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Abstract

This paper studies the effects of misspecified boundaries of competition on optimal retail

pricing using store-level supermarket scanner data. We focus on two types of misspecification:

(i) misspecification of the demand estimation problem, which can arise from either omitting

relevant goods or specifying an overly restrictive model of demand; (ii) misspecification of the

retailer’s decision problem, which can arise from the retailer separately optimizing prices in

each category but failing to account for, and thus internalize, cross-category effects. Both

sources of misspecification are relevant in differentiated product markets where goods are broadly

related but in ways that may not be immediately obvious a priori. Quantifying the costs

associated with either form of misspecification is challenging because it requires a flexible yet

valid demand system. To this end, we take a nonparametric approach to estimating a multi-

category demand system that imposes minimal restrictions on the sign/magnitude of cross-price

effects and also satisfies key properties required by economic theory. Our first set of empirical

results is descriptive. We use data across nine diverse product groups to show that cross-category

effects are appreciably large and often nuanced in their sign and magnitude. We then zoom in

on refrigerated juices and estimate demand nonparametrically across five juice categories where

we find empirical support for a flexible model that can accommodate both substitutes and

complements. We solve for optimal prices under both sources of misspecification and estimate

profit losses to be in the 4-14% range.
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1 Introduction

Delineating boundaries of product competition is at the center of many questions in marketing

and economics. Yet in most empirical work, such boundaries already begin to take shape prior

to the analysis. For example, consider two key inputs into any demand analysis: a subset of

goods to represent the consumer choice set, and a stochastic specification of demand to take to the

data. Decisions about the former implicitly restrict substitution between the included goods and

the remaining goods excluded from the analysis, while decisions about the latter can also restrict

the scope of substitution through various functional form and/or parametric assumptions. As a

consequence, questions of misspecification often linger when estimating demand for differentiated

products. Is the set of goods defined broadly enough in order to capture all relevant dimensions of

substitution? Is the model flexible enough to capture this substitution? How will misspecification

in the estimation problem impact subsequent policy prescriptions?

The goal of this paper is to quantify the costs of misspecified boundaries of competition on

optimal retailer pricing policies. Our specific target is the loss in profits accrued by a retailer who

solves for optimal prices under two possible forms of misspecification. The first is a misspecification

of boundaries in the estimation problem which arises when (i) the product market is defined to be

too narrow, such as when a relevant good is omitted from the demand system; or (ii) the demand

model is overly restrictive and, for example, only allows for strict substitution in a market with

complementary goods. In either case, the concern is that estimates of key demand derivatives

will be biased. The second is a misspecification of boundaries in the retailer’s decision problem

which arises when the retailer omits relevant goods from the objective function used to set prices.

The scope of a retailer’s pricing problem is at the center of many questions related to category

management (Basuroy and Walters, 2001) and the organization of supply (Kadiyali et al., 2000;

Sudhir, 2001). For example, both retailer profits and the balance of market power have been shown

to depend on whether a retailer sets prices jointly across categories (vs. separately in each category)

and internalizes cross-category substitution (Smith and Thomassen, 2012; Thomassen et al., 2017;

Ershov et al., 2021).

Our empirical context is pricing consumer packaged goods (CPGs) using store-level grocery

retail data. We focus on estimating demand within product groups (e.g., salty snacks) spanning

multiple related categories (e.g., potato chips and pretzels). Quantifying the costs of misspecifica-

tion in this empirical context is challenging because we need estimates of substitution patterns that

are flexible — in terms of the sign and magnitude of demand derivatives — but also obey certain

properties of microeconomic theory to ensure valid counterfactual profit predictions. Workhorse

demand models for differentiated products such as BLP (Berry et al., 1995) are micro-founded

but relatively inflexible in the sense that functional forms constrain cross-price derivatives to be

positive. In contrast, many regression or ML-based models are relatively flexible but often lack

micro-foundations, cannot address the endogeneity of prices, or lack an approach to inference.

To overcome these challenges, we take a nonparametric approach to demand estimation. We

first specify a demand system in which market quantities are expressed as general functions of
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prices, product characteristics, and (endogenous) structural unobservables. We then adopt the

nonparametric estimator of Compiani (2020) which uses Bernstein polynomials to approximate the

inverse of the demand system. A nonparametric approach is attractive for our purposes because

both the target demand function (i.e., the estimand) and our estimator of that demand function

are flexible. In particular, we only require the underlying demand function to satisfy minimal

identification restrictions (Berry and Haile, 2014) which are micro-founded but allow for a range of

substitution/complementarity patterns. Moreover, the advantage of Bernstein polynomials is that

they are amenable to imposing relevant constraints. That is, it is straightforward to enforce the

required economic restrictions such as own-price monotonicity (i.e., downward-sloping demand) via

convex inequality constraints on the Bernstein coefficients. We can also impose other constraints

such as strict substitution in order to derive less flexible but nested models to take to the data.

Our empirical analysis uses store-level transaction data from one major grocery retail chain

in the United States. We provide two main sets of results. The first set is descriptive: we fit

a battery of log-log models to data from nine broad product groups to show that cross-category

effects are appreciably large and so a more structural approach to investigating misspecification

is warranted. In doing so, we also find that some cross effects are easier to sign a priori than

others. For example, the majority of cross effects in the Baking Goods or Detergents/Softener

groups are negative, which is consistent with our expectation and prior empirical work on cross-

category complements (Manchanda et al., 1999; Song and Chintagunta, 2006). In other groups

like Refrigerated Juice, estimated cross effects are much more dispersed and so many categories

are neither “obvious substitutes” nor “obvious complements.” This would ordinarily complicate

the specification of a structural model of demand and provides further motivation for our flexible

nonparametric approach.

Our second set of results is structural and zooms in on the demand for five product categories in

the Refrigerated Juice product group. We take two versions of our nonparametric estimator to the

data: a “flexible” specification that imposes no constraints on the sign of cross-price derivatives and

a “substitutes” specification that constrains cross-price derivatives to be positive. We find empirical

support, both in terms of model fit and estimated elasticities, for complementarities in this system

of goods. We then use the flexible specification to quantify biases in estimated elasticities that

result from omitting relevant goods from the demand system. Specifically, we estimate a sequence

of smaller models in which we iteratively remove one category from the demand system, and

then compare estimated elasticities to the “true” elasticities from the full model including all five

categories. We find that the direction of the bias in the smaller, misspecified models is consistent

with standard omitted variable bias intuition. That is, the sign of the bias is governed by both (i)

the sign of the omitted elasticity; and (ii) the correlation in prices between the included price(s)

and the omitted price. While most recent work on large-scale demand estimation emphasizes (i)

alone, our results suggest that checking (ii) is just as important.

Finally, we solve for the optimal retail prices in Refrigerated Juice under each nonparametric

specification (“flexible” and “substitutes”), with the “substitutes” version serving as the misspec-
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ified model. We also consider misspecification in the retailer’s decision problem and solve for a

misspecified pricing policy in which the retailer separately maximizes product-specific profits (“iso-

lated” pricing), as well as a correctly specified pricing policy, in which the retailer maximizes total

profits for Refrigerated Juice (“joint” pricing). Relative to the case of joint pricing with a flexible

model, profits are 3.8% lower when demand is misspecified (by incorrectly assuming substitution

among all goods) but prices solved jointly; 11.6% lower when demand is correctly specified but

prices are solved separately in each category; and 13.2% lower when both the model is misspecified

and prices are optimized separately in each category. Thus, our results suggest that boundaries of

the decision problem are first-order as the worst-case profits under joint pricing are still better than

the best-case profits under isolated pricing. However, given that our misspecified demand system

is still nonparametric, our results likely provide a lower bound to the losses in retailer profits due

to misspecification. In other words, a more restrictive model that assumes substitution among all

goods may lead to larger profit losses.

Our work contributes to a large literature on pricing differentiated products. Much existing work

has focused on pricing relatively narrow assortments of imperfect substitutes, such as varieties

of cereal (Nevo, 2001), ketchup (Besanko et al., 2003), milk (Handel et al., 2013), orange juice

(Montgomery, 1997; Chintagunta et al., 2003; Nair et al., 2005; Dubé et al., 2008, 2010), and

yogurt (Vilcassim and Chintagunta, 1995; Kim et al., 2002; Draganska and Jain, 2006). While

focusing on a single category can simplify the analysis, one potential concern is that substitution

patterns will be distorted if the related goods (outside of the defined category) are omitted from

the system.1 For example, when modeling the demand for orange juice alone, all remaining juice

flavors would enter into an outside good typically assumed to be weakly separable from the inside

goods (Chintagunta and Nair, 2011). Smith et al. (2019) show that demand for juice is generally

not separable by flavor, calling into question the simple functional relationships commonly assumed

between the inside and outside goods. More broadly, this raises questions of the x scope of a product

market when solving for optimal prices and, in turn, what a misspecified model implies for optimal

prices and profits.

Pricing wider product assortments has been made possible with the rise of multi-category models

of demand (see Berry et al., 2014, for a review). Relaxing assumptions of additively separable utility

and discrete choice gives rise to models with more flexible derivatives and therefore allows for richer

substitution patterns. However, many empirical applications have focused on categories where the

nature of complementarity is more clear a priori, such as cake mix and cake frosting (Manchanda

et al., 1999; Ma et al., 2012), laundry detergent and fabric softener (Song and Chintagunta, 2006,

2007; Mehta, 2007), or milk and cereal (Lee et al., 2013). Moreover, most structural multi-category

demand models are developed at the individual-level and require data on household choices (e.g.,

1Note that in CPG markets, academic researchers typically adopt the category definitions given by data providers
like IRI and Nielsen. These categories may not align with the category definitions used by retailers, however. For
example, “refrigerated orange juice” is often treated as a category in academic research, but the broader set of
“refrigerated juices” could constitute a category for the retailer (in the sense that the retailer coordinates market-
ing decisions for all juice products, not just orange juices). Our goal is to document the extent of cross-category
substitution to then comment on how broad or narrow categories should be defined.
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Song and Chintagunta, 2007; Mehta, 2007; Thomassen et al., 2017; Lewbel and Nesheim, 2019). Our

paper contributes to this literature by providing a fully structural yet flexible model of aggregate

demand that remains suitable when the focal market spans multiple categories and consists of

products that fall in between the extremes of imperfect substitutes and imperfect complements.

Our paper also contributes to a fast-growing literature on flexible demand estimation. In this

literature, a few distinct approaches have emerged to accommodate more flexible substitution pat-

terns (and thus a wider assortment of goods). One approach is to extend the framework of BLP

using more flexible specifications of inverse demand functions (Fosgerau et al., 2021; Monardo, 2021)

or distributions on the random coefficients (Fox et al., 2016; Wang, 2021b). A second approach is to

reformulate the logit discrete choice assumption as discrete choice over product bundles (Iaria and

Wang, 2020; Wang, 2021a; Ershov et al., 2021), which allows for joint consumption and product

complementarities. A third approach is to estimate demand functions, or key derivatives of those

functions, nonparametrically (Blundell et al., 2017; Wang and Huang, 2019; Compiani, 2020). A

final approach is to exploit flexible machine learning methods, such as embedding models (Kumar

et al., 2020; Chen et al., 2020), matrix factorization (Donnelly et al., 2019; Ruiz et al., 2020), and

deep learning (Gabel and Timoshenko, 2021).

While each of the estimation frameworks outlined above offers some aspect of flexibility, we

believe our nonparametric approach is most suitable for our research questions. Quantifying the

costs of misspecification requires a “ground truth” model that guards against functional form

misspecification, which is a virtue of any nonparametric approach. Our framework also makes it

possible to impose theory-based restrictions that discipline the estimator and enforce key regularity

properties on the profit function used in our pricing counterfactuals. Finally, our framework nests

more restrictive models — such as the specification where all products are substitutes — which

allows us to more cleanly compare models and quantify the incremental value of model restrictions.

One drawback is that our estimator will be subject to a curse of dimensionality that will make it

infeasible to estimate demand for very large assortments. That said, we believe our results provide

a valuable first step in demonstrating that misspecification matters for optimal pricing, even in a

just few related categories, which should in turn motivate more work on a larger scale in this area.

The remainder of this paper is organized as follows. Section 2 outlines our focal demand system

and Section 3 presents the nonparametric estimator. Section 4 reports results from a variety of

simulation studies to illustrate the flexibility of the proposed method as well as the scope for the

effects of boundary misspecification on price elasticities. Section 5 describes the retail scanner data

used in our empirical analysis. Section 6 presents descriptive results on cross-category elasticities

and price correlations across a broad set of nine product groups. Section 7 presents results from our

nonparametric analysis of demand and subsequent pricing counterfactuals. Section 8 concludes.
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2 A Flexible Model of Demand

Consider a continuum of consumers belonging to different markets, where each market is defined by

a fixed assortment of goods j = 1, . . . , J and characteristics χt = (xt, pt, ξt). Here xt = (x1t, . . . , xJt)

is a vector of observable exogenous characteristics with xjt ∈ RK , pt = (p1t, . . . , pJt) is a vector of

prices, and ξt = (ξ1t, . . . , ξJt) is a vector of scalar unobservable characteristics. The demand system

σ(χ) is then given by the function mapping demand shifters χ ∈ X into a J-dimensional vector of

real-valued outcomes:

σ(χ) = (σ1(χ), . . . , σJ(χ)) : X → RJ (1)

The range of σ(·) can accommodate cases where the dependent variable represents market shares or

quantities. In other words, the framework can be used in both discrete choice and quantity choice

settings. This is important for at least two reasons. First, the assumption that each consumer buys

at most one unit from the choice set is sometimes likely to be violated. For example, consumers

might purchase several units of multiple different goods (Kim et al., 2002; Dubé, 2004). This

is especially important in the presence of complementary products, which inherently violate the

substitution patterns implied by standard discrete choice models. Second, even if the products are

substitutes, the data available to researchers often only contain information about quantities as

opposed to market shares. In order to apply standard models, the researcher typically needs to

take a stand on the size of the market and use that to convert quantities into shares. This then

raises questions about how robust the results are to the assumed market definition. In contrast,

the approach discussed here does not require any such assumptions.

The model in (1) is highly general in that it places no restrictions on the interactions among

elements of χt in the generation of demand. However, in practice it is common to assume an index

structure for a subset of demand shifters. Specifically, we partition the observable characteristics

xt = (x
(1)
t , x

(2)
t ) with a scalar x

(1)
jt and define the index:

δjt = βjx
(1)
jt + ξjt (2)

which imposes a weak separability condition in that the marginal rate of substitution between x
(1)
jt

and ξjt must be constant. In contrast, the way in which prices and the x
(2)
t variables enter the

demand system is left unrestricted. With this index structure, we can rewrite demand as:

sjt = σj(χt) = σj

(
δt, pt, x

(2)
t

)
. (3)

The identification of the demand system above is discussed extensively in Berry and Haile

(2014). The idea is to start with the inverse of demand:

δjt = σ−1j

(
st, pt, x

(2)
t

)
(4)

which is guaranteed to exist under mild assumptions (Berry et al., 2013). Crucially for our pur-
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poses, these assumptions accommodate both substitutability and complementarity across goods.2

Inversion is a useful first step because it allows the system in (1) to be rewritten as a system of

equations with only one unobservable structural error per equation:

βjx
(1)
jt = σ−1j

(
st, pt, x

(2)
t

)
− ξjt (5)

Given a set of price instruments zt excluded from the demand system such as cost shifters or

Hausman instruments, equation (5) can be used to form the moment conditions:

E (ξjt|zt, xt) = E
[
σ−1j

(
st, pt, x

(2)
t

)
− x(1)jt

∣∣∣zt, xt] = 0, (6)

where βj is normalized to 1 as it cannot be separately identified from the scale of ξj . As shown in

Berry and Haile (2014), the functions σ−1j — and thus the demand system σ — are then identified

under a completeness condition, the nonparametric equivalent of a standard rank condition.

3 Estimation

3.1 A Nonparametric Approach

The moment conditions in (6) lead to a natural flexible GMM estimation approach. Specifically,

following Compiani (2020), we will approximate σ−1j using Bernstein polynomials and estimate the

coefficients on those polynomials by minimizing a GMM objective function based on the moments

in (6). The choice of Bernstein polynomials is motivated by the fact that these basis functions allow

the researcher to easily impose a number of constraints, such as monotonicity and exchangeability,

that are motivated by economic theory and help improve the performance of the estimator. We

will discuss some of these constraints in the next subsection. Here, we provide a brief primer on

Bernstein polynomials and their approximation properties.

For a positive integer m, the Bernstein basis functions of degree m are defined as

bv,m(u) =

(
m

v

)
uv(1− u)m−v, (7)

where v = 0, 1, . . . ,m and u ∈ [0, 1]. A helpful property of Bernstein polynomials is that they can

approximate well any continuous function when the coefficients on the polynomials are chosen to

be the equal to the target function evaluated at a grid of points. More formally, the following result

holds (see, e.g., Gal, 2008).

Result 1. Let f be a continuous real-valued function on [0, 1] and let

Bm(u) =
m∑
k=0

f(k/m)

(
m

k

)
uk(1− u)m−k.

2The assumption labeled “connected substitutes” in Berry and Haile (2014) requires that there exist a transfor-
mation of the demand system exhibiting some degree of strict substitution. As shown in Example 1 of Berry et al.
(2013), this condition can be satisfied by a demand system in which all goods are complementary with each other.
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Then,

sup
u∈[0,1]

∣∣∣Bm(u)− f(u)
∣∣∣→ 0

as m→∞.

In words, when the coefficients on the Bernstein polynomials are equal to the value of the target

function f at an equally-spaced grid of points (f (0) , f (1/m) , . . . , f ((m− 1)/m) , f(1)), then the

resulting approximation is uniformly good to an arbitrary precision as the degree m grows to

infinity. A similar result holds for functions of multiple arguments, which can be approximated by

the tensor product of univariate Bernstein polynomials. This is helpful because it means that for an

approximation to be good it must be that, in the limit, the coefficients on the Bernstein polynomials

satisfy whatever properties the target function exhibits. For instance, if the target function is

monotonically increasing, it must be that the Bernstein coefficients also satisfy a monotonicity

condition.

Consider a simple example where the degree m is set to 2. In this case, there are three Bernstein

polynomials: (1 − u)2, 2u(1 − u) and u2. Using Result 1, we obtain that if the target function f

is monotonically increasing, then the coefficients on the three polynomials must also be increasing,

i.e., the coefficient on (1 − u)2 must be less than or equal to that on 2u(1 − u) and this in turn

must be less than or equal to the coefficient on u2.3 Importantly, the fact that these constraints are

linear in the Bernstein coefficients makes them easy to enforce computationally. This is because the

GMM objective function is quadratic in the unknown functions σ−1j and the Bernstein coefficients

are linear in the approximation to the unknown functions. Thus, we obtain a well-behaved problem

with a convex objective function subject to linear constraints, which can be solved using off-the-

shelf global solvers. By the same argument, convex constraints in the Bernstein coefficients can

also be accommodated. In contrast, existing estimation procedure such as BLP typically feature

non-convex programs, for which solvers that are guaranteed to converge to the global minimum are

not available.4

3.2 Constraints: Trading off Flexibility vs. Tractability

The demand specification (i.e., the estimand) outlined above is flexible in that no restrictions are

placed on the cross-price derivatives of the demand functions σj(·) and so the system can admit

both substitutes and complements. This is in contrast to many widely used market-level demand

systems such as BLP which are based on assumptions of discrete choice and additively separable

utility, thus ruling out complementarity.5 The estimator is also flexible in that it contains enough

parameters to serve as a first-order approximation to any underlying Marshallian demand system

3More precisely, these conditions become necessary in the limit as m→∞. Letting the degree of the approxima-
tion grow to infinity with the sample size is standard in nonparametric estimation.

4Conlon and Gortmaker (2020) find that their implementation of the BLP estimator performs well when optimal
instruments are used and restrictions from the supply side are imposed.

5Additively separable utility also underlies discrete-continuous demand models (Nair et al., 2005).
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Table 1: Summary of Constraints

Economic Meaning

1. Exchangeability Demand σj invariant to permutations of characteristics (δ, p, x(2))

2. Price inside the index Constant marginal rate of substitution between price and other

characteristics in the index

3. Symmetry of Jpσ(δ, p) No income effects

4. Symmetry of Jδσ(δ, p) Utility of good j linear in δj and doesn’t depend on δk for k 6= j

5. Diagonal dominance of Jδσ(δ, p) Own effects dominate cross effects

6. Own-good monotonicity Demand σj increases in (δj ,−pj)

Necessary for Necessary for Reduction in
invertibility? identification? # parameters? Constraint

1. Exchangeability No No Yes Linear

2. Price inside the index No No Yes Linear

3. Symmetry of Jpσ(δ, p) No No No Nonlinear*

4. Symmetry of Jδσ(δ, p) No No No Linear

5. Diagonal dominance of Jδσ(δ, p) No No No Linear

6. Own-good monotonicity Yes Yes No Linear

*The symmetry of Jpσ(δ, p) constraint is nonlinear only if price is not inside the index; otherwise, it is linear.

(Diewert, 1974; Pollak and Wales, 1992).6 Although there are many other demand systems based

on flexible functional forms (e.g., the almost ideal demand system of Deaton and Muellbauer, 1980),

these models are typically made stochastic by appending an iid mean zero error term to the end of

each estimating equation and therefore do not incorporate “structural” errors. That is, the errors

cannot be interpreted as unobserved demand shifters (giving rise to the endogeneity of prices) that

jointly enter the demand equation for each good (Berry and Haile, 2021).

Flexibility does come at a cost, however. Flexible estimators necessarily contain many param-

eters and can therefore suffer from a curse of dimensionality. In our case, the number of Bernstein

coefficients used in the approximation of σ−1j (·) grows exponentially in the number of goods, and

so a fully unrestricted estimator will be practically intractable for a moderate to large number of

goods. A fully unrestricted estimator is also undesirable in that the resulting system is not guar-

anteed to be consistent with properties of a valid Marshallian demand system. As discussed in

Compiani (2020), one of the main reasons that Bernstein polynomials are attractive is that they

are amenable to a variety of microfounded constraints. In what follows, we briefly discuss different

constraints that can be imposed on the nonparametric estimator in order reduce to the number of

parameters and/or ensure that various restrictions required by economic theory are satisfied. A

summary of restrictions is provided in Table 1.

6The standard definition of a “flexible functional form” is that it can provide a second-order approximation to an
arbitrary twice differentiable function. While flexible functional forms are often used to approximate utility or cost
functions (e.g., Deaton and Muellbauer, 1980), it is also equivalent to target first-order approximations to the demand
system directly (Pollak and Wales, 1992, ch. 3). For a system of J goods, this requires at least 1 + J + J(J + 1)/2
free parameters in each demand equation.

8



Exchangeability A demand system is exchangeable if σj(·) is the same for all j and it is invariant

to permutations of product characteristics (δk, pk, x
(2)
k ) for all inside goods k 6= j. Exchangeability

is satisfied in random coefficients logit models under the standard assumption that the distribution

of random coefficients is the same across all goods. Moreover, systematic difference across goods

can be accounted for via product fixed effects in the indices δjt. As shown in Compiani (2020),

by the approximation properties of Bernstein polynomials in Result 1, exchangeability translates

into equality constraints on the Bernstein coefficients. Thus, this constraint effectively reduces the

number of parameters that need to be estimated, alleviating the curse of dimensionality.

Index Restriction Instead of allowing prices pjt and covariates x
(2)
t to enter the demand system

fully flexibly, one could include them in the linear indices δjt. This leads to the simpler demand

system st = σ(δt), which, as above can be inverted as follows:

δjt = σ−1j (st)

The advantage is that the estimands σ−1j are now a function of J arguments only, instead of

2J + nx(2) , where nx(2) denotes the dimension of the covariates x(2). Estimating functions of fewer

arguments reduces the number of parameters and thus alleviates the curse of dimensionality. Note

that including pjt in the linear index δjt does not imply that demand is linear in prices, but instead

simply requires that the marginal rate of substitution between price and other characteristics in the

index be constant. In BLP-type models, for example, this index restriction is consistent with price

entering the indirect utility function with a non-random coefficient.7 This highlights a trade-off

between the amount of heterogeneity allowed in the model and the number of parameters that need

to be estimated.

Slutsky Symmetry Slutsky symmetry refers to the symmetry of the Slutsky substitution matrix

and is required for integrability. Since we observe and model uncompensated (Marshallian) demand,

however, we can only impose Slutsky symmetry if income effects are zero. When prices enter the

linear indices δjt (see “Index Restriction” above), symmetry can be imposed via linear constraints

on the Bernstein polynomial, whereas the constraints become nonlinear — and generally non-convex

— when prices are not part of the index (Compiani, 2020).

Diagonal Dominance Diagonal dominance requires the magnitude of the own-price effects to

be at least as large as the sum of magnitudes of the cross-price effects. Specifically, the demand

system σ(·) satisfies (column) diagonal dominance if:∑
k 6=j

∣∣∣∣∂σk∂pj

∣∣∣∣ ≤ ∣∣∣∣∂σj∂pj

∣∣∣∣ . (8)

7Because preference heterogeneity is only weakly identified with aggregate data (Bodapati and Gupta, 2004;
Albuquerque and Bronnenberg, 2009; Dunker et al., 2017), it is common practice to only place random coefficients
on a subset of variables in BLP models.
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This restriction is satisfied by many common demand models (including BLP). Compiani (2020)

shows that diagonal dominance can be enforced via linear inequality constraints on the Bernstein

coefficients. Although not identical, a similar version of this property appears as a consequence

of the homogeneity and adding-up (Cournot aggregation) restrictions required for integrability.8

The only difference is that homogeneity and adding-up require that the price-weighted own-effect

dominate the sum of price-weighted cross-effects. Also note that Anderson and Vilcassim (2001)

propose a condition that amounts to diagonal dominance of the profit function with respect to prices

in order to ensure finite optimal prices. The intuition is that the retailer’s first-order conditions

depend directly on derivatives of the aggregate demand function, and so optimal prices can approach

infinity when cross-product substitution is left “unbounded.”

Own-Good Monotonicity Monotonicity requires each the demand for each product to be in-

creasing in its own quality index δjt and decreasing in its own price. Requiring negative own-price

effects with respect to the uncompensated (Marshallian) demand function will, in turn, ensure neg-

ativity of the Slutsky substitution matrix which is required for integrability (assuming nonnegative

income effects). Again, by the approximation properties in Result 1, monotonicity can be imposed

easily through inequality constraints on the Bernstein coefficients.

4 Monte Carlo Simulations

In this section, we illustrate the flexibility of our approach by showing that the nonparametric

estimator is able to capture complex patterns of substitution/complementarity. We also investigate

the effects of misspecified demand boundaries on estimated elasticities. To start, consider a setting

in which the first J − 1 goods are substitutes to each other, but are complementary to the Jth

good. We generate prices as pjt = ep̃jt

1+ep̃jt
, where p̃jt are iid standard normal across products j and

across markets t. Further, we let xjt be uniformly distributed on the unit interval also iid across

products and markets, and let the unobservables ξjt be iid normal with mean zero and standard

deviation 0.15. Then, letting δjt = −2pjt + xjt + ξjt, we define the quantity of good j as:

qjt = exp

δjt − 0.15
∑

k<J, k 6=j

δkt + 0.15δJt

 (9)

for goods j = 1, . . . , J − 1 and

qJt = exp

(
δJt + 0.15

∑
k<J

δkt

)
(10)

for the final Jth good. Note that the sign of the coefficients on the indices δkt (k < J) and δJt

produce the desired block-wise pattern of substitutes and complements. The elasticities induced

8See the discussion of Propositions 2.E.1 and 2.E.2 in Mas-Colell et al. (1995).
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Table 2: Elasticity Estimates

(I) (II) (III) (IV) (V)
True J = 3 J = 3 J = 2 J = 2 J = 2
Value Subst ρ = 0 ρ = 0.7 ρ = −0.7

E11 -1.00 -0.98 (0.026) -1.01 (0.026) -0.98 (0.026) -1.07 (0.027) -0.89 (0.023)
E22 -1.00 -0.98 (0.024) -1.00 (0.023) -0.98 (0.023) -1.06 (0.025) -0.88 (0.022)
E33 -1.00 -1.02 (0.033) -1.05 (0.033)
E12 0.15 0.14 (0.005) 0.11 (0.006) 0.14 (0.005) 0.04 (0.004) 0.24 (0.007)
E21 0.15 0.14 (0.005) 0.11 (0.005) 0.14 (0.005) 0.04 (0.004) 0.24 (0.007)
E13 -0.15 -0.15 (0.006) 0.00 (0.000)
E31 -0.15 -0.15 (0.005) 0.00 (0.000)
E23 -0.15 -0.14 (0.005) 0.00 (0.000)
E32 -0.15 -0.15 (0.006) 0.00 (0.000)

Notes: In column (I), we impose substitution between the first two goods, but leave the {1, 2}-{3}
effects unrestricted. In column (II), we erroneously impose substitution between all three goods.
In columns (III)-(V), we fit misspecified models where the third good is omitted and under varying
degrees of price correlation ρ. Standard errors are reported in parentheses.

by this system will be:

Ejkt =
∂qjt/qjt
∂pkt/pkt

=


−2pkt if j = k

−0.15 · 2pkt if j = J or k = J, for j 6= k

0.15 · 2pkt otherwise.

We generate 100 data sets from the model above, with each having T = 10, 000 markets. We

then apply the nonparametric estimator to each data set where we impose the following constraints:

an index restriction (with price inside the index), diagonal dominance, weak substitutability and

exchangeability among the first J − 1 goods, and own-good monotonicity for all goods. The rela-

tionship between the first J − 1 goods and the Jth good is left unrestricted.

Elasticity estimates from a J = 3 good system are reported in column (I) of Table 2. We

specifically report estimates of the sampling distribution of the median. That is, for each data

set we compute the median elasticity across observations, and then report the mean and standard

deviation of those point estimates. Because we generate prices that are defined on the unit interval

and centered at 0.5, the true own elasticities are equal to Ejj = −1, the true cross elasticities

between goods j < J and k < J are equal to Ejk = 0.15, and the true cross elasticities between

goods j < J and k = J are equal to Ejk = −0.15. We find that the nonparametric estimator

accurately recovers the true values of all model parameters. Elasticity estimates from larger J = 4

and J = 5 good systems, which also accurately recover true values, are reported in Appendix A.

So far, we have shown that the nonparametric estimator is flexible and can accurately recover

elasticities in a demand system with a mix of substitutes and complements. Our next objective is to

highlight the possible effects of misspecified boundaries in the estimation problem. We first estimate

a model that erroneously assumes weak substitution between all three goods. The estimates from

this misspecified model are reported in column (II). Although the own elasticities remain accurately
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recovered, we find a clear bias in all cross elasticities. Specifically, the cross elasticities involving

the third good are all estimated to be very close to zero because of the binding positivity constraint

which, in turn, leads to a downward bias on the estimated elasticities between goods 1 and 2.9

Next, we estimate a misspecified model that excludes the third good from the demand system

entirely. We also relax the assumption that prices are iid across goods, and define ρ = corr(pjt, pkt)

to be the correlation between the price of good j < J and omitted good k = J . We then consider

three scenarios: one where ρ = 0 and prices remain iid across goods, a second where ρ = 0.7

and thus the price of the third good is positively correlated with the price of the first two goods,

and a third where ρ = −0.7. When prices are correlated and the scope of the demand system is

misspecified, a standard omitted variable bias problem arises.

Columns (III)-(V) report estimated elasticities from this smaller, misspecified demand system

with J = 2 goods. In column (III), we find that both the own and cross elasticities can still

be accurately recovered when there is no underlying correlation in prices. This suggests that,

conditional on having a sufficiently flexible estimator of substitution patterns, the omission of

related goods alone is not enough to generate biases in elasticity estimates. However, in columns

(IV) and (V) where ρ = {0.7,−0.7}, we find clear biases in both own and cross elasticity estimates.

Moreover, the sign of this bias is governed by sign of the product of ρ and the omitted cross

elasticity, which is consistent with the omitted variable bias intuition. For example, we find that

the estimated elasticities are biased downwards in column (III) where ρ × Ej3 = 0.7 × −0.15 < 0

and biased upwards in column (IV) where ρ× Ej3 = −0.7×−0.15 > 0.

5 Data

Our empirical analysis uses data from one major grocery retail chain in the United States.10 The

retailer has nearly 500 stores spanning five states. Our sample consists of weekly UPC-level quanti-

ties, prices, feature promotion activity, wholesale prices, and marginal costs11 across all departments

in each store during the years 2014-2016. Ideally, we would estimate one large demand system that

included products from most grocery departments. Such a system would allow us to measure

all cross-category substitution and then, in some sense, define market boundaries solely from the

data. However, the size of such a system would make our nonparametric approach — as well as

most all structural approaches — intractable. We must therefore trade-off scope and flexibility

with tractability. We do this by aggregating products to the category level and estimating a multi-

category system separately for different “product groups.” For example, Baking Goods is a product

group with two categories (cake mix and frosting) and Refrigerated Juice is a product group with

five categories (orange juice, lemonade, fruit juice, other juice, and iced tea). This unit of analysis

makes it feasible to flexibly estimate cross-category substitution, while still allowing for a wider set

9Compiani (2020) shows that, under a different DGP with complementarity, fitting a discrete choice model which
assumes substitution across goods yields substantial bias in both the own- and the cross-price elasticities.

10The data are provided by DecaData (http://decadata.io).
11Marginal cost is defined as wholesale price less any trade deals between the manufacturer and retailer.
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Table 3: Product Category Descriptions

Product Group Categories

Baking Goods (2) Cake Mix, Frosting

Butter/Margarine/Spreads (3) Butter, Margarine, Spreadable Butter

Canned Fish (5) Tuna (Chunk-Light, Chunk-White, Solid-White), Sardines, Salmon

Cereal (4) Adult, All Family, Kids, Better For You

Crackers (3) Savory, Spray Butter, Saltines

Detergent/Softeners (4) Laundry Detergent (Dry, Liquid), Fabric Softener (Dry, Liquid)

Hot Dogs (3) Beef, Meat, Turkey

Jams/Jellies/Peanut Butter (4) Peanut Butter (Regular, Organic), Jams/Jellies (Regular, Organic)

Refrigerated Juice (5) Orange Juice, Lemonade, Fruit Juice, Other Fruit Juice, Iced Tea

of categories than typically used in market-level demand estimation.

Defining products at the category level requires us to aggregate UPC-level quantities and prices.

We define quantities as the total volume (in ounces) across all UPCs in the category and define

prices as revenue-weighted prices, where weights are computed for each category-store-year. We also

use the same revenue weights to construct category-level promotion, wholesale price, and marginal

cost variables. Estimating market demand also raises questions of price endogeneity, which we

address using a battery of fixed effects and instruments. While costs serve as an ideal candidate for

price instruments, there is fairly limited variation in costs over time in our sample. We therefore

construct Hausman IVs — i.e., the average price of the same product in other markets (Hausman,

1996) — to instrument for price.

We construct nine different data sets from product groups that vary in the nature of product

differentiation and expected substitution. A list of these nine groups and all associated categories

can be found in Table 3. Groups like Butter/Margarine/Spreads, Crackers, or Hot Dogs all consist

of categories that are “obvious substitutes.” Other groups like Baking Goods, Detergent/Softener,

and Jams/Jellies/Peanut Butter consist of categories that are “obvious complements.”12 We also

include groups like Refrigerated Juice where the nature of cross-category substitution is less clear a

priori. Substitution in a group like cereal, one of the classic markets for applying BLP (Nevo, 2001),

is also perhaps not obvious. Households with kids, for example, may purchase multiple varieties

across the adult and kids categories and so assumptions of discrete choice may be violated. Since

our approach is to flexibly estimate the demand function directly, we relax standard restrictions on

utility/demand and can thus let the data tell us about the nature of substitution.

12Some groups actually consist of both “obvious” complements and substitutes. For example, regular and organic
peanut butter are likely substitutes with each other, but both complements with regular and organic jams/jellies.
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6 Descriptive Evidence Across Many CPG Groups

We begin our analysis with a set of descriptive results characterizing demand and supply-side

boundaries. On the demand side, our goal is to demonstrate that appreciable cross-category effects

exist in our data, which then motivates the need for a flexible structural model of cross-category

substitution that can be used to carry out pricing counterfactuals. To this end, we estimate a large

number of log-log demand models across all nine product groups listed in Table 3. The product

is defined as a category and qist represents quantity sales for category i at store s at week t. Also

let Gi denote the product group associated with category i. For example, if i is cake mix then

Gi = {cake mix, frosting} is the set of categories in Baking Goods. We follow Hitsch et al. (2019)

and specify demand for good i as a function of prices and promotions for all goods within the same

product group.

log qist = αi +
∑
j∈Gi

βij log pjst +
∑
j∈Gi

θijdjst + φi(t) + εist (11)

Here log pjst is the log price of category j, djst is the volume of feature advertising for category j,

and φi(t) are time fixed effects (season and holiday dummmy variables). We estimate the model

above separately for each category-ZIP code, thus pooling information across all stores within a

ZIP code. In Table 4 we report summary statistics of the own-price and cross-price elasticities for

each product group. We specifically report the mean, standard deviation, and share of positive

(or negative) elasticity estimates for estimates that are significant at the 5% level. The complete

distributions of own-price and cross-price elasticities, as well as the own-promotional effects are

reported in Appendix B.

We find substantial heterogeneity in the sign and magnitude of cross-price elasticities. For six of

the nine product groups, the average cross-category elasticity is positive. The largest effects come

from the Butter/Margarine/Spreads and Crackers product groups, with average cross-elasticities

of 1.20 and 1.12 respectively. Among these six groups, we still find substantial variation in the

estimated cross elasticities. For example, in Refrigerated Juice the average cross elasticity is 0.22

but roughly 47% of the precisely estimated elasticities are negative. While some of the heterogeneity

in these estimates can be attributed to lack of economic structure in a log-log demand system, the

large mass of negatively estimated elasticities that is persistent across many groups suggest that

substitution across categories may be more nuanced. The remaining three product groups (Baking

Goods, Detergent/Softener, and Jams/Jellies/Peanut Butter) exhibit negative cross elasticities on

average, suggesting strong complementarity across categories. This is consistent with existing work

that has documented complementarities between cake mix and frosting (e.g., Manchanda et al.,

1999; Ma et al., 2012), and laundry detergent and fabric softener (e.g., Song and Chintagunta,

2006; Mehta, 2007; Song and Chintagunta, 2007).

The estimated own-price elasticities are all negative, on average, for each product group. We

find that demand is most elastic in the Cereal and Refrigerated Juice groups, where the average

own elasticities are -2.26 and -2.07, respectively. While the share of negative own elasticities is

quite high across groups, roughly 22% of these elasticities are still greater (more positive) than
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Table 4: Summary of Elasticity Estimates from the Log-Log Model

Cross-Price Elasticity Own-Price Elasticity

Product Group Mean SD % Pos. % Sig. Mean SD % Neg. % Sig.

Baking Goods -1.14 0.82 8.78 40.55 -1.46 0.50 99.29 57.81

Butter/Margarine/Spreads 1.20 1.65 76.89 19.36 -1.43 1.60 79.93 79.18

Canned Fish 0.28 1.12 65.40 11.21 -0.74 0.71 91.46 44.93

Cereal 0.64 1.99 69.47 19.00 -2.26 1.15 97.14 55.00

Crackers 1.12 0.75 94.77 23.56 -1.99 0.74 99.56 83.11

Detergent/Softener -0.50 0.86 25.08 22.40 -0.89 0.76 97.35 41.30

Hotdogs 0.28 1.29 63.61 29.86 -1.34 0.82 93.69 54.98

Jams/Jellies/Peanut Butter -0.63 1.86 33.57 18.97 -1.80 0.79 98.39 59.45

Refrigerated Juice 0.22 2.33 52.96 25.33 -2.07 1.51 92.63 75.62

Notes: Log-log models are estimated at the category-ZIP code level. The mean, standard deviation, and
share of positive (or negative) of price elasticities are conditional on estimates significant at the 5% level.

-1 indicating inelastic demand. There is also a small fraction of “incorrectly signed” estimates

which are positive and statistically significant. Again, this is partly due to the lack of economic

structure in the log-log system and is fairly typical when applying estimating regression models on

store-level scanner data (Blattberg and George, 1991; Boatwright et al., 1999; Hitsch et al., 2019).

In these regressions, we are also ignoring the potential endogeneity of prices, which would generate

an upward bias in the estimated own elasticities. We address both of these limitations in our

more structural, nonparametric analysis that follows, where we impose monotonicity restrictions to

ensure negative own-price effects and also instrument for prices to alleviate endogeneity concerns.

An additional concern when estimating demand in CPG markets is dynamics and the storable

goods demand problem. Specifically, if goods are storable, then consumers may wait for a sale and

stockpile. Ignoring these consumer dynamics can in turn lead to biased estimates of price elasticities

(Erdem et al., 2003; Sun et al., 2003). Hendel and Nevo (2003) propose a descriptive approach to

test for the presence of stockpiling behavior using store-level data. The test is based on a regression

of quantities (log qist) on price (log pist) as well as a variable measuring the duration since the last

price promotion. The idea is that, in the presence of stockpiling, consumers will accelerate purchases

and buy more during a sale. As inventories deplete weeks after a sale, quantities sold then should

increase — i.e., the effect of duration on quantity sold should be positive. We also follow the

empirical specifications of Hendel and Nevo (2003) and include controls for feature advertising,

a duration variable for feature advertising, and a battery of fixed effects (ZIP code, season, and

holiday). We estimate this regression model for each category in each product group. Estimates

are reported in Appendix C. We find minimal evidence for stockpiling across the nine product

groups we consider. The vast majority of estimated duration coefficients are negative and/or very

close to zero and precisely estimated.

We now turn to the supply side, where our goal is to document correlations in prices across

categories. Price correlations are relevant in the delineation of market boundaries to the extent that
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Table 5: Correlations in Retail Prices

Product Group Mean SD % Pos.

Baking Goods 0.43 0.28 91.51

Butter/Margarine/Spreads 0.19 0.33 63.84

Canned Fish 0.09 0.26 61.04

Cereal 0.51 0.41 90.76

Crackers 0.79 0.42 94.38

Detergent/Softener 0.26 0.29 80.32

Hotdogs 0.48 0.38 89.04

Jams/Jellies/Peanut Butter 0.46 0.41 84.29

Refrigerated Juice 0.05 0.36 55.14

Notes: Correlations are computed at the category-ZIP code
level. The summary statistics reported above are computed
separately for each product group.

they contribute to an omitted variable bias problem. That is, as discussed in Section 4, omitting a

product which exhibits appreciable substitution with the “focal” good(s) is in general not enough

to create a problem in estimation. Instead, problems arise when we omit goods that are related to

(i.e., non-zero cross-effect) — and whose prices are correlated with — the focal good(s).

Similar to the demand-side analysis above, we estimate correlations in prices across categories

(and within product groups) at the ZIP code level, and then produce summary statistics for each

product group. Table 5 reports the mean, standard deviation, and share of positive correlations.

The complete distributions of price correlations are shown in Appendix B. We generally find that

prices are positively correlated across categories. Like the demand-side analysis, there is still some

heterogeneity in the sign and magnitude of these effects. In some product groups like Baking

Goods, Cereal, or Crackers, more than 90% of price correlations are positive. In other groups

like Refrigerated Juice, only 55% of correlations are positive. Explaining the magnitudes of price

correlations is not our primary focus, given that price correlations contribute to an omitted variable

bias problem in estimation regardless of the source of the correlation. That said, it is possible

that price correlations are driven by common cost shocks. We therefore include distributions of

correlations in both retail prices and dollar markups in Appendix B.

Together, the descriptive analysis above highlights a few important results. First, within each

broad product group, there appears to be appreciable substitution across categories. Second, the

nature of substitution is nuanced and many cross-category relationships cannot be categorized as

“obvious” substitutes or complements. Third, log-log models lack proper economic structure, which

is evidenced by the subset of incorrectly signed own elasticities. Fourth, many categories exhibit

fairly large correlations in prices which can contribute to an omitted variable bias problem in esti-

mation. We therefore move onto a more structural model of demand which is both flexible and valid,

allowing us to properly measure both the extent of cross-category substitution/complementarity as

well as the cost of misspecified boundaries of competition.
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7 A Structural Demand Analysis for Refrigerated Juice

In this section, we present a more structural analysis of demand using the model and nonparametric

estimation approach outlined in Sections 2 and 3. For illustrative purposes, we focus on the

Refrigerated Juice product group. There are a few reasons why this group is particularly attractive.

First, while the orange juice category has long been used for demand estimation and pricing research

(Montgomery, 1997; Chintagunta et al., 2003; Nair et al., 2005; Dubé et al., 2008, 2010), few studies

have measured substitution across orange juice and other refrigerated juice categories. Quantifying

these cross-category effects can help us determine whether orange juice can be treated as its own

market and whether the optimal pricing function for orange juice products should consider the

demand for related juices, and vice versa. Second, the nature of substitution across juice categories

is complicated. This product group contains many leading CPG manufacturers with brands in

multiple categories (e.g., Simply Orange and Simply Lemonade). Thus, the presence of strong

brand effects or coordinated marketing efforts could lead to some form of demand spillover across

categories (Smith et al., 2019). Moreover, it is not clear whether different flavors of juice should

be considered strict substitutes. Our descriptive results in Section 6 showed that cross elasticities

are very heterogeneous in Refrigerated Juice, with roughly half of the precisely estimated cross-

price elasticities being positive and the other half negative. It is plausible that forms of brand

complementarities or demand for variety leads to joint purchases spanning multiple categories. In

this case, assumptions of discrete choice underlying workhorse models like BLP become less tenable.

For these reasons, we view this product group as a useful laboratory to illustrate our approach.

7.1 Nonparametric Specification

We estimate a nonparametric demand system for all five categories in the Refrigerated Juice product

group. Besides prices, we include the following exogenous demand shifters (xt in the notation of

Section 2): feature promotional activity, season, holiday, 5-digit ZIP code and category dummies.

We use the Hausman instruments described in Section 5 as excluded IVs for prices. We impose

the following five constraints from Section 3.2: (i) the linear index restriction; (ii) exchangeability

between the products in the set J ′ = {Lemonade, Fruit Juice, Other, Iced Tea}, but not across

{Orange Juice} and J ′;13 (iii) diagonal dominance; (iv) necessary restrictions for symmetry of the

Jacobian of demand with respect to prices; and (v) negative own-price effects. These restrictions

lead to a flexible model which we call “NPD-Flex” (for Nonparametric Demand Model). We also

estimate a second model with the five restrictions stated above as well as a positive sign constraint

13As discussed in Compiani (2020), exchangeability is a practically useful assumption that helps reduce the di-
mension of the estimation problem. We only impose exchangeability among all categories other than orange juice
in order to keep the relationship between orange juice and other categories as flexible as possible. This decision is
in part motivated by the fact that orange juice is a widely used category in empirical work and so we are especially
interested in substitution between orange juice and other flavor categories. Note that the inclusion of category fixed
effects means that the model allows for systematic unobserved differences even among the fours categories assumed
to be exchangeable.
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on the cross-price effects.14 This additional sign constraint creates a nonparametric demand model

for strictly substitutable goods, which we refer to as “NPD-Subst.”

In summary, both NPD models are flexible models in the sense that demand is specified as a

general, nonseparable function of prices, other product characteristics, and structural error terms,

and this function is estimated nonparametrically. Both models are also flexible in the sense that

they possess enough parameters to approximate any demand function (Diewert, 1974; Pollak and

Wales, 1992). Further, the NPD-Flex model imposes no constraints on the sign of cross-price effects

and so the model can accommodate both substitutable and complementary goods. In contrast, the

NPD-Subst model only admits positive price effects and thus rules out any form of complementarity.

7.2 Model Comparison

Given that the NPD-Flex and NPD-Subst models imply different behavioral stories, our first task

is to assess the fit of each model to the data. By comparing model fit statistics, we can get a better

sense of the “bite” of the NPD-Subst model and determine whether there is any empirical support

for a model allowing for cross-category complements. Each NPD model also contains a tuning

parameter m which controls the complexity of the nonparametric estimator. Specifically, each

unknown function is estimated using an m-degree Bernstein polynomial in each of its arguments.15

We also want to use the data to select an optimal value of m for each model.

Our procedure for evaluating model fit and selecting tuning parameters is as follows. We first

split our data into two subsamples: a selection sample (corresponding to 30% randomly selected

weeks) and an estimation sample (given by the remaining 70% of the data). This initial sample-split

is done to preserve the validity of any standard errors computed on elasticities.16 To compute model

fit statistics (for model selection purposes), we perform five-fold cross validation on the selection

sample. Specifically, we randomly select 80% of the weeks in the selection sample, estimate the

model on them and compute the root mean squared error (RMSE) on the remaining 20%. Here,

RMSE refers to the square root of the mean of squared ξ errors, where the mean is across store-weeks

and products. Repeating this five times and averaging yields a scalar measure of out-of-sample fit.

Table 6 reports predictive RMSEs for polynomial degrees m ∈ {2, 3} for each NPD model.

We find that the m = 2 model performs best for both NPD-Flex and NPD-Subst. Across NPD

specifications, we find that NPD-Flex provides a slight improvement in fit relative to NPD-Subst.

This provides some preliminary evidence that allowing for complementarities is useful, and we will

see this how this plays out in the estimated elasticities reported in the next section. Lastly, because

14The constraint is technically a negative sign constraint on the cross-derivative of σj(·) with respect to the index
δk(pk, ξk). Since the index is a linear function of −pk, a negative constraint with respect to the index δk is the same
as a positive constraint with respect to the price pk.

15In our system of J = 5 goods, the total degree of the polynomial approximation is 5m.
16Estimating uncertainty in elasticity estimates with the same sample used to choose tuning parameters will lead

to invalid inferences. The specific problem is that the model itself becomes stochastic when it is selected using data,
and this source of uncertainty is not accounted for in standard inference procedures. This situation is now referred to
as “selective inference” or “post-selection inference” and has received much attention in the literature (e.g., Belloni
et al., 2014; Taylor and Tibshirani, 2015; Chernozhukov et al., 2018), particularly for high-dimensional models and
regularized estimation. The most common solutions involve some form of sample splitting.
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Table 6: Model Fit Statistics

Degree of the Polynomial Out-of-sample

Model Each Argument (m) Total (5m) RMSE

NPD-Flex 2 10 0.020

3 15 0.025

NPD-Subst 2 10 0.022

3 15 0.365

the structure of NPD-Flex subsumes NPD-Subst and NPD-Flex does lead to improvements in fit,

we will use the NPD-Flex model as the “ground-truth” model from which we will simulate demand

for the pricing counterfactuals.

7.3 Elasticity Estimates

Table 7 reports the the full 5 × 5 matrix of price elasticity estimates in the refrigerated juice

product group. We report estimates from both the flexible NPD model (NPD-Flex) and the NPD

model imposing positive cross-price effects (NPD-Subst). We also include estimates from two

additional models as a point of comparison. The first is a BLP model which, by construction,

imposes substitution across all goods.17 The second is a log-log model which imposes no economic

restrictions.18 Note that NPD and BLP are non-constant elasticity models and so elasticities vary

with prices and quantities. We compute elasticities at the price-quantity values observed in the

data and report medians in Table 7. We report the complete set of elasticity curves (i.e., elasticities

as a function of price) for the NPD-Flex model in Appendix D.

There are a few observations to make from the elasticity estimates in Table 7. The first is with

respect to the signs of the elasticities. In particular, while all own elasticities are estimated to be

negative (as expected), the mix in signs of the cross elasticities looks very different across models.

These differences can in part be explained by differences in each model’s constraints, or lack thereof.

The NPD-Flex and log-log models place no restrictions on the sign of cross-price effects while the

NPD-Subst and BLP models constrain cross effects to be positive. We find that both the NPD-Flex

and log-log models produce some negative (and precisely estimated) cross elasticities, suggesting

that complementarity is present in this system of goods. The fact that NPD-Flex also provides

superior predictive fit than NPD-Subst is also evidence that some form of complementarity exists

and should be accommodated by the demand model.

The second observation is with respect to magnitudes. We find that the magnitudes of the

estimated elasticities are much larger under flexible demand systems (NPD and log-log) than BLP.

17We estimate BLP using the pyBLP package (Conlon and Gortmaker, 2020). To translate quantities into shares,
we define the market size as the maximum weekly quantity sold across both refrigerated and shelf-stable juice product
groups for each store-year. Utility is specified as a linear function of price, feature promotions, and product intercepts.
Random coefficients are placed on the product intercepts and price.

18This particular specification of the log-log model is different from the specification used in Section 6 in two ways:
(i) the model is estimated using all store-weeks using ZIP code, season, and holiday fixed effects; and (ii) the model
includes Hausman IVs to address the potential endogeneity of prices.
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Table 7: Elasticity Estimates (Refrigerated Juice)

%∆ in %∆ in Price

Model Demand Orange Lemonade Fruit Other Iced Tea

NPD-Flex Orange -7.11 (0.89) 0.09 (0.01) 0.21 (0.03) 0.28 (0.03) 0.21 (0.05)

Lemonade -1.56 (0.75) -2.23 (0.24) -0.45 (0.28) -0.59 (0.04) -0.43 (0.16)

Fruit 0.32 (0.51) 0.18 (0.03) -4.04 (0.62) 0.23 (0.10) 0.43 (0.18)

Other -0.08 (0.75) 0.27 (0.02) 0.93 (0.23) -5.89 (0.63) 0.71 (0.22)

Iced Tea 0.58 (0.53) 0.18 (0.08) 0.36 (0.14) 0.60 (0.22) -4.23 (0.45)

NPD-Subst Orange -7.05 (0.31) 0.57 (0.03) 0.70 (0.03) 1.20 (0.06) 0.76 (0.03)

Lemonade 0.67 (0.03) -3.24 (0.03) 0.30 (0.00) 0.53 (0.01) 0.34 (0.00)

Fruit 1.81 (0.08) 0.68 (0.01) -3.76 (0.05) 1.44 (0.02) 0.92 (0.01)

Other 0.91 (0.08) 0.62 (0.01) 1.10 (0.01) -6.07 (0.10) 0.92 (0.00)

Iced Tea 1.84 (0.07) 0.68 (0.01) 0.84 (0.01) 1.45 (0.01) -3.73 (0.02)

BLP Orange -1.96 (0.00) 0.02 (0.00) 0.12 (0.01) 0.01 (0.00) 0.06 (0.00)

Lemonade 0.18 (0.01) -2.29 (0.01) 0.13 (0.01) 0.02 (0.00) 0.07 (0.00)

Fruit 0.15 (0.01) 0.02 (0.00) -0.81 (0.00) 0.01 (0.00) 0.06 (0.00)

Other 0.18 (0.01) 0.02 (0.00) 0.13 (0.01) -1.95 (0.01) 0.07 (0.00)

Iced Tea 0.18 (0.01) 0.03 (0.00) 0.14 (0.01) 0.02 (0.00) -0.96 (0.00)

Log-Log Orange -2.58 (0.03) 0.10 (0.01) 0.10 (0.03) 0.01 (0.01) 0.19 (0.02)

Lemonade 3.12 (0.07) -1.92 (0.01) -1.05 (0.07) -0.55 (0.03) -0.20 (0.04)

Fruit -0.94 (0.04) 0.06 (0.01) -2.14 (0.03) 0.10 (0.01) 0.04 (0.02)

Other 1.44 (0.06) 0.05 (0.01) 0.15 (0.06) -1.64 (0.02) 0.22 (0.04)

Iced Tea -0.12 (0.06) -0.04 (0.01) 0.36 (0.05) 0.00 (0.02) -1.70 (0.03)

Notes: (1) All models include ZIP code, season, and holiday fixed effects and Hausman IVs. (2) In the
NPD and BLP models, bootstrapped standard errors are computed using 100 bootstrap replicates.

In the NPD-Flex model, the largest cross elasticities are -1.56 and 0.93; in the log-log model, the

largest cross elasticities are -1.05 and 3.12; in the NPD-Subst model, the largest cross elasticity is

1.84. In contrast, the largest cross elasticity in BLP is 0.18. The attenuation of BLP elasticities

is perhaps not too surprising. Logit models impose very strong restrictions on cross effects (Berry,

1994), and while BLP can in principle admit more flexible substitution patterns, this flexibility

comes solely through a model of preference heterogeneity for a subset of product characteristic

coefficients. In practice, it can be difficult to include a rich enough set of characteristics to allow

BLP elasticities to meaningfully deviate from logit elasticities. Indeed, even in our BLP model

which places random coefficients on product intercepts and price, we still find very “logit-like”

elasticity estimates.

We also find that demand is estimated to be more elastic under the NPD models relative to both

BLP and log-log models. Differences in the own elasticities can in part be explained by differences in

the cross elasticities, as discussed above. In microfounded models, the magnitude of the own effect

is tied to the magnitude of cross-effects through properties like Cournot aggregation or diagonal

dominance. Therefore, the BLP own elasticities should be much smaller in magnitude if the cross
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elasticities are also small, and NPD own elasticities should be much larger if the cross elasticities

are also large. Even though the NPD and log-log models produce cross elasticities that are similar

in magnitude, the NPD own elasticities are 2-3 times larger. This is again due to the log-log model’s

lack of economic structure: own effects are not tied to cross effects which is at odds with properties

of a valid demand system and can ultimately lead to issues in subsequent pricing conterfactuals

(Anderson and Vilcassim, 2001). In contrast, the underlying structure of NPD models imposes an

“accounting rule” whereby own effects must get larger to balance off larger cross effects.

Finally, we note that even though the NPD elasticities are substantially larger in magnitude

than BLP elasticities, the degree of substitution implied by these elasticities is similar. For example,

we can also measure substitution using the diversion ratio, which is the ratio of the cross elasticity

over the own elasticity, scaled by market shares (Conlon and Mortimer, 2021). If we consider the

orange juice demand equation (i.e., the top row of the elasticity matrix) and compute the diversion

ratio of orange juice demand with respect to lemonade, fruit juice, other juice, and iced tea, we find

that both NPD-Flex and BLP models yield ratios in the range of (0.01, 0.06). In other words, the

own and cross NPD elasticities scale up roughly by the same constant relative to BLP elasticities.

Since the degree of substitution is ultimately a function of both the own and the cross elasticities,

larger elasticities on their own need not imply unreasonable measures of substitution.

7.4 Demand Boundaries and Omitted Variable Bias

The Monte Carlo simulations in Section 4 demonstrated biases in the NPD own and cross-price

elasticities in situations where a product is omitted from the demand system and that omitted

product’s price is correlated with prices of goods inside the system. We now investigate the nature

of the bias in elasticity estimates when omitting goods from the refrigerated juice demand system.

If demand was specified as a linear function of prices, then the sign and magnitude of the bias

would follow directly from the omitted variable bias formula for linear models. For example, in a

linear model q = αp+ βp̃+ ε, the omitted variable bias in the OLS estimator α̂ when omitting p̃ is

Bias(α̂) =
Cov(p, p̃)

Var(p)
β =

SD(p̃)

SD(p)
Corr(p, p̃)β. (12)

Therefore, the sign of the bias is determined by product of the correlation between included and

omitted variables and the coefficient on the omitted variables (as shown in Section 4). The challenge

is that in the NPD model, demand is specified as a highly nonlinear function of prices and error

terms. We also estimate the inverse demand system via nonparametric IV regression, and so it is

not clear how the biases with respect to σ−1(·) translate to biases with respect to σ(·). Although

deriving the appropriate omitted variable bias formula for NPD models is beyond the scope of

this paper, we show that the intuition from linear models — i.e., considering both demand-side

substitution and supply-side price correlations — is still useful in our empirical setting.

We start by examining the bias for one elasticity with only one omitted good. After this simple

case is made clear, then we will generalize to all elasticities with multiple omitted goods. Consider
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the orange juice demand equation where the estimated own elasticity is -7.11 (from Table 7). Now

consider a smaller, misspecified model which omits the index for the final good, iced tea.

σorange(δorange, δlemonade, δfruit, δother, δicedtea)→ σ(4)orange(δorange, δlemonade, δfruit, δother)

The key “ingredients” for signing the resulting bias on the own elasticity of orange juice are: (i) the

correlation between the price of orange and price of iced tea, which is -0.13; and (ii) the cross-price

elasticity corresponding to the price of iced tea and demand of orange juice, which is 0.21 (from

Table 7). Based on the linear omitted variable bias formula, we would therefore predict a downward

bias (i.e., more negative) in the estimated own-price elasticity of this misspecified system. After

estimating the J = 4 model with iced tea omitted, we indeed find that the estimated elasticity of

orange juice is -7.81, which is directionally consistent with our prediction.

There are many ways in which the findings above can be generalized. First, we could investigate

the bias of the cross elasticities in the orange juice demand equation. Second, we could consider

omitting multiple goods in the orange juice demand equation, not just iced tea. Third, we could

investigate the bias each of the five total demand equations rather than focusing on orange juice

alone. In what follows, we explore each one of these dimensions. In order to keep computation

manageable, we focus on one specific sequence of smaller, misspecified demand systems:

σ(4)(δorange, δlemonade, δfruit, δother)

σ(3)(δorange, δlemonade, δfruit)

σ(2)(δorange, δlemonade)

(13)

where σ(4)(·) is a 4-good system with 42 = 16 elasticities, σ(3)(·) is a 3-good system with 32 = 9

elasticities, and σ(2)(·) is a 2-good system with 22 = 4 elasticities.

From each of the misspecified models above, we compute ÊKij , which is the estimated elasticity

of the demand for i with respect to the price of j when the subset of goods K is omitted from the

full five-good system. For each store-week in the data, we compute the following for each (i, j)

product pair.

(i) The “observed” bias, which is the difference between the estimated (i, j) elasticity under the

full model Êij and the estimated (i, j) elasticity under a smaller model ÊKij for |K| ∈ {2, 3, 4}
and K as defined by the demand systems in (13).

(ii) The “predicted” bias, which is the product of the omitted elasticity Êik (from the full model)

and the correlation between the prices of goods i and k ∈ K. When there is more than one

omitted good (i.e., |K| > 1), we average the predicted bias across k.

By comparing the “observed” bias and “predicted” bias, we can see how well the intution from (12)

(using demand-side and supply-side factors) does in capturing the sign of the observed omitted

variable bias.

In the context of our motivating example of orange juice under the σ(4)(·) misspecified model,
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Figure 1: Heatmap of Observed Bias vs. Predicted Bias

we find that the sign of the “observed” bias and “predicted” bias agree in all store-weeks. The

same is true of the cross-price elasticities from the orange juice demand equation. When we include

all three types of misspecified models, we find that the biases agree in 78% of store-weeks. To

generalize beyond orange juice, we produce a heatmap of the observed vs predicted biases across

all store-weeks, all three misspecified models, and all demand equations in Figure 1. This plot

is like a scatterplot where the points are assigned into bins and the color of a bin indicates its

density (dark colors imply that the bin is filled with more observations). The heatmap is useful

because it allows us to see where points are concentrated in the “observed” and “predicted” space.

Of particular interest is whether points fall in the bottom-left and top-right quadrants where the

sign of “predicted” matches the sign of “observed.” If the points only concentrated on these two

quadrants, then predictions of the sign of the bias based on (12) would always be correct.19 We

find that the largest mass of points (42%) is in the bottom-left quadrant and a smaller mass (21%)

is in the top-right. So together, the sign of the “observed” bias and “predicted” bias agree in 63%

of all store-weeks.

The results above suggest that the (albeit naive) predictions using the standard omitted vari-

able bias formula can still be useful in understanding the sign of the bias when we omit relevant

goods from a demand system. We specifically find that omitted variable bias predictions match

the sign of the observed bias in the majority of cases, while acknowledging that the (12) is an

oversimplified form of the bias present in our setting that is based on nonparametric IV estimators

19It is also worth noting that we are only interested in the location of the points in these four quadrants and not
the exact correlation of “observed” vs. “predicted” because the magnitude of our predictions could be inaccurate.
Specifically, we are not scaling predictions by the standard deviations of prices shown in (12), we are not accounting
for the effect of instruments on the omitted variable bias formula, we are not accounting for the effect of omitted
promotion variables, and we are using price elasticities instead of price effects. We find that the estimated promotion
coefficients in the NPD model are an order of magnitude smaller than the estimated price coefficients, and so the
role of promotion effects should be negligible when studying omitted variable bias. These decisions will affect the
magnitude of the predicted bias (and thus the correlation between “observed” vs. “predicted”) but not the sign of
the predicted bias.
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of an inverse demand system. At a high level, our results demonstrate that when we want to

understand whether/how elasticity estimates will be affected by the omission of possibly related

goods, we should consider both the demand-side substitution between those goods and also the

correlation of their prices. In fact, we find that if we make predictions of the bias using only the

sign of the omitted elasticity and not the price correlation, then the agreement between the sign of

the “observed” and “predicted” bias drops from 63% to 32%.

7.5 Pricing Counterfactuals

Our final objective is to quantify the costs of misspecified boundaries of product competition

through the lens of optimal retailer pricing. We focus on a pricing counterfactual because the first-

order conditions associated with the retailer’s decision problem directly depend on derivatives of

the demand function, thus illuminating consequences of misspecification. Specifically, first consider

the case of “joint” pricing where the retailer sets prices to maximize total profits across all juice

categories.20

max
p1,...,pJ

Π =
J∑

j=1

σj(p)(pj − cj)

 (14)

Here cj denotes the marginal cost of category j reported in our data and, with a slight abuse of

notation, we use σj(p) to denote the demand for category j as a function of prices keeping all other

demand shifters fixed. The retailer’s first-order conditions associated with pricing category j are:

J∑
i=1

∂σi(p)

∂pj
(pi − ci) + σj(p) = 0. (15)

and so optimal prices crucially depend on a flexible system in order to accurately capture price

derivatives ∂σi(p)/∂pj .

The first form of misspecification we consider is misspecification of the demand model, whereby

the retailer gets the demand function wrong and assumes that all juice categories are substitutes.

This in turn implies that the price derivatives in (15) will be misspecified. For this, we use the

NPD-Flex model as the true model and the NPD-Subst model as the misspecified model. Note that

any differences we find in profits will likely be a conservative estimate of the costs of misspecification

given that the misspecified model is still a flexible NPD system as opposed to a more restrictive

parametric model.

The second form of misspecification we consider is in the boundaries of the retailer’s decision

problem. In contrast to the correctly specified joint pricing policy in (14), consider a misspecified

“isolated” pricing policy where the retailer solves for each p∗j separately:21

max
pj

[
Πj = σj(p)(pj − cj)

]
(16)

20We focus on optimization of the baseline prices and keep any discounts — which are observed in the data —
fixed throughout the counterfactual exercises.

21We assume that the other prices are fixed at the values observed in the data.
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with associated first-order conditions:

∂σj(p)

∂pj
(pj − cj) + σj(p) = 0. (17)

This decision problem is misspecified in the sense that the first-order conditions only depend on the

derivatives of σj and not other related goods in the system. The consequence of isolated category

pricing is that the retailer will not be able to internalize the externalities arising from cross-category

substitution (Thomassen et al., 2017). For example, the NPD-Flex elasticity estimates suggest that

a decrease in the price of orange juice will increase demand for lemonade, and this complementarity

creates a positive externality. If the retailer prices jointly across all categories, then they can

internalizes this externality and the price of orange juice should decrease (relative to a case of

isolated pricing). Similarly, our estimates also suggest that a decrease in the price of lemonade will

decrease demand for orange juice. This substitution creates a negative externality and lemonade

prices would increase if internalized.

The two sources of misspecification discussed above lead to four different configurations of

optimal prices: (NPD-Flex, NPD-Subst) x (isolated pricing, joint pricing). We also add a fifth

configuration where demand is estimated separately in each category (NPD-Indep). Note that

in this scenario, isolated and joint pricing would yield the same pricing policy since the demand

specification does not allow for cross-category substitution. We solve for optimal prices at the

store-week level and report the average prices and profits for a random sample of 1,000 store-weeks

in Table 8. First, a few observations about optimal prices. We find that prices are on average higher

under joint pricing, where the magnitude of the difference depends on the degree of substitution

estimated by the NPD model. For example, we estimate lemonade to be a strict substitute with all

other goods. This negative externality should increase prices when internalized, which is what we

find in both NPD-Flex and NPD-Subst specifications. In contrast, consider orange juice where we

find that average prices under NPD-Flex are the same irrespective of whether prices are set jointly

or not. One explanation is that the NPD-Flex model estimates orange juice to be complements with

lemonade and other juices and substitutes with fruit juice and iced tea. These elasticities would

induce positive and negative externalities, respectively, which may offset in the pricing problem.

Moving to profits, we find that the “correctly” specified scenario of NPD-Flex plus joint pricing

does in fact generate the most profitable pricing policy, with the expected per store-week profits

of $319. The differences in profits under the alternative “misspecified” demand models or decision

problems allow us to quantify the cost of misspecification. For example, profits are 3.8% lower

when demand is misspecified but prices are solved jointly. Profits are 11.6% lower when demand is

correctly specified but prices are solved separately in each category. Profits are 13.2% lower when

both the model is misspecified and prices are solved separately in each category. Finally, profits are

14.4% lower when we remove cross-category effects altogether and solve for prices independently in

each category. These results suggest that the boundaries of the decision problem are a first-order

issue, given that the worst case scenario under joint pricing is still better than than the best case

scenario under isolated pricing. An important caveat is that our misspecified model is still a flexible
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Table 8: Profit Table

Isolated Pricing Joint Pricing

Observed NPD-Indep NPD-Subst NPD-Flex NPD-Subst NPD-Flex

Prices Orange 0.082 0.081 0.082 0.082 0.085 0.082

Lemonade 0.080 0.080 0.081 0.089 0.122 0.121

Fruit 0.036 0.036 0.036 0.036 0.038 0.037

Other 0.070 0.063 0.065 0.065 0.074 0.073

Iced Tea 0.037 0.036 0.037 0.037 0.041 0.039

Profits Orange 78 89 90 91 94 101

Lemonade 20 25 24 26 11 14

Fruit 111 106 108 110 140 138

Other 10 12 13 13 11 11

Iced Tea 41 41 42 43 51 55

Total 250 273 277 282 307 319

Notes: Prices are in dollars per ounce. Profits are dollar averages at the week-store level.

NPD model and so the profit losses we estimate are likely a lower bound to true losses from pricing

with more restrictive models.

Finally, we note that the observed prices somewhat deviate from the optimal prices under the

NPD-Flex model and, as a result, the observed profits are lower. This could occur because the

retailer fails to correctly specify the demand model and/or the pricing problem, but it could also be

due to the fact that our analysis only considers five out of the many categories of products sold. In

other words, the retailer could be internalizing some externalities between these five categories and

products outside our demand system. Estimating larger flexible systems could help shed further

light on this and we hope the analysis in this paper serves as a useful first step in that direction.

8 Conclusion

This paper quantifies the costs of misspecified boundaries of competition on optimal retailer pric-

ing. We explore misspecification in both the estimation problem and the decision problem. Our

empirical analysis uses store-level transaction data from a large grocery retailer. We first provide

a set of descriptive results across nine diverse product groups to demonstrate that cross-category

effects “exist.” We then focus on the Refrigerated Juice product group and estimate demand non-

parametrically for all five categories. We also estimate a sequence of smaller models in which we

iteratively omit a good from the demand system. We find that the direction of the estimated bias

from these smaller misspecified models is largely consistent with standard omitted variable bias

results. This suggests that when searching for relevant goods we should consider both demand-side

substitution as well as correlations in retail prices. Finally, we solve for optimal prices and find that

both sources of misspecification lead to profit losses in the range of 4-14%, with misspecification of

the decision problem accounting for larger losses relative to misspecification of the demand system.
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APPENDIX

A Additional Simulation Results

We present additional results from the simulation studies in Section 4 with J = 4 and J = 5. In

each case, the true median elasticities are:

Ejk =
∂qj/qj
∂pk/pk

=


−1 if j = k

−0.15 if j = J or k = J

0.15 otherwise.

Below we report the median elasticities across 100 data replicates. Standard errors are given in

parentheses.

Table 9: Estimated Elasticities Based on Simulated Data

%∆ in % ∆ in Price
J Demand 1 2 3 4 5

4 1 -0.99 (0.030) 0.14 (0.004) 0.14 (0.005) -0.15 (0.006)
2 0.14 (0.005) -0.98 (0.026) 0.14 (0.006) -0.15 (0.006)
3 0.14 (0.006) 0.14 (0.005) -0.99 (0.034) -0.15 (0.006)
4 -0.16 (0.007) -0.16 (0.005) -0.16 (0.007) -1.08 (0.040)

5 1 -0.99 (0.037) 0.15 (0.006) 0.15 (0.007) 0.15 (0.006) -0.17 (0.008)
2 0.15 (0.006) -0.99 (0.036) 0.15 (0.006) 0.15 (0.006) -0.16 (0.009)
3 0.14 (0.006) 0.14 (0.006) -1.00 (0.036) 0.14 (0.006) -0.15 (0.007)
4 0.14 (0.005) 0.14 (0.005) 0.14 (0.005) -1.00 (0.035) -0.15 (0.009)
5 -0.16 (0.007) -0.16 (0.006) -0.16 (0.007) -0.16 (0.006) -1.13 (0.052)
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B Additional Descriptive Results
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Figure B1: Price Elasticities and Promotion Effects
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Prices Markups
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Figure B2: Correlations in Retail Prices and Dollar Markups
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C Testing for Consumer Dynamics and Stockpiling Behavior

Coefficient
Duration Duration

Product Group Category log(Price) Price Promotion Promotion
Baking Goods FROST -1.15 (0.038) 0.01 (0.001) 0.33 (0.011) -0.01 (0.004)

MIX -0.92 (0.042) 0.02 (0.005) 0.87 (0.021) -0.13 (0.010)
Butter/Margarine/Spreads BTR -2.14 (0.029) -0.03 (0.001) 1.37 (0.021) 0.07 (0.002)

BTRSPRD -1.73 (0.062) 0.00 (0.000) 0.54 (0.029) 0.01 (0.001)
MRGRN 0.46 (0.210) -0.01 (0.002) 1.74 (0.087) 0.04 (0.001)

Canned Fish CHKLGHT -0.56 (0.039) 0.02 (0.002) 1.33 (0.017) -0.02 (0.004)
CHKWHT -0.75 (0.035) -0.01 (0.002) 1.44 (0.027) 0.08 (0.010)
SALMON -0.24 (0.010) -0.01 (0.001) 0.77 (0.034) -0.04 (0.008)
SARDINE 0.12 (0.023) -0.01 (0.000) 0.62 (0.022) -0.01 (0.008)
SLDWHT -0.55 (0.018) -0.00 (0.003) 0.71 (0.019) 0.04 (0.005)

Cereal ADULT -1.54 (0.244) 0.06 (0.002) 1.30 (0.117) -0.34 (0.010)
BFY -0.12 (0.012) 0.00 (0.002) 0.70 (0.012) 0.07 (0.112)
FAMILY -1.13 (0.037) -0.08 (0.007) 1.46 (0.028) -0.11 (0.240)
KIDS -0.30 (0.029) 0.11 (0.003) 2.52 (0.032) 0.15 (0.074)

Crackers SALTINE -0.47 (0.039) 0.01 (0.001) 0.56 (0.014) 0.09 (0.008)
SAVORY -1.69 (0.054) 0.42 (0.011) 0.39 (0.016)
SPRYBTR -1.52 (0.025) 0.02 (0.003) 0.48 (0.008) -0.30 (0.054)

Detergent/Softener DETDRY -0.39 (0.038) -0.00 (0.000) 0.02 (0.007)
DETLQD -0.24 (0.008) -0.00 (0.000) 0.09 (0.003)
SFTDRY -0.91 (0.044) -0.01 (0.002) 0.31 (0.009) 0.04 (0.006)
SFTLQD -0.98 (0.049) -0.09 (0.002) 0.49 (0.019) 0.14 (0.006)

Hotdogs BEEF -0.63 (0.044) -0.02 (0.002) 1.48 (0.017) -0.12 (0.007)
MEAT -1.11 (0.094) 0.00 (0.004) 1.38 (0.045) -0.05 (0.009)
TRKY -0.67 (0.053) -0.02 (0.002) 1.10 (0.027) -0.13 (0.012)

Jams/Jellies/Peanut Butter JAM -1.37 (0.072) -0.08 (0.002) 0.66 (0.022) -0.30 (0.017)
JAMORG -1.17 (0.060) -0.00 (0.001) 0.38 (0.019) -0.08 (0.052)
PB -1.72 (0.046) -0.02 (0.005) 0.86 (0.020) -0.15 (0.006)
PBORG -1.58 (0.064) 0.00 (0.004) 0.81 (0.033) 0.05 (0.063)

Refrigerated Juice FRUIT -2.44 (0.129) -0.00 (0.001) 0.79 (0.041) 0.02 (0.005)
ICECOFFEE 0.81 (0.062) 0.00 (0.001) 0.55 (0.019) 0.15 (0.012)
ICETEA -1.72 (0.043) 0.00 (0.001) 0.36 (0.015) -0.03 (0.011)
LEMONADE -1.70 (0.036) -0.02 (0.002) 0.27 (0.028) 0.14 (0.013)
ORANGE -1.97 (0.049) 0.10 (0.004) 0.91 (0.016) -0.04 (0.007)
OTHER -1.74 (0.055) -0.01 (0.001) 0.73 (0.035) 0.04 (0.010)

Notes: The estimated coefficients are from a regression of log quantities for category i on its log price, the number of
weeks since its last price promotion (duration price), its feature promotion activity, and the number of weeks since
its last feature promotion (duration promotion). The regressions are estimated for each category separately and
include ZIP code, season, and holiday fixed effects. In the presence of consumer stockpiling behavior, the coefficient
on “duration price” should be positive (Hendel and Nevo, 2003).
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D NPD Elasticity Curves
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Figure D3: Elasticity Curves (Refrigerated Juice)
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