes: Authors' calculations from PriceGuide data. * p < 0.10, ** p < 0.05, † p < 0.01. 95% confidence intervals generated from a wild bootstrap clustered at the hospital-brand level in parentheses (n = 1,000). Coefficients estimated from pooled specifications (1). The dependent variable ln(Price) is the logged transaction price measured at the hospital-brand-month-year. All specifications include hospital-brand and brand-month-year fixed-effects.

Table A12: Merger Treatment Effects on Purchase Quantity

	Targets	Acquirers
Dependent Variable: $ln(Q_{uhmy})$		
Non-PPIs	0.030	0.130***
11011 1 1 15	(0.061)	(0.035)
PPIs	0.044	0.006
	(0.066)	(0.036)

Notes: Authors' calculations from PriceGuide data. * p < 0.10, ** p < 0.05, † p < 0.01 with standard errors clustered at hospital level. The dependent variable $\ln(Q)$ is the logged purchase quantity measured at the hospital-category-month-year. All specifications include category-hospital and category-month-year fixed-effects.

Table A13: Merger Treatment Effects – Heterogeneity, Within Category

	Targets			Acquirers		
	N_{tar}	β	SE	N_{acq}	β	SE
Panel A: Non-PPIs						
Acquirer Size						
Small	13	0.005	(0.014)	26	-0.008	(0.007)
Large	20	0.001	(0.016)	59	-0.014**	(0.007)
Market Exposure						
In HRR	14	-0.008	(0.012)	36	-0.012**	(0.006)
Out of HRR	19	0.012	(0.017)	49	-0.010	(0.008)
Vendor Market Structure						
High HHI	33	-0.009	(0.021)	85	-0.015**	(0.006)
Low HHI	33	0.012	(0.011)	85	-0.010	(0.007)
Controlling for Output Price						
Post-Merger	33	0.004	(0.012)	85	-0.014†	(0.005)
ln(Output Price)		0.009	(0.017)		-0.015**	(0.008)
Standardization Interaction						
Post-Merger	30	0.003	(0.011)	80	-0.014**	(0.006)
Post X Std.		0.003	(0.023)		0.012	(0.010)
Panel B: PPIs						
Acquirer Size						
Small	12	-0.040†	(0.013)	26	0.007	(0.006)
Large	17	-0.036†	(0.012)	48	0.018**	(0.008)
Market Exposure						
In HRR	12	-0.061†	(0.015)	35	0.008	(0.006)
Out of HRR	17	-0.017*	(0.010)	39	$0.022\dagger$	(0.007)
Vendor Market Structure						
High HHI	29	$-0.044\dagger$	(0.013)	74	0.012*	(0.007)
Low HHI	29	-0.035†	(0.011)	74	0.012*	(0.007)
Controlling for Output Price						
Post-Merger	29	-0.037†	(0.009)	74	0.011**	(0.005)
ln(Output Price)		0.036**	(0.017)		0.006	(0.007)
Standardization Interaction						
Post-Merger	28	$-0.048\dagger$	(0.016)	65	0.007	(0.007)
Post X Std.		0.023	(0.018)		0.012	(0.010)

Notes: Authors' calculations from PriceGuide data. * p < 0.10, ** p < 0.05, † p < 0.01. Standard errors clustered at the hospital-brand level in parentheses. Coefficients estimated from pooled specification (2). The dependent variable is the logged transaction price measured at the hospital-brand-month-year. Small acquirers are hospital systems consisting of 1-3 hospitals pre-merger, and large acquirers are hospital systems with more than 3 hospitals. A target is categorized as "In HRR" if there is at least one hospital in the acquiring system in the same HRR, and vice versa. A product category is classified as "High" concentration if its vendor HHI is above the median within its product class. $\ln(\text{Output Price})$ is estimated using the HCRIS as in Dafny et al. (2017). Standardization is an indicator for whether the hospital purchased at least 75% of all units in a product category from a single vendor in its first sample year.