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Abstract

We study the possibility that, aside from standard sources of utility, investors also
derive utility from realizing gains and losses on individual investments that they own.
We propose a tractable model of this “realization utility,” derive its predictions, and
show that it can shed light on a number of puzzling facts. These include the poor
trading performance of individual investors, the disposition effect, the greater turnover
in up markets, the negative premium to volatility in the cross-section, and the heavy
trading of highly valued assets. Underlying some of these applications is one of our
model’s more novel predictions: that, even if the form of realization utility is linear or
concave, investors can be risk-seeking.

∗Comments are welcome at nick.barberis@yale.edu and wxiong@princeton.edu. We thank Bige Kahra-
man, Chris Rogers, and participants at the 2007 Cambridge-Princeton conference for helpful discussions.

1



1 Introduction

When economists model the trading behavior of individual investors, they typically assume

that these investors derive utility only from consumption, or from total wealth. In this

paper, we study the possibility that investors also derive utility from another source, namely

from realized gains and losses on risky assets that they own. Suppose, for example, that an

investor buys a stock, and then, a few months later, sells his position. We analyze a model

in which the investor gets a jolt of utility right then, at the moment of sale, and where the

utility term depends on the size of the gain or loss realized – utility is positive if the stock

is sold at a gain relative to purchase price, and negative otherwise. We label this source of

utility “realization utility.”

There are several reasons why an investor might derive utility from realizing a gain or

loss. If he sells a stock at a gain, he can tell himself that he is a savvy investor, raising his

self-esteem. The sale also gives him a piece of news to boast about to family and friends.

While an investor can certainly also feel good about a stock trading at a paper gain, these

feelings are likely to be more pronounced at the moment of sale. When an asset is sold, there

is a sense that the transaction is “complete,” making it easier to claim credit for a successful

investment.

Practitioners have long argued that realization utility plays an important role in individ-

ual decision making. For example, in a well-known manual for stock brokers, Gross (1982)

discusses the pain associated with realizing a loss:

“Most clients, however, will never sell anything at a loss... Investors are reluctant

to accept and realize losses because the very act of doing so proves that their first

judgment was wrong... Investors who accept losses can no longer prattle to their

loved ones, ‘Honey, it’s only a paper loss. Just wait. It will come back.’ ”

Introspection and casual observation, then, suggest that realization utility may be a

significant driver of trading behavior, and hence that it merits a more systematic analysis.

In this paper, we do three things. First, we develop a tractable model of realization utility,

one that is sophisticated enough to capture many features of actual trading, but also simple

enough to allow for an analytical solution. Second, we lay out the model’s predictions. And

third, we link these predictions to a wide range of applications.

In its simplest version, our model is an infinite-horizon framework in which an investor

switches back and forth between a stock and a risk-free asset. Whenever he liquidates his

stock holdings, he receives a jolt of utility based on the size of the gain or loss realized, and

pays a proportional transaction cost. In one extension of the basic model, we also allow for
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a random liquidity shock which forces the investor to sell any outstanding position in stock

and to exit the stock market. In another extension, we also require the investor to park

the proceeds of a stock sale in cash for a certain period of time before re-entering the stock

market – a device intended to capture the idea that it can take time to dig up attractive

stock market opportunities.

At each moment, the investor makes his allocation decision by maximizing the discounted

sum of expected future realization utility flows. For much of the paper, we assume a linear

functional form for realization utility, and standard exponential discounting.

We find that, in our model, the investor voluntarily sells his stock holdings only when

the stock is trading at a sufficiently large gain relative to purchase price. We show how this

“liquidation point” – the percentage gain in price, relative to purchase price, at which the

investor is willing to sell – depends on the stock’s expected return, its standard deviation,

the investor’s time discount rate, the level of transaction costs, and the frequency of liquidity

shocks. Our model also allows us to compute the probability that, within any given interval

after first buying a stock, the investor sells it. We show how this probability – a measure of

trading frequency – depends on the aforementioned factors.

The model makes a number of interesting predictions. One of the more striking is that,

even if realization utility has a linear functional form, the investor can be risk-seeking : all

else equal, his time 0 value function is increasing in the volatility of the stock available for

trading. The intuition is straightforward. A highly volatile stock offers the chance of a large

gain, which the investor can enjoy realizing. Of course, it may also experience a large drop in

value; but in that case, the investor will simply postpone selling the stock until he is forced

to sell by a liquidity shock. Any realized loss therefore lies in the heavily discounted future

and does not scare the investor very much. Overall, then, the investor prefers more volatility

to less.

A related intuition underlies another of the model’s predictions: that the investor is

willing to buy a stock with a negative average excess return, so long as its volatility is

sufficiently high. The model also predicts that more volatile stocks will be traded more

frequently: roughly speaking, a more volatile stock reaches its liquidation point more rapidly.

We link our model to a wide range of financial phenomena. In particular, we argue that

it offers a way of thinking about the subpar trading performance of individual investors, the

disposition effect, the greater turnover in bull markets than in bear markets, the negative

volatility premium documented by Ang et al. (2005), and the heavy trading associated with

highly valued assets – as, for example, in the technology sector in the late 1990s.

To understand this last application, note that, in an economy where many investors

care about realization utility, more volatile stocks will be both more heavily traded – such
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stocks reach their liquidation points faster – and more highly valued: since realization utility

investors like volatility, they will collectively push the prices of volatile stocks up. Our model

therefore predicts a coincidence of high valuations and heavy trading; and moreover, that

this phenomenon will occur for assets whose fundamentals are particularly uncertain. Under

this view, the late 1990s were years where realization utility investors, attracted by the high

uncertainty of technology stocks, bought these stocks, pushing their prices up; as (some of)

these stocks rapidly reached their liquidation points, the realization utility investors sold

them, and then immediately bought new ones.

Although we work mainly with exponential time discounting, we also consider the case

of hyperbolic time discounting. While hyperbolic discounting has been linked to a number

of economic phenomena, researchers have not, as yet, found many applications for it within

the context of finance. We show that, as soon as we allow for realization utility, hyperbolic

discounting can have significant effects.

As noted above, practitioners have for decades noted the potential importance of real-

ization utility. In the academic literature, an early discussion of this idea can be found in

Shefrin and Statman (1985). They propose it, in combination with prospect theory, as a way

of understanding the disposition effect, and present a two-period numerical example. More

recently, Barberis and Xiong (2006) analyze a two-period model of realization utility, again

in combination with prospect theory, and again with the disposition effect as the eventual

application.

In this paper, we offer the first comprehensive analysis of realization utility. We move

beyond the two-period setting and work in an infinite horizon framework. We allow for

transaction costs, for random liquidity shocks, and for a time interval during which the

investor searches for attractive stock market opportunities. We analyze the investor’s trading

strategy along several dimensions, including trading frequency. We consider a wide range

of applications, of which the disposition effect is just one. And while our framework allows

for a prospect theory functional form, we work mainly with a linear functional form, and

investigate what it, in combination with a positive time discount factor, can predict.

2 A Model of Realization Utility

We now present a model of trading behavior in which the investor cares about realization

utility. In Section 2.1, we lay out the basic version of the model. In Section 2.2, we generalize

the model along two dimensions. We adopt this “incremental” strategy of starting with the

simplest model so as to illustrate the effect of each additional feature as clearly as possible.

We make two fundamental modeling assumptions. First, we assume that the carriers
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of realization utility are gains and losses measured relative to purchase price, rather than

absolute wealth levels. If realization utility is the idea that the investor derives pleasure from

completing a successful investment in some asset, it is natural that how good he feels at the

moment of sale is a function of the asset’s change in value since purchase.

Second, we assume that realization utility is defined at the level of an individual asset.

Again, if realization utility is the idea that an investor feels good when he completes a

successful investment in some asset, it is natural that utility is defined at the asset level,

even if the asset is just one of many in his portfolio. The idea that an agent might get

utility from the outcome of one specific asset that he owns is sometimes known as “narrow

framing.” In short, then, realization utility leads naturally to narrow framing.

Taken together, these assumptions mean that the utility specification in our model differs

from more traditional specifications in three ways: in that utility is defined over gains and

losses rather than wealth levels; in that utility is defined at the level of individual assets; and

in that the utility specification makes a distinction between realized and paper gain/losses,

and defines utility only over realized gains and losses.

Another modeling choice concerns the functional form for realization utility. Since it is

unclear what this functional form should be, we focus on the simplest possibility, a linear

functional form, and show that, even under this assumption, realization utility has a range

of novel implications. Later in the paper, we consider some alternative specifications. In

particular, while Section 2 adopts the linear functional form throughout, Section 3.1 considers

a piecewise linear specification. In Section 3.2, we vary another dimension of preferences,

and replace exponential time discounting with hyperbolic time discounting.

Our model is related to Kahneman and Tversky’s (1979) prospect theory, but only weakly

so. The common feature is that utility is defined over gains and losses, rather than absolute

wealth levels, but the similarities end there. By focusing on a linear functional form for

utility, we largely ignore key elements of prospect theory such as loss aversion and diminishing

sensitivity to gains and losses. Even our assumption that realization utility is defined over

gains and losses does not have to be motivated from prospect theory – by thinking about

what realization utility is trying to capture, it quickly becomes clear that it is best defined

over gains and losses.

2.1 The basic model

We use a continuous-time framework because this allows us to solve the model analytically.

We have also studied the discrete-time analog of our model. The results are similar, but can

only be obtained numerically.
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Consider an investor who starts at time 0 with wealth W0. At each time t ≥ 0, he has

two investment options: a risk-free asset, which offers a net return of zero; and a risky asset

– a stock, say – whose price St follows

dSt

St
= µdt + σdZt. (1)

For simplicity, we assume that, at each time t, the investor either allocates all of his

wealth to the risk-free asset or all of his wealth to the stock: no intermediate allocations

are allowed. We also suppose that, if the investor sells his position in the stock at time t,

he pays a proportional transaction cost, kWt, 0 ≤ k < 1, where Wt is time t wealth. The

investor’s wealth therefore evolves according to

dWt

Wt
= θt(µdt + σdZt) − kI{lt=1}, (2)

where θt takes the value 1 if he is holding the stock at time t, and 0 otherwise; and where lt
takes the value 1 if he sells the stock at time t, and 0 otherwise.

An important variable in our model is Bt. This variable, which is defined only if the

investor is holding stock at time t, measures the cost basis of the stock position, in other

words, the amount of money the investor put into the time t stock position at the time he

bought it. Formally, if θt = 1,

Bt = Ws, where s = max{τε[0, t) : θτ = 0}. (3)

The key feature of our model is that the investor derives utility from realizing a gain or

loss. Specifically, whenever he switches his wealth from the stock into cash, he receives a

burst of utility given by

u((1 − k)Wt − Bt). (4)

The argument of the utility term is the size of the realized gain or loss: the investor’s wealth

at the moment of sale, after the transaction cost, (1−k)Wt, minus the cost basis of the stock

investment Bt.
1

Suppose that, at time t, the investor’s wealth is allocated to the stock. The investor’s

value function is a function of the current asset value, Wt, and of the asset’s cost basis, Bt.

We denote the value function as V (Wt, Bt).

We further assume

V (W, W ) > 0. (5)

1The investor only receives realization utility when he liquidates a position in stock and puts the proceeds
into the risk-free asset, not when he sells the risk-free asset and puts the proceeds into stock. The reason is
that, since the risk-free rate is zero, the realized gain or loss from selling the risk-free asset is always zero.
We also assume that the investor does not incur a transaction cost from selling the risk-free asset.
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Note that V (W, W ) is the value function from investing in the stock now, so that the asset’s

current value and cost basis are both equal to current wealth W . Given a positive time

discount rate, condition (5) implies two things. First, it implies that, at time 0, the investor

allocates his wealth to the stock: since the risk-free asset generates no utility flows, he

allocates to the stock as early as possible, in other words, at time 0. Second, condition

(5) implies that, if, at any time t > 0, the investor sells a position in stock, he will then

immediately re-establish the position. We verify the validity of condition (5) later.

We can now formulate the investor’s decision problem. At time t, the investor solves

V (Wt, Bt) = max
τ≥t

Et

{
e−δ(τ−t) [u((1 − k)Wτ − Bτ ) + V ((1 − k)Wτ , (1 − k)Wτ )]

}
, (6)

subject to (2), (3), and

θs = 1, t ≤ s < τ

θτ = 0. (7)

In words, at time t, the investor chooses the optimal time τ , a random time in the future,

at which to realize the gain or loss in his current position. When he liquidates his position

at time τ , he receives a burst of utility u((1 − k)Wτ − Bτ ) and a cash balance of (1 − k)Wτ

which he immediately reinvests in the stock. The parameter δ is the time discount rate. To

ensure that the investor does not hold his time 0 stock position forever, without selling it,

we assume

δ > µ. (8)

We consider two functional forms for the utility term u(·). Throughout Section 2, we

consider the linear case

u(x) = x. (9)

As noted earlier, we focus on this case because it is the simplest one, and because we want

to show that we do not need strong assumptions about u(·) in order to derive interesting

results. In Section 3, however, we also consider a piecewise linear specification.

At this point, we note an important caveat. For the sake of tractability, the investor in

our model derives utility only from realized gains and losses: other, more standard sources of

utility are ignored. As such, our framework is not suitable for thinking about how an investor

would allocate his overall wealth: rather, it is designed to shed light on how investors trade

stocks in their brokerage accounts. Put differently, we should not think of W0 as the investor’s

total wealth, but as that portion of his total wealth that he allocates to a brokerage account.

So far, we have interpreted the mathematical structure in (2), (3), and (6) in terms

of a one-stock model, so that, over time, the investor switches in and out of the same

stock. However, the same mathematical structure also admits an alternative interpretation,
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which we prefer, and which we adopt going forward. Under this interpretation, the economy

contains many stocks, all of which have the same return distribution in (1). At any time

t ≥ 0, the investor can either have all of his wealth in the risk-free asset, or all of his wealth

in one of the stocks. And whenever the investor moves his wealth into a stock, the stock is

a new stock, one that he has not previously owned.

Why is this a better interpretation? Under the one-stock interpretation, the objective

function in (6) says that, if the investor liquidates his position in a stock, and then, a minute

later, buys back the same stock, he nonetheless derives utility from the gain or loss realized

at the moment of sale. This seems psychologically implausible. It is hard to imagine that

the investor can derive realization utility from the sale of a stock if he then immediately

buys the stock back: he can hardly claim credit for a successful “completed” transaction

if he then immediately reopens the transaction. If, however, he sells a stock and then, a

minute later, buys a new stock, it is more reasonable that he would derive utility from the

gain or loss realized at the moment of sale: since the new stock is a different one, it is easier

to think of the sale of the previous stock as a completed transaction.

While the multi-stock interpretation seems to us the more plausible one, it does make an

implicit assumption, namely that, whenever the investor sells a stock, there is immediately

available, for potential purchase, another stock with the same return characteristics. We

maintain this assumption for now, but relax it in Section 2.2.2

The proposition below summarizes the solution to the decision problem in (6). The

variable

gt =
Wt

Bt
(10)

– in words, the percentage change in value, since purchase, of the risky asset the investor is

holding at time t – plays an important role in the solution.

Proposition 1: An investor with the decision problem in (6) will sell a position in stock

once the gain gt = Wt/Bt reaches a liquidation point g∗ > 1, where g∗ is the unique solution

to
1 − k

γ1 − 1
g−(γ1−1)
∗ + (1 − k) g∗ − γ1

γ1 − 1
= 0, (11)

2Even under the multi-stock interpretation, we still assume, for simplicity, that the investor holds at most
one stock at any time. Under some conditions, however, the solution to the problem in (6) also determines
how an investor would trade in a setting where he holds several stocks concurrently. Suppose that the
investor starts with wealth of mW0, and spreads this wealth across m stocks, investing W0 in each one. Now
suppose that each of these m packets of wealth is managed as described earlier in the section: if the investor
sells one of the stocks, he immediately reinvests the proceeds in another stock. Moreover, he derives utility
separately from the realized gain or loss on each individual stock. The solution to (6) then also describes
how the investor trades each of his stocks in this multiple-concurrent-stock setting.
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where

γ1 =
1

σ2

⎡⎣√(
µ − 1

2
σ2

)2

+ 2δσ2 −
(
µ − 1

2
σ2

)⎤⎦ > 0. (12)

The investor’s value function is V (Wt, Bt) = BtU(gt), where

U(gt) =

⎧⎪⎪⎨⎪⎪⎩
(1−k)

γ1g
γ1−1
∗ −(1−k)

gγ1
t if gt < g∗

(1 − k)gt(1 + U(1)) − 1 if gt ≥ g∗

. (13)

Furthermore, the investor will only invest in stock at time 0 if

U(1) =
1 − k

γ1g
γ1−1∗ − (1 − k)

> 0. (14)

We prove the proposition in the Appendix. In brief, the proof proceeds by conjecturing

that the investor sells his stock position once gt exceeds some g∗ > 0; by constructing the

value function, first for the region below g∗, and then for the region above g∗; by requiring

that the value function is continuous and continuously differentiable at g∗; and finally, by

verifying that the constructed value function is indeed optimal.

Results

The shaded area in the top-left graph in Figure 1 shows the range of values of the stock’s

expected return µ and standard deviation σ for which U(1) > 0. In words, this is the range

for which the investor is willing both to buy stock at time 0 and to sell it at some finite

liquidation point. To do this calculation, we need to assign values to the two remaining

parameters, δ and k. We set the time discount factor to δ = 0.08, and the transaction cost

to k = 0.01, which is of a similar order of magnitude to the transaction cost estimated by

Barber and Odean (2000) for discount brokerage customers.

The graph illustrates an important feature of our model, namely that the investor is

willing to invest in a stock even if it has a negative expected return. The intuition is simple.

So long as the stock’s standard deviation σ is positive, even a negative expected return

stock has some chance of reaching the liquidation point g∗, at which time the investor can

enjoy realizing the gain. Of course, more likely than not, the stock will lose value. However,

since the investor does not realize losses, this will never bring him any disutility. Overall,

then, investing in stock, even if it has a negative expected return, is a better option than

investing in the risk-free asset, which offers zero utility for sure. In later sections, we show

that this intuition continues to hold in more general models. For example, it holds even in

the presence of liquidity shocks which force the investor to sell his holdings, whatever their

value.
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When k = 0, the condition that U(1) exceed 0 reduces to the condition γ1 > 1, which, in

turn, reduces to µ < δ. Since the transaction cost k used in Figure 1 is low, we would expect

µ < δ to approximate the shaded region in the top-left graph quite well. Visually, this is the

case. Note also that in the unshaded area to the right of the shaded area, the investor buys

stock at time 0 but then holds it forever.

Figure 2 shows how the liquidation point g∗ and time 0 utility U(1) depend on the model

parameters. The graphs on the left correspond to the liquidation point, and those on the

right, to time 0 utility. For now, we focus on the solid lines; we discuss the dotted lines in

Section 2.2.

To construct the graphs, we start with a set of benchmark parameters. We use the same

benchmark parameters throughout the paper. We set the average excess return on stock to

µ = 0.03 and its standard deviation to σ = 0.5. We use a time discount factor of δ = 0.08

and a transaction cost of k = 0.01. The graphs in Figure 2 show what happens as we vary

each of µ , σ, and δ in turn, keeping the other parameters fixed at their benchmark levels.

The top graphs in Figure 2 show that, as we would expect, time 0 utility is increasing

in the mean stock return µ. The liquidation point is also increasing in µ: if a stock offers a

high average return and is trading at a gain, the investor is tempted to hold on to it, rather

than sell it and incur a transaction cost.

The middle graphs illustrate one of the important predictions of our model: that, as

stock return volatility goes up, the investor’s time 0 utility also goes up. Put differently,

even though the form of realization utility is linear, the investor is risk-seeking. While this

is initially surprising, there is a simple intuition for it: a highly volatile stock offers the

chance of a significant gain, which the investor can enjoy realizing. Of course, it also offers

the chance of a significant loss. But the investor does not realize losses, and so will never

experience any disutility. More volatile stocks are therefore more attractive. We show later

that this result continues to hold in more general models; for example, it holds even in the

presence of random liquidity shocks. Note also that, from a mathematical perspective, this

prediction is a consequence of the fact that, while instantaneous utility is linear, the value

function in (13) is convex.

The bottom graphs show that, when the investor discounts the future more heavily,

utility falls, as does the liquidation point. An investor with a higher discount rate is more

impatient, and therefore cannot wait as long before realizing a gain.

The top graphs in Figure 3 show how the liquidation point and initial utility depend on

the transaction cost k. As expected, a higher transaction cost lowers the investor’s time 0

utility. It also increases the liquidation point: given that it is costly to liquidate a position,

the investor waits longer before doing so.
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It is useful to note what happens when the transaction cost falls to zero. The top-left

graph in Figure 3 suggests that, in this case, the liquidation point falls to g∗ = 1. It is simple

to confirm that, when k = 0, equation (11) is indeed satisfied by g∗ = 1. In this case, then,

the investor realizes all gains immediately. Also, as noted earlier, in this case, the investor

is willing to invest in stock at time 0 so long as µ < δ.

2.2 A more general model

We now make our model more realistic by introducing some additional features of trading.

First, we introduce a “search interval.” The model of Section 2.1 assumes that, whenever

the investor sells a stock, he can immediately reinvest the proceeds in another stock with

the same return distribution. In reality, it may take the investor some time to find another

stock with a similarly attractive return distribution. We therefore extend the basic model

so that, whenever the investor sells a stock, he then has to park the proceeds in the risk-free

asset for an interval of length T , during which time he searches for a new stock to invest in.

Only at the end of the interval does he invest in the new stock.

In the model of Section 2.1, the wealth in the investor’s brokerage account affects his

utility only through the channel of realized gains and losses. We do not model the idea that,

since it forms part of his total wealth, the money in the brokerage account may affect the

investor’s consumption, which, in turn, is a significant source of utility for him.

To capture, in reduced form, the idea that the investor might need the money in his

brokerage account for consumption purposes, we now also allow for the possibility that the

investor receives an exogeneous liquidity shock at some time τ ′ which forces him to liquidate

all of his holdings and to exit the stock market. We assume that the liquidity shock arrives

according to a Poisson process with parameter ρ.

With these two new features, the investor’s decision problem becomes

V (Wt, Bt) = max
τ≥t

Et

{
e−δ(τ−t)

[
u((1 − k)Wτ − Bτ )I{τ<τ ′}

+ e−δT V ((1 − k)Wτ , (1 − k)Wτ ) I{τ+T<τ ′}
+u((1 − k)Wτ ′ − Bτ ′)I{τ≥τ ′}

]}
. (15)

To understand this, suppose that the investor sells the stock early enough so that τ +T < τ ′,
in other words, so that the liquidity shock arrives not only after the sale, but also after the

search interval that follows. In this case, only the first two of the three terms within the

square parentheses are non-zero: the investor receives utility u((1 − k)Wτ − Bτ ) at the

moment of sale, as well as e−δT V ((1 − k)Wτ , (1 − k)Wτ ), the value function at the end of

the search interval, discounted back.3

3If the risk-free rate were non-zero, the V ((1 − k)Wτ , (1 − k)Wτ ) term would also need to reflect com-
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If the investor sells the stock later, so that τ < τ ′ < τ + T , only the first of the three

terms within the square parentheses is non-zero: the investor receives realization utility at

the moment of sale, but, since the liquidity shock arrives during the search interval, he

receives nothing else. If τ > τ ′, the investor is forced out of the stock market by a liquidity

shock and receives u((1 − k)Wτ ′ − Bτ ′) from the gain or loss at the moment of exit.

In the Appendix, we prove:

Proposition 2: Unless forced to exit the stock market by a liquidity shock, an investor with

the decision problem in (15) will sell a position in stock once the gain gt = Wt/Bt reaches a

liquidation point g∗ > 1. The value function is V (Wt, Bt) = BtU(gt), where

U(gt) =

⎧⎪⎪⎨⎪⎪⎩
c1g

γ1
t + ρ(1−k)

ρ+δ−µ
gt − ρ

ρ+δ
if gt < g∗

(1 − k)gt(1 + e−(ρ+δ)T U (1)) − 1 if gt ≥ g∗

, (16)

where

γ1 =
1

σ2

⎡⎣√(
µ − 1

2
σ2

)2

+ 2 (ρ + δ)σ2 −
(
µ − 1

2
σ2

)⎤⎦ > 0, (17)

and where c1 and g∗ are given by

c1 =
(1 − k)

[
1 + e−(ρ+δ)T

(
ρ(1−k)
δ+ρ−µ

− ρ
ρ+δ

)]
− ρ(1−k)

δ+ρ−µ

γ1g
γ1−1∗ − (1 − k)e−(ρ+δ)T

(18)

0 = c1g
γ1∗ (1 − γ1) − ρ

ρ + δ
+ 1. (19)

Results

To illustrate the effect of the two new features of our model – the search interval and

the liquidity shock – we introduce them one at a time. We start by setting T = 0.1 and

ρ = 0, so that there is a search interval but no liquidity shock. A value of T = 0.1 means

that the investor has to wait just over a month after selling one stock before he is able to

buy another.

The shaded area in the top-right graph in Figure 1 plots the range of values of µ and σ

for which U(1) > 0, in other words, the range for which the investor is willing both to buy

stock at time 0 and to sell it at a finite liquidation point. In these calculations, we set the

two remaining parameters, δ and k, to the benchmark values from before, 0.08 and 0.01,

respectively.

pounded interest.
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The range of values of µ and σ for which U(1) > 0 is very similar to that in the model

of Section 2.1. It is straightforward to show that, when k = 0 and T = 0 , the condition

U(1) > 0 reduces to µ < δ. Since, in the top-right graph of Figure 1, both k and T are low,

we would expect the graph to be well approximated by µ < δ. Visually, this is the case.

The middle two graphs in Figure 3 show how the liquidation point g∗ and initial utility

U(1) depend on the length of the search interval T . In producing these graphs, the remaining

parameters are set to the benchmark levels noted earlier, namely

(µ, σ, δ, k) = (0.03, 0.5, 0.08, 0.01). (20)

The middle-left graph shows that the liquidation point rises with T : the longer the

investor has to wait, in cash, after selling a position in stock, the more reluctant he will be

to sell the stock in the first place. This result can also be seen analytically: when ρ = 0, the

liquidation point g∗ from equations (18) and (19) satisfies

∂g∗
∂T

=
δe−δT

γ1−1
g
−(γ1−1)
∗

1 − e−δτg−γ1∗
> 0, (21)

so that the liquidation point does indeed increase with the length of the search interval T .

The middle-right graph shows that the investor’s initial utility falls as T rises: the longer the

interval over which the investor is barred from holding the attractive stock, the less happy

he is.

The dotted lines in Figure 2 show how the liquidation point g∗ and initial utility U(1)

vary with µ , σ, and δ in the presence of a search interval T > 0. In these calculations, we

vary each of µ , σ, and δ in turn, keeping the other parameters fixed at their benchmark

values, namely

(µ, σ, δ, k, T ) = (0.03, 0.5, 0.08, 0.01, 0.1). (22)

The dotted lines in the graphs on the left side of Figure 2 show that introducing a search

interval preserves the basic relationship between g∗ on the one hand and µ, σ, and δ on

the other; the effect is simply to shift the liquidation point up. It also preserves the basic

relationship between U(1) and µ, σ, and δ; it simply shifts the utility level down somewhat.

We now allow for both a search interval and a liquidity shock. Specifically, we maintain

T = 0.1 and assign ρ a benchmark value of 0.1, which implies that the probability of a

liquidity shock over the course of a year is 1 − e−0.1 ≈ 0.1.

The shaded area in the middle-left graph in Figure 1 shows the range of values of µ and

σ for which U(1) > 0. We set the remaining parameters, δ and k , to their benchmark values

of 0.08 and 0.01, respectively. The figure shows that, relative to the case where there is no

liquidity shock, the investor is now only willing to invest in a negative expected return stock
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if its standard deviation is sufficiently high: in the presence of a liquidity shock, a negative

expected return stock is less attractive because it raises the chance that the investor will be

forced to make a painful exit from a losing position. Only if the stock has a high standard

deviation, so that it also offers a chance of a sizeable gain which the investor can enjoy

realizing, will he invest in it.

The bottom graphs in Figure 3 show how the liquidation point g∗ and initial utility U(1)

depend on the intensity of the liquidity shock ρ. Here, the remaining parameters are set to

the benchmark values in (22).

The bottom-left graph shows that the liquidation point depends on ρ in a non-monotonic

way. There are two factors at work here. As the liquidity shock intensity ρ goes up, the

liquidation point initially falls. One reason the investor delays realizing a gain is the transac-

tion cost that a sale entails. In the presence of liquidity shocks, however, the investor knows

that he is likely to be forced out of the stock market at some point. The present value of the

transaction costs he expects to pay is therefore lower than in the absence of liquidity shocks.

He is therefore willing to realize gains sooner.

At higher levels of ρ, however, there is a second factor which makes the investor more

patient: if he is holding a stock with a gain, he is reluctant to exit the position, because he

will then have to reinvest in another stock, which might do poorly, and from which he might

be forced to exit at a loss by a liquidity shock. This factor pushes the liquidation point back

up.

The bottom-right graph shows that, as the liquidity shock intensity ρ rises, the agent’s

utility falls. Since a liquidity shock may force the investor to exit the stock market with a

painful loss, it lowers his utility.

The solid lines in Figure 4 show how the liquidation point g∗ and initial utility U(1)

depend on the parameters µ , σ, and δ in the presence not only of transaction costs and a

search interval, but also a liquidity shock, so that ρ > 0. In these calculations, we vary each

of µ , σ, and δ in turn, keeping the remaining parameters fixed at the benchmark values

(µ, σ, δ, k, T, ρ) = (0.03, 0.5, 0.08, 0.01, 0.1, 0.1). (23)

Comparing the solid lines in Figure 4 to the solid and dotted lines in Figure 2, we see that,

with one exception, the possibility of a liquidity shock preserves the same basic relationship

between g∗ and U(1) on the one hand, and µ , σ, and δ on the other. In particular, even in

the presence of liquidity shocks, the investor’s initial utility U(1) is still strongly increasing

in the stock’s volatility σ. A liquidity shock may force the holder of a volatile stock to realize

a large loss, and this would be painful; but it may also force him to realize a large gain, and

this would be pleasurable. Given that utility is linear, liquidity shocks do not reverse the

earlier relationship between initial utility and stock volatility.
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The one difference between Figures 2 and 4 is in the way the investor’s initial utility

depends on the discount rate δ. In the absence of a liquidity shock – the case of Figure 2 –

the investor’s utility falls as he becomes more impatient, while in the presence of a liquidity

shock, it rises.

3 Other Preference Specifications

In Section 2, we took the functional form for realization utility u(·) to be linear, and as-

sumed exponential time discounting. We adopted the linear specification because of its

simplicity and in order to show that we can derive interesting results without making strong

assumptions about the form of u(·). In Section 3.1, we consider an alternative specification –

piecewise linear utility – and show how it affects the results. In Section 3.2, we alter another

dimension of preferences by replacing exponential discounting with hyperbolic discounting.

3.1 Piecewise linear utility

We start with the most complete model that we have developed so far – the model of Section

2.2, which allows for a transaction cost, a search interval, as well as a liquidity shock – and

investigate what happens when u(·) has a piecewise linear form, rather than a linear one, so

that the investor is “loss averse,” or more sensitive to losses than to gains:

u (x) =

{
x if x ≥ 0

λx if x < 0
, λ > 1. (24)

The investor’s decision problem is:

V (Wt, Bt) = max
τ≥t

Et

{
e−δ(τ−t)

[
u((1 − k)Wτ − Bτ )I{τ<τ ′}

+ e−δT V ((1 − k)Wτ , (1 − k)Wτ ) I{τ+T<τ ′}
+u((1 − k)Wτ ′ − Bτ ′)I{τ≥τ ′}

]}
. (25)

This is the same as equation (15) in Section 2.2, except that u(·) is no longer linear, but

instead takes the form in (24).

In the Appendix, we prove:

Proposition 3: Unless forced to exit the stock market by a liquidity shock, an investor with

the decision problem in (25) will sell a position in stock once the gain gt = Wt/Bt reaches a

15



liquidation point g∗ > 1. His value function is V (Wt, Bt) = BtU(gt), where

U(gt) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

c1g
γ1
t + ρλ(1−k)

ρ+δ−µ
gt − ρλ

ρ+δ
if gt ε (0, 1

1−k
)

b1g
γ1
t + b2g

γ2
t + ρ(1−k)

ρ+δ−µ
gt − ρ

ρ+δ
if gt ε ( 1

1−k
, g∗)

(1 − k)gt(1 + e−(ρ+δ)T U (1)) − 1 if gt ε (g∗,∞),

(26)

where γ1 is defined in equation (17), where

γ2 = − 1

σ2

⎡⎣√(
µ − 1

2
σ2

)2

+ 2 (ρ + δ) σ2 +
(
µ − 1

2
σ2

)⎤⎦ < 0, (27)

and where c1, b1, b2, and g∗ are determined from

b2 =
1

(γ1 − γ2)

(λ − 1) ρ(1 − k)γ2 (µγ1 − ρ − δ)

(ρ + δ − µ) (ρ + δ)
(28)

(γ1 − 1) b1g
γ1∗ + (γ2 − 1) b2g

γ2∗ =
δ

ρ + δ
(29)

b1

(
1

1 − k

)γ1

+ b2

(
1

1 − k

)γ2

= c1

(
1

1 − k

)γ1

+
(λ − 1)µρ

(ρ + δ − µ)(ρ + δ)
(30)

b1g
γ1∗ + b2g

γ2∗ + (1 − k)g∗
µ − δ

ρ + δ − µ
+

δ

δ + ρ
= (1 − k)g∗e−(ρ+δ)T

(
c1 +

ρλ(µ − kρ − kδ)

(ρ + δ)(ρ + δ − µ)

)
.(31)

Specifically, given values for µ, σ, δ, k, T , ρ, and λ, we first use equation (28) to find b2;

we then obtain b1 from equation (29); we then use equation (30) to find c1; finally, equation

(31) allows us to solve for the liquidation point g∗.

Results

The shaded area in the middle-right graph in Figure 1 shows the range of values of µ and

σ for which U(1), from (26), is positive. We set δ, k, T , and ρ to the benchmark values from

before, namely 0.08, 0.01, 0.1, and 0.1, respectively. We further assign λ the benchmark

value of 1.5. Relative to the middle-left graph – the graph for the model in Section 2.2,

with liquidity shocks but no loss aversion – we see that the investor is now more reluctant to

invest in stocks with negative expected returns. In the presence of liquidity shocks, a negative

expected return stock is less attractive because it raises the chance that the investor will be

forced to make a painful exit from a losing position. Loss aversion makes this prospect all

the more unappealing. The investor will only invest in a negative expected return stock if

it is highly volatile, so that it at least offers a chance of a sizeable gain which he can enjoy

realizing.

The graphs in Figure 5 show how the liquidation point g∗ and initial utility U(1) depend

on the degree of loss aversion λ. The dotted line corresponds to the case where there is no
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liquidity shock, ρ = 0, and the solid line to the case where there is a liquidity shock, ρ > 0.

Specifically, for the dotted lines, we vary λ while maintaining

(µ, σ, δ, k, T, ρ) = (0.03, 0.5, 0.08, 0.01, 0.1, 0). (32)

For the solid lines, we vary λ while maintaining

(µ, σ, δ, k, T, ρ) = (0.03, 0.5, 0.08, 0.01, 0.1, 0.1). (33)

The dotted lines show that, in the absence of a liquidity shock, the degree of loss aversion

λ is irrelevant: it has no effect at all on the liquidation point or on initial utility. The reason

is simple: in the absence of a liquidity shock, the investor never realizes losses. How sensitive

he is to losses is therefore irrelevant.

Loss aversion becomes relevant when ρ > 0. In the top-left graph, we see that, the more

loss averse the investor is, the higher the liquidation point. The intuition is that, if the

investor is holding a stock with a gain, he is reluctant to realize that gain, because if he

does, he will have to reinvest in a new stock, which might go down, and from which he might

be forced to exit at a loss by a liquidity shock.

The top-right graph shows that, as the degree of loss aversion goes up, the investor’s

utility falls: a high λ raises the possibility that the investor may be forced, by a liquidity

shock, to make a painful exit from a losing position.

The dotted lines in Figure 4 show how the liquidation point g∗ and initial utility U(1)

depend on µ, σ, and δ when the investor is loss averse. Here, we vary each of µ , σ, and δ in

turn, keeping the other parameters fixed at their benchmark values,

(µ, σ, δ, k, T, ρ, λ) = (0.03, 0.5, 0.08, 0.01, 0.1, 0.1, 1.5). (34)

Recall that the calculations for the solid lines in Figure 4 differ from those for the dotted

lines only in the degree of loss aversion assumed: the solid lines correspond to linear u(·),
so that λ = 1, while the dotted lines assume λ = 1.5. The dotted lines show that, for

these benchmark parameters, allowing for loss aversion preserves the same basic relationship

between g∗ and U(1) on the one hand, and µ, σ, and δ on the other. As expected from the

graphs in Figure 5, increasing λ increases the liquidation point g∗ and lowers utility U(1).

The dotted line in the middle-right graph of Figure 4 shows that, for the benchmark values

in (34), the investor’s initial utility U(1) is still increasing in stock volatility σ. Put differently,

even though the functional form of realization utility is concave, the investor is risk-seeking.

If the degree of loss aversion λ or the intensity of liquidity shocks ρ rises significantly, however,

this relationship will reverse, so that U(1) becomes a decreasing function of σ. A liquidity

shock may force the holder of a volatile stock to realize a large gain, and this would be

pleasurable; but it may also force to him to realize a large loss, and if λ rises significantly,

this prospect will eventually make volatility unattractive.
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3.2 Hyperbolic discounting

In the models we have presented so far, we have assumed exponential time discounting. This

is a standard assumption in economic models, and one that implies time-consistent behavior.

Recently, however, there has been mounting evidence that individual time preferences are

better captured by hyperbolic time discounting. Relative to the exponential case, hyperbolic

discounting places more weight on the present, as opposed to the future: under hyperbolic

discounting, immediate rewards are especially attractive, and immediate costs, especially

repellent.

While hyperbolic discounting has been linked to a number of economic phenomena, re-

searchers have not, as yet, found many applications for it within the specific context of

finance. We now show that, as soon as we allow for realization utility, hyperbolic discount-

ing can play a significant role. Intuitively, hyperbolic discounting leads an investor who cares

about realization utility to realize gains earlier than suggested by exponential discounting:

realizing a gain now provides an immediate reward, and, under hyperbolic discounting, this

is highly valued.

Harris and Laibson (2004) and Grenadier and Wang (2007) show how hyperbolic dis-

counting can be introduced into a continuous-time framework, and we follow their approach.

It is possible to incorporate hyperbolic discounting in a tractable way into the general model

of Section 2.2. To illustrate its effects as clearly as possible, however, we instead incorporate

it into the simpler model of Section 2.1.

Hyperbolic discounting is modeled by thinking of the agent as a sequence of different

“selves,” each of which exercises control at a different time. Specifically, from the vantage

point of time 0, we divide the investor’s horizon into two periods: a “present,” which lasts

until some random time s > 0; and a “future,” which starts at time s. We think of the

“present” as an interval during which control is exercised by the current self, and the “future”

as an interval which is controlled by future selves. We assume that s follows a Poisson process

with parameter φ, independent of other processes. At time s, a future self appears. That

self’s horizon can also be divided into a “present,” which lasts until some random time, and

a “future”; and so on.

Each self discounts utility which accrues within its “present” at e−δt, and utility which

accrues during its “future” at βe−δt. The parameter β < 1 captures the idea that, under

hyperbolic discounting, the present receives extra weight, relative to the future.

Hyperbolic discounting implies time-inconsistent behavior: the current self and future

selves have different time preferences. The current self’s beliefs about the actions of future

selves are therefore important. Using the terminology of the literature, the current self

can be “sophisticated,” in that he correctly forecasts that future selves will use hyperbolic
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discounting; or he can be “naive,” inaccurately believing that future selves will discount

exponentially. For space reasons, we only analyze the naive case here. We expect the results

for the sophisticated case to be qualitatively similar.

Consider a naive hyperbolic discounter who is holding stock at time t. If the next self

arrives at some random time τ ′ in the future, the current self’s decision problem is

N (Wt, Bt) = max
τ≥t

Et

{
e−δ(τ−t)

[
u((1 − k)Wτ − Bτ )I{τ<τ ′} + N ((1 − k)Wτ , (1 − k)Wτ ) I{τ<τ ′}

+N̂(Wτ ′, Bτ ′)I{τ≥τ ′}
]}

. (35)

If the investor sells stock early enough, so that τ < τ ′, he receives realization utility of

u((1 − k)Wτ − Bτ ) and the value function N ((1 − k)Wτ , (1 − k)Wτ ). If, instead, τ > τ ′,
the current self receives the value function that he thinks will result from the actions of the

future self. We use N̂(Wt, Bt) to denote this perceived value function.

An important step is to note that

N̂(Wt, Bt) = βV (Wt, Bt). (36)

Since the current self is a naive hyperbolic discounter, he thinks that future selves will use

exponential discounting, and therefore that they will follow a strategy of selling once the

gain reaches the liquidation point g∗ derived in Section 2.1. The value function that the

current self thinks will result from the actions of future selves is therefore βV (Wt, Bt): the

value function of an exponential discounter multiplied by β . The β factor appears because

the current self discounts utility flows in the “future” period at βe−δt rather than at e−δt.

In the Appendix, we prove:

Proposition 4: An investor with the decision problem in (35) will sell a position in stock

once the gain gt = Wt/Bt reaches a liquidation point g∗∗ > 1. The value function is

N(Wt, Bt) = Btn(gt), where

n(gt) =

⎧⎪⎨⎪⎩
b1g

γ1
t + b2g

γ2
t if gt < g∗∗

(1 − k)gt(1 + n(1)) − 1 if gt ≥ g∗∗
, (37)

where γ1 is given in (12),

γ2 =
1

σ2

⎡⎣√(
µ − 1

2
σ2

)2

+ 2 (δ + φ)σ2 −
(
µ − 1

2
σ2

)⎤⎦ > 0 (38)

b1 =
φβc1

φ + δ − µγ1 − σ2

2
γ1(γ1 − 1)

, (39)
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where

c1 =
(1 − k)

γ1g
γ1−1∗ − (1 − k)

,

with g∗ the unique solution to (11), and where b2 and g∗∗ are given by

b1g
γ1∗∗ + b2g

γ2∗∗ = (1 − k)g∗∗(1 + b1 + b2) − 1

b1γ1g
γ1−1
∗∗ + b2γ2g

γ2−1
∗∗ = (1 − k)(1 + b1 + b2).

Results

The top graphs in Figure 6 show how the liquidation point and initial utility n(1) depend

on the hyperbolic discounting parameter β. Here, we vary β while maintaining

(µ, σ, δ, k, φ) = (0.03, 0.5, 0.08, 0.01, 3). (40)

In particular, we set the arrival intensity of new selves to φ = 3. The key finding is that, as

we predicted, hyperbolic discounting makes the investor more impatient to realize gains: as

β falls, g∗∗ also falls.

The solid lines in the middle and bottom panels of Figure 6 show how the liquidation point

g∗∗ and initial utility n(1) depend on the stock’s expected return and standard deviation.

When we vary µ or σ, we keep the remaining parameters fixed at their benchmark values,

namely

(µ, σ, δ, k, β, φ) = (0.03, 0.5, 0.08, 0.01, 0.9, 3). (41)

Note that the benchmark value of β is 0.9.

The dotted lines in these graphs show what happens in the exponential discounting case,

in other words, when β = 1 and φ = 0. By comparing the solid and dotted lines, we see that

hyperbolic discounting preserves the basic relationship between g∗ on the one hand and µ

and σ on the other; the effect is simply to shift the liquidation point down. It also preserves

the basic relationship between U(1) and µ and σ; it simply shifts the utility level down.

4 Applications

Our model may be helpful for thinking about a wide range of financial phenomena. We

now discuss some of these potential applications. We divide the applications into those that

relate to the trading behavior of investors (Section 4.1); and those that relate to asset pricing

(Section 4.2). In Section 4.3, we discuss some of the model’s testable predictions.
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4.1 Investor trading behavior

The disposition effect

The disposition effect is the finding that individual investors have a greater propensity

to sell stocks that have gone up in value since purchase, rather than stocks that have gone

down (Odean, 1998). This fact has turned out to be something of a puzzle: the most obvious

explanations fail to explain important features of the data. Consider, for example, the most

obvious explanation of all, the “informed trading” hypothesis. Under this view, investors sell

stocks that have gone up in value because they have private information that these stocks

will subsequently fall, and they hold on to stocks that have gone down in value because they

have private information that these stocks will subsequently rebound. The difficulty with this

explanation, as Odean (1998) points out, is that the prior winners people sell subsequently

do better, on average, than the prior losers they hold on to. Odean (1998) also considers

other potential explanations based on taxes, rebalancing, and transaction costs, but argues

that all of them fail to capture important aspects of the data.

Our analysis shows that a model that combines realization utility with a positive time

discount factor predicts a strong disposition effect. In fact, unless forced to sell by a liquidity

shock, the investor in our model only sells stocks trading at a gain, never a stock trading at

a loss.

In simple two-period settings, Shefrin and Statman (1985) and Barberis and Xiong (2006)

show that realization utility, with no time discounting but a prospect theory functional form

for utility, can predict a disposition effect. This paper proposes a related, but distinct view

of the disposition effect, namely that it arises from realization utility coupled with a linear

functional form for utility and a positive time discount factor.

We emphasize that realization utility does not, on its own, predict a disposition effect.

In other words, it is not enough to assume that the investor derives pleasure from realizing

a gain and pain from realizing a loss. We need an additional ingredient in order to explain

why the investor would want to realize a gain today, rather than hold out for the chance of

realizing an even bigger gain tomorrow. Shefrin and Statman (1985) and Barberis and Xiong

(2006) point out one possible extra ingredient: a prospect theory functional form for utility,

and, in particular, a value function that is concave over gains and convex over losses. Such

a functional form indeed explains the expediting of gains and the postponement of losses.

Here, we propose an alternative extra ingredient: a sufficiently positive time discount factor.

Our model is also well-suited for thinking about the disposition-type effects that have been

uncovered in other settings. Genesove and Mayer (2001), for example, find that homeowners

are reluctant to sell their houses at prices below the original purchase price; and Heath,
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Huddart, and Lang (1999) find that executives are more likely to exercise stock options

when the underlying stock price exceeds a reference point – the stock’s highest price over

the previous year – than when it falls below that reference point. Our analysis shows that a

model that combines linear realization utility with a positive time discount rate can capture

this evidence very easily.

Weber and Camerer (1995) provide some useful experimental evidence for the realization

utility view of the disposition effect. In a laboratory setting, they ask subjects to trade six

stocks over a number of periods. In each period, each stock can either go up or down. The

six stocks have different probabilities of going up in any period, ranging from 0.35 to 0.65,

but subjects are not told which stock is associated with each possible up-move probability.

Weber and Camerer (1995) find that, just as in field data, their subjects exhibit a dis-

position effect: they have a greater propensity to sell stocks trading at a gain relative to

purchase price, rather than stocks trading at a loss. To try to understand the source of the

effect, the authors consider an additional experimental condition in which the experimenter

liquidates subjects’ holdings, and then tells them that they are free to reinvest the proceeds

in any way they like. If subjects were holding on to their losing stocks because they thought

that these stocks would rebound, we would expect them to re-establish their positions in

these losing stocks. In fact, subjects do not re-establish these positions. This casts doubt

on belief-based explanations of the disposition effect, and lends support to the realization

utility view, namely that subjects were refusing to sell their losers simply because it would

have been painful to do so. Under this view, subjects were relieved when the experimenter

intervened and did it for them.

Excessive trading

Using a large database of trading activity at a discount brokerage firm, Barber and Odean

(2000) show that, before transaction costs, the average return of the individual investors in

their sample is on par with a range of benchmarks; but that, after transaction costs, it falls

below the benchmark returns. This last finding is puzzling: Why do people trade so much,

when their trading activity hurts their performance? Barber and Odean (2000) consider

a number of potential explanations, including taxes, rebalancing, and liquidity needs, but

conclude that none of them can fully explain the patterns they observe.

Our model offers a simple explanation for this post-transaction-cost underperformance.

From the perspective of investors, the underperformance is compensated by the occasional

bursts of positive utility they experience when they realize gains.

It is straightforward to compute the probability that, over any interval after he first

establishes a position in stock, the investor in our model trades at least once. This is not

the same thing as a turnover rate, but it is related, and can therefore help us compare the
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trading frequency predicted by our model with that observed in actual brokerage accounts.

When the investor first establishes a position, g0 = 1. When gt passes an upper barrier g∗,
he liquidates the position. To compute the probability that the investor, after establishing

a position, trades at least once in the s periods thereafter, we simply need to compute the

probability that gt passes g∗ in the period (0, s).

Proposition 5: The probability that at least one trade occurs in (0, s) is:

G (s) = N

⎛⎝− ln g∗ +
(
µ − σ2

2

)
s

σ
√

s

⎞⎠ (42)

+ exp

⎛⎝2
(
µ − σ2

2

)
ln g∗

σ2

⎞⎠N

⎛⎝− ln g∗ −
(
µ − σ2

2

)
s

σ
√

s

⎞⎠ .

Proof of Proposition 5: See the Appendix.

Figure 7 shows how the probability of at least one trade in a stock over the year after it

is bought, G(1), depends on the model parameters. Some of the results are not surprising.

As the investor becomes more impatient – as the exponential discount rate δ goes up, or

as the hyperbolic discount rate β goes down – the probability of a trade goes up. And as

transaction costs fall, the probability of a trade goes up.

The graphs with µ and σ on the horizontal axis are less predictable. In both cases, there

are two factors at work. On the one hand, for any fixed liquidation point g∗, a higher µ

or σ raises the likelihood that g∗ will be reached. However, as we saw in several previous

figures, the liquidation point g∗ itself goes up as µ and σ go up, thereby lowering the chance

that g∗ will be reached. Without computing G(1) explicitly, we cannot tell which factor will

dominate.

Figure 7 shows that, interestingly, a different factor dominates in each of the two cases.

As µ rises, the probability of a trade falls. Roughly speaking, as µ rises, the liquidation point

rises more quickly than the stock’s ability to catch it. As σ rises, however, the probability of

a trade goes up: in this case, the liquidation point rises less quickly than the stock’s ability

to catch it.

The graphs show that, for our benchmark parameters, the model predicts a trading

frequency that is not dissimilar to the turnover rates reported by Barber and Odean (2000)

for brokerage accounts. When σ = 50%, for example, the probability that an investor will

trade a specific stock in his portfolio within a year of purchase is about 50%.

Underperformance before transaction costs
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Some studies find that individual investors underperform benchmarks even before trans-

action costs (Odean, 1999). Our model may be able to shed light on this. The key insight is

that, in our model, the investor is willing to buy a stock with a negative return premium,

so long as the stock’s volatility is sufficiently high. The reason is that, if the stock is volatile

enough, it offers the chance of a sizeable gain, which the investor can enjoy realizing. Of

course, a negative expected return stock can also fall in value. But the investor does not

voluntarily realize losses, so this outcome only brings him disutility in the event of a liquidity

shock. So long as the intensity of liquidity shocks is not too high, the investor is willing to

invest in a negative expected return stock if its standard deviation is sufficiently high.

Note that, for the investor to be willing to buy a stock with a negative average return,

it is not necessary that he literally say to himself, in advance of buying the stock: “Well,

the stock could go down, but that’s OK – I just won’t sell it, so it won’t hurt.” Explicit

reasoning of this kind may not be plausible. A more plausible way in which our prediction

may manifest itself is through “remembered” utility. Suppose that, over time, the investor

experiments with a variety of different stocks, including some with negative average returns.

If, later on, he thinks back on his experience with these negative premium stocks, he will,

on average, have good memories of them: in some cases, the stocks will have done well,

and he will have sold them at a gain, thereby enjoying positive utility; in other cases, the

stocks will have done poorly, but, since he did not voluntarily sell these stocks, they only

led to disutility in the event of a liquidity shock. If liquidity shocks are not too frequent, his

overall recalled experience of the negative premium stocks will be favorable, and so he may

be happy to keep buying them.

Trading in up and down markets

Our model suggests a reason for the high overall level of trading activity, but also for

why there is more trading in up markets than in down markets. First, our investor has a

much greater propensity to sell stocks in a rising market: a rising market gives him more

opportunities to realize gains, which is something he enjoys doing. This immediately implies

that he will also have a much greater propensity to buy in a rising market. In order to buy

a stock, our investor needs capital. To free up capital, he needs to sell his holdings of other

stocks. But he will only be willing to do this in a rising market, not in a bear market.

4.2 Asset pricing

Our model has interesting implications not only for investor behavior but for asset pricing

as well. We illustrate these implications using the simplest possible pricing model: one in

which the economy is made up of homogeneous realization utility investors.
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Specifically, consider an economy with a risk-free asset and N risky stocks, indexed by i

ε {1, . . .N}. The risk-free asset is in perfectly elastic supply and earns a net return of zero.

Stock i follows the price process

dSi

Si

= µidt + σidZi,t,

where σi is constant over time. We assume, for now, that µi is also constant over time, and

confirm this assumption later.

The economy contains a continuum of realization utility investors. At each time t ≥ 0,

each investor must either allocate all of his wealth to the risk-free asset, or all of his wealth

to one of the stocks. We allow for transaction costs, search intervals, liquidity shocks, and

loss aversion. Any investor holding a stock at time t therefore has the decision problem in

(25), with u(·) given in (24). We assume that investors are homogeneous, so that δ, T , ρ,

and λ are the same for all investors. Transaction costs, however, can differ across stocks.

In this economy, a sufficient condition for equilibrium is U(1) = 0, where U(·) is given

in (26). If U(1) = 0, each investor is indifferent, at time 0, between holding the risk-free

asset and allocating his wealth to a stock. By assigning some investors to each stock and the

rest to the risk-free asset, we can therefore clear markets at time 0. If, at any point in the

future, some investors sell their holdings of stock i – whether because of a liquidity shock

or because, for these investors, the stock has reached its liquidation point – we can reassign

some investors from the risk-free asset to the stock, thereby again clearing markets. Since

the investor-specific parameters δ, T , ρ, and λ are constant, for any particular stock, the

equation U(1) = 0 is always satisfied by the same µi, so that µi is indeed constant over time,

as we assumed earlier.

With this structure in place, we now discuss two of our model’s more interesting asset

pricing implications.

The negative volatility premium

Ang et al. (2005) show that, in the cross-section, and after controlling for well-known

predictors of cross-sectional returns, a stock’s daily return volatility over the previous year

negatively predicts its return in the following year: highly volatile stocks subsequently earn

lower average returns.

This is a puzzling finding. Even if we allow ourselves to think of a stock’s own volatility

as risk, the result is the opposite of what we would expect: it says that “riskier” stocks have

lower average returns. Nor can the result be fully explained using a model that combines

differences of opinion with short-sale constraints: the effect persists even after controlling

for differences of opinion using dispersion in analyst forecasts.
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Our model offers a novel explanation. The key insight comes from the middle-right

graph in Figure 2: the finding that, holding other parameters constant, the greater a stock’s

volatility, the higher the investor’s initial utility. This result suggests that, in an equilibrium

context, highly volatile stocks may experience heavy buying pressure from investors who care

about realization utility. These stocks may therefore become overpriced, and, as a result,

may earn low average returns.

We can check this in our simple equilibrium model. We assign all investors the same

benchmark parameters

(δ, T, ρ, λ) = (0.08, 0.1, 0.1, 1.5), (43)

and suppose that the transaction cost parameter is the same for all stocks, namely k = 0.01.

For a range of values of σ, we solve U(1) = 0 to obtain the equilibrium expected return that

a stock with any particular standard deviation must earn.

The top-left graph in Figure 8 plots the resulting relationship between expected return

and standard deviation. The graph confirms our prediction: more volatile stocks earn lower

average returns; in this sense, they are overpriced.

A counterfactual prediction of the top-left graph is that the average equity premium is

negative. One way to obtain a negative relationship between expected return and volatility

in conjunction with a positive equity premium is to suppose that investors apply different

decision rules to different components of their wealth. In particular, suppose that investor

use a standard concave utility function to allocate most of their wealth between a risk-free

asset and a stock market index; but that, for the remainder of their wealth – the “play”

money in their brokerage accounts which they allocate across individual stocks – realization

utility preferences apply. The combination of a concave utility function on the one hand

and realization utility on the other may be able to reconcile a high equity premium with a

negative relationship between expected return and standard deviation.

Heavy trading of overvalued assets

A robust empirical finding is that assets that are highly valued, and possibly overvalued,

are also heavily traded (Hong and Stein, 2007). Growth stocks, for example, are more heavily

traded than value stocks; the highly-priced internet stocks of the late 1990s changed hands

at a rapid pace; and shares at the center of famous bubble episodes, such as those of the

East India Company at the time of the South Sea bubble, also experienced heavy trading.

Our model may be able to explain this coincidence of high prices and heavy trading.

Moreover, it predicts that this phenomenon should occur at times when the value of the

underlying asset is especially uncertain.

Suppose that the uncertainty about an asset’s value goes up, pushing up its standard
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deviation σ. As noted earlier, investors who care about realization utility will now find the

asset more attractive. If there are many such investors in the economy, the asset’s price may

be pushed up.

At the same time, the top-right graph in Figure 7 shows that, as σ goes up, the probability

that the investor will trade the asset also goes up: simply put, a more volatile stock will

reach its liquidation point more rapidly. In this sense, the overvaluation will coincide with

higher turnover, and this will occur when uncertainty about the underlying asset value is

especially high. Under this view, the late 1990s were years where realization utility investors,

attracted by the high uncertainty of technology stocks, bought these stocks, pushing their

prices up; as (some of) these stocks rapidly reached their liquidation points, the realization

utility investors sold them, and then immediately bought new ones.

We can illustrate this result using our simple equilibrium framework. As in our discussion

of the negative volatility premium, we assign all individual investors the benchmark parame-

ters in (43) and assume that the transaction cost parameter is the same for all stocks, namely

k = 0.01. For a range of values of σ, we compute, as before, the equilibrium expected return

the stock must earn, but also, as a guide to the intensity of trading, the probability of trade

given in (42).

The top-right graph in Figure 8 plots the resulting relationship between expected return

and trade probability. It confirms that stocks with lower expected returns – stocks that are

“overpriced” – will experience more turnover.

4.3 Testable predictions

Our model addresses some puzzling facts, but also makes a number of new predictions. The

most natural predictions emerge from Figure 7, which shows how the probability of trade

depends on various parameters.

One of these predictions is not especially surprising: the investor trades more frequently

when transaction costs are lower. Three other predictions, however, are more novel: The

investor holds stocks with a higher average return for longer, before selling them. Stocks

with higher volatility, however, are sold more quickly. And the more impatient the investor

is, the more often he trades.

The prediction relating how long a stock is held to its average return is difficult to test

because the average return perceived by individual investors may differ from the actual

average return. Growth stocks, for example, have low average returns, but it is likely that

some individual investors perceive them to have high average returns.
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The prediction relating how long a stock is held to its volatility is easier to test. Indeed,

after making this prediction, we found that the answer is already available in the literature.

Zuckerman (2006) reports that the individual investors in the Barber and Odean (2000)

database do hold more volatile stocks for shorter periods of time before selling them.

Our prediction relating trading frequency to investor impatience is harder to test, but by

no means impossible. The difficulty here is obtaining an estimate of investor impatience. In

recent years, researchers have pioneered clever techniques for extracting information about

investors’ psychological profiles. Grinblatt and Keloharju (2006), for example, use military

test scores from Finland to estimate overconfidence. This success raises the possibility that

a test of the link between impatience and trading frequency can also be implemented.

5 Conclusion

We study the possibility that, aside from standard sources of utility, investors also derive

utility from realizing gains and losses on individual investments that they own. We propose

a tractable model of this “realization utility,” derive its predictions, and show that it can

shed light on a number of puzzling facts. These include the poor trading performance of

individual investors, the disposition effect, the greater turnover in up markets, the negative

premium to volatility in the cross-section, and the heavy trading of highly valued assets.

Underlying some of these applications is one of our model’s more novel predictions: that,

even if the form of realization utility is linear or concave, investors can be risk-seeking.
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6 Appendix

Proof of Proposition 1: At time t, the investor can either liquidate his position immedi-

ately, or he can hold his position for an infinitesimal period dt, so that

V (Wt, Bt) = max
{
u ((1 − k)Wt − Bt) + V ((1 − k)Wt, (1 − k)Wt) , Et

[
e−δdtV (Wt+dt, Bt+dt)

]}
.

(44)

We conjecture that the value function takes the form

V (Wt, Bt) = BtU (gt) ,

where gt = Wt/Bt. Substituting this into (44) and noting that Bt+dt = Bt, we obtain

BtU(gt) = max
{
Btu((1 − k)gt − 1) + (1 − k)BtgtU(1), BtEt[e

−δdtU(gt+dt)]
}

.

Cancelling the Bt factor from both sides gives

U (gt) = max
{
u ((1 − k)gt − 1) + (1 − k)gtU (1) , Et

[
e−δdtU (gt+dt)

]}
.

When the investor initially acquires a position in stock, gt = 1. Until the stock is sold,

gt fluctuates according to
dgt

gt
= µdt + σdZt.

Ito’s lemma then implies

Et

[
e−δdtU (gt+dt)

]
= U (gt) +

[
1

2
σ2g2

t U
′′ (gt) + µgtU

′ (gt) − δU (gt)
]
dt,

so that, using u(x) = x,

U (gt) = max
{
(1 − k)gt (1 + U (1)) − 1, U (gt) +

[
1

2
σ2g2

t U
′′ (gt) + µgtU

′ (gt) − δU (gt)
]
dt
}

.

(45)

Equation (45) implies that any solution to (6) must satisfy

U (gt) ≥ (1 − k)gt (1 + U (1)) − 1 (46)

and
1

2
σ2g2

t U
′′ (gt) + µgtU

′ (gt) − δU (gt) ≤ 0. (47)

Formally speaking, the decision problem in (6) is an optimal stopping problem. To solve

it, we first construct a function U(gt) that satisfies conditions (46) and (47), and that is

also continuously differentiable – this last condition is also known as the “smooth pasting”

condition. We then verify that U(gt) does indeed solve problem (6).
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We construct U(gt) in the following way. If gt is low – specifically, if gt ε (0, g∗) – we sup-

pose that the investor continues holding his current position. In this “continuation” region,

then, equation (45) is maximized by the second term within parentheses, so that (47) holds

with equality. If gt is sufficiently high – specifically, if gt ε (g∗,∞) – we suppose that the

investor liquidates his position. In this “liquidation” region, equation (45) is maximized by

the first term within parentheses, so that (46) holds with equality. We call g∗ the “liquida-

tion point” – the percentage gain in value, relative to the cost basis, at which the investor

liquidates his holdings of a stock.

In the continuation region, gt ∈ (0, g∗), we therefore have

1

2
σ2g2

t U
′′ (gt) + µgtU

′ (gt) − δU (gt) = 0.

The solution to this equation is

U(gt) = c1g
γ1
t + c2g

γ2
t ,

where γ1 and γ2 are the roots of

1

2
σ2γ2 +

(
µ − 1

2
σ2

)
γ − δ = 0,

namely

γ1 =
1

σ2

⎡⎣√(
µ − 1

2
σ2

)2

+ 2δσ2 −
(
µ − 1

2
σ2

)⎤⎦ > 0 (48)

γ2 = − 1

σ2

⎡⎣√(
µ − 1

2
σ2

)2

+ 2δσ2 +
(
µ − 1

2
σ2

)⎤⎦ < 0. (49)

The assumption that δ > µ implies that γ1 > 1. Since the value function must be bounded as

gt goes to zero, c2 must equal zero. The value function in the continuation region is therefore

U (gt) = c1g
γ1
t , (50)

where c1 is determined below.

In the liquidation region, gt ∈ (g∗,∞), we have

U (gt) = (1 − k)gt(1 + U(1)) − 1. (51)

Note that the liquidation point g∗ satisfies g∗ ≥ 1. For if g∗ < 1, then gt = 1 would fall into

the liquidation region, which, from (51), would imply

U(1) = (1 − k)U(1) − k.
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For k > 0 and U(1) > 0, this is a contradiction. Since g∗ ≥ 1, then, we infer from (50) that

U(1) = c1.

The value function must be continuous and smooth around the liquidation point g∗. Thus,

c1g
γ1∗ = (1 − k)g∗(1 + c1) − 1 (52)

γ1c1g
γ1−1
∗ = (1 − k)(1 + c1). (53)

Substituting out c1, we obtain the following equation for g∗:

f (g∗) =
1 − k

γ1 − 1
g−(γ1−1)
∗ + (1 − k) g∗ − γ1

γ1 − 1
= 0. (54)

It is straightforward to check that f (1) = −kγ1

γ1−1
< 0, that f (∞) > 0, and that f(·) is a

convex function in (1,∞). Equation (54) therefore has a unique solution g∗ > 1.

From equation (52),

c1 =
1 − k

γ1g
γ1−1∗ − (1 − k)

. (55)

The investor’s value function in the continuation region is therefore

U(gt) = c1g
γ1
t =

(1 − k)gγ1
t

γ1g
γ1−1∗ − (1 − k)

.

We now verify that the constructed value function is indeed optimal. Substituting

V (Wt, Bt) = BtU(gt) into (6) and cancelling the Bt factor reduces the stopping problem

to

U (gt) = max
τ≥t

Et

{
e−δ(τ−t) [u ((1 − k)gτ − 1) + (1 − k)gτU (1)]

}
.

We first verify that the function U(gt) in the statement of the theorem satisfies conditions

(46) and (47). Define

f1(gt) ≡ (1 − k)gγ1
t

γ1g
γ1−1∗ − (1 − k)

and

f2 (gt) ≡ (1 − k)gt(1 + U(1)) − 1.

By construction f1 (g∗) = f2 (g∗). Since γ1 > 1, f1(gt) is convex, so that f1 (gt) > f2 (gt) for

gt ∈ (0, g∗). Thus, condition (46) always holds. Furthermore, by construction,

1

2
σ2g2

t U
′′ (gt) + µgtU

′ (gt) − δU (gt) = 0

for gt < g∗. For gt ≥ g∗,

1

2
σ2g2

t U
′′ (gt) + µgtU

′ (gt) − δU (gt) = (µ − δ)U (gt) < 0.
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Thus, condition (47) also holds.

Note also that U(gt) has an increasing derivative in (0, g∗) and a derivative of (1−k)(1+

U(1)) in (g∗,∞). U ′ is therefore bounded.

For any stopping time τ , Ito’s lemma for twice-differentiable functions with absolutely

continuous first derivatives – see, for example, Revuz and Yor (1999), Chapter 6 – implies

e−δ(τ−t)U (gτ ) = U (gt) +

τ∫
t

[
1

2
σ2g2

sU
′′ (gs) + µgsU

′ (gs) − δU (gs)
]
ds +

τ∫
t

σgsU
′ (gs) ds.

From condition (47), the first integral is non-positive, while the bound on U ′ implies that

the second integral is a martingale. We therefore have

Et

[
e−δ(τ−t)U (gτ )

]
≤ U (gt) .

Furthermore, condition (46) implies

Et

{
e−δ(τ−t) [((1 − k)gt − 1) + (1 − k)gtU (1)]

}
≤ Et

[
e−δ(τ−t)U (gτ )

]
.

Combining these two inequalities, we obtain that, for any stopping time τ ,

Et

{
e−δ(τ−t) [((1 − k)gt − 1) + (1 − k)gtU (1)]

}
≤ U (gt) .

The constructed value function U(gt) is therefore at least as good as the value function

generated by any alternative strategy.

Proof of Proposition 2: Proposition 2 is the special case of Proposition 3 in which λ = 1.

Proof of Proposition 3: At time t, the investor can either liquidate his position, or he

can hold it for an infinitesimal period dt, so that:

V (Wt, Bt) = max
{u ((1 − k)Wt − Bt) + e−ρT e−δT V ((1 − k)Wt, (1 − k)Wt) ,

(1 − ρdt)Et[e
−δdtV (Wt+dt, Bt+dt)] + ρdt [u ((1 − k)Wt − Bt)]} (56)

= max
{u ((1 − k)Wt − Bt) + e−(ρ+δ)T V ((1 − k)Wt, (1 − k)Wt) ,

Et

[
e−δdtV (Wt+dt, Bt+dt)

]
+ ρdt [u ((1 − k)Wt − Bt) − V (Wt, Bt)]} .(57)

The first expression within the parentheses in (56) shows what happens if the investor

liquidates a stock today. First, he receives utility u((1 − k)Wt − Bt) from the realized gain

or loss. He then needs to hold the proceeds in cash for T periods. With probability e−ρT ,

there is no liquidity shock during the search interval, and his future value function is simply

e−δT V ((1 − k)Wt, (1 − k)Wt): the value function at the end of the search interval, discounted

back. With probability 1 − e−ρT , there is a liquidity shock during the search interval, and
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the investor is forced to take his money out of the brokerage account. Since the investor

is already in cash, this entails utility of zero. Combining the two outcomes gives the first

expression within the parentheses.

The second expression within the parentheses shows what happens if the investor decides

to keep holding his position for an infinitesimal period dt. With probability e−ρdt ≈ 1− ρdt,

there is no liquidity shock, and the investor’s value function is simply the expected future

value function, discounted back. With probability 1−e−ρdt ≈ ρdt, there is a liquidity shock,

and the investor sells his holdings and exits, which entails utility of u((1 − k)Wt − Bt).

We conjecture that the value function takes the form

V (Wt, Bt) = BtU (gt) .

Substituting this into (57), cancelling the Bt factor from both sides, and applying Ito’s lemma

gives

U (gt) = max
{u((1 − k)gt − 1) + e−(ρ+δ)T (1 − k)gtU (1) ,

(1 − δdt)U (gt) +
[
µgtU

′ (gt) + 1
2
σ2g2

t U
′′ (gt)

]
dt + ρdt [u((1 − k)gt − 1) − U (gt)]} .

(58)

As before, we conjecture that there are two regions: a continuation region, gt ε (0, g∗),
and a liquidation region, gt ε (g∗,∞). In the continuation region,

1

2
σ2g2

t U
′′ (gt) + µgtU

′ (gt) − (ρ + δ)U (gt) + ρu ((1 − k)gt − 1) = 0. (59)

The form of the u(·) term depends on whether its argument, (1 − k)gt − 1, is greater or

less than zero. Note that the cross-over point, gt = 1
1−k

, satisfies g∗ ≥ 1
1−k

. For if g∗ < 1
1−k

,

then gt = 1
1−k

would be in the liquidation region, which, from (58), would imply

U
(

1

1 − k

)
= e−(ρ+δ)T U(1).

If either ρ > 0 or δ > 0, this contradicts the plausible restriction that U(gt) be increasing in

gt. Since g∗ ≥ 1
1−k

, we further subdivide the continuation region (0, g∗) into two subregions,

(0, 1
1−k

), and ( 1
1−k

, g∗).

For gt ∈ (0, 1
1−k

), equation (59) becomes

1

2
σ2g2

t U
′′ (gt) + µgtU

′ (gt) − (ρ + δ)U (gt) + ρλ ((1 − k)gt − 1) = 0.

The solution to this equation is

U (gt) = c1g
γ1
t +

ρλ(1 − k)

ρ + δ − µ
gt − ρλ

ρ + δ
for gt ∈ (0,

1

1 − k
), (60)
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where γ1 is defined in equation (17), and where c1 is determined below.

For gt ∈ ( 1
1−k

, g∗), equation (59) becomes

1

2
σ2g2

t U
′′ (gt) + µgtU

′ (gt) − (ρ + δ) U (gt) + ρ ((1 − k)gt − 1) = 0.

The solution to this equation is

U (gt) = b1g
γ1
t + b2g

γ2
t +

ρ(1 − k)

ρ + δ − µ
gt − ρ

ρ + δ
for gt ∈

(
1

1 − k
, g∗

)
,

where

γ2 = − 1

σ2

⎡⎣√(
µ − 1

2
σ2

)2

+ 2 (ρ + δ) σ2 +
(
µ − 1

2
σ2

)⎤⎦ < 0,

and where b1 and b2 are determined below.

The value function must be continuous and smooth around gt = 1
1−k

. We therefore have

c1

(
1

1 − k

)γ1

= b1

(
1

1 − k

)γ1

+ b2

(
1

1 − k

)γ2

− (λ − 1)µρ

(ρ + δ − µ)(ρ + δ)

c1γ1

(
1

1 − k

)γ1−1

= b1γ1

(
1

1 − k

)γ1−1

+ b2γ2

(
1

1 − k

)γ2−1

− (λ − 1)(1 − k)ρ

ρ + δ − µ
.

These equations imply

b2 =
1

(γ1 − γ2)

(λ − 1) ρ(1 − k)γ2 (µγ1 − ρ − δ)

(ρ + δ − µ) (ρ + δ)
.

In the liquidation region, using the fact that g∗ ≥ 1, we have

U (gt) = (1 − k)gt(1 + e−(ρ+δ)T U (1)) − 1.

The value function must also be continuous and smooth around the liquidation point g∗.
Thus,

b1g
γ1∗ + b2g

γ2∗ +
ρ (1 − k)

ρ + δ − µ
g∗ = (1 − k)g∗(1 + e−(ρ+δ)T U (1)) − δ

ρ + δ

b1γ1g
γ1−1
∗ + b2γ2g

γ2−1
∗ +

ρ (1 − k)

ρ + δ − µ
= (1 − k)(1 + e−(ρ+δ)T U (1)).

Since, from equation (60),

U(1) = c1 +
ρλ(µ − kρ − kδ)

(ρ + δ)(ρ + δ − µ)
,
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we further obtain

b1g
γ1∗ + b2g

γ2∗ + (1 − k)g∗
µ − δ

ρ + δ − µ
+

δ

δ + ρ
= (1 − k)g∗e−(ρ+δ)T

(
c1 +

ρλ(µ − kρ − kδ)

(ρ + δ)(ρ + δ − µ)

)

and

(γ1 − 1) b1g
γ1∗ + (γ2 − 1) b2g

γ2∗ =
δ

ρ + δ
.

Proof of Proposition 4: At time t, the investor can either liquidate his position, or he

can hold it for an infinitesimal period dt, so that:

N(Wt, Bt) = max{(1 − k)Wt − Bt + N((1 − k)Wt, (1 − k)Wt),

e−φdtEt[e
−δdtN(Wt+dt, Bt+dt)] + (1 − e−φdt)Et[e

−δdtN̂(Wt+dt, Bt+dt)]}.(61)

If the current self sells stock now, he receives realized utility of (1 − k)Wt − Bt and a

cash balance of (1 − k)Wt. Alternatively, he may continue to hold his stock position for

an infinitesimal period dt. With probability e−φdt, the new self does not arrive during

this interval, in which case the current self receives the discounted expected value function

Et[e
−δdtN(Wt+dt, Bt+dt)]. With probability 1 − e−φdt, the new self does arrive during this

interval, in which case the current self receives the discounted expected value function that

he thinks will result from the actions of the future self.

We conjecture that

N(Wt, Bt) = Btn(gt).

Substituting this and N̂(Wt, Bt) = βV (Wt, Bt) into (61), and cancelling the Bt factor leads

to

n(gt) = max
{
(1 − k)gt − 1 + (1 − k)gtn(1), e−(φ+δ)dtEt(n(gt+dt)) + (1 − e−φdt)e−δdtβEt(U(gt))

}
.

Applying Ito’s lemma, we obtain

n(gt) = max{(1 − k)gt − 1 + (1 − k)gtn(1),

n(gt) + dt
[
1

2
σ2g2

t n
′′(gt) + µgtn

′(gt) − (φ + δ)n(gt) + φβU(gt)
]
}.

As before, we conjecture that there are two regions: a continuation region, gt ε (0, g∗∗),
where the current self keeps holding the stock, and a liquidation region, gt ε (g∗∗,∞), where

the current self sells his position.

In the continuation region,

1

2
σ2g2

t n
′′(gt) + µgtn

′(gt) − (φ + δ)n(gt) + φβU(gt) = 0. (62)
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We conjecture that g∗∗ < g∗, where g∗ is the liquidation point in the exponential discounting

model of Section 2.1. From (50), this means that

U(gt) = c1g
γ1
t , gt ε (0, g∗∗),

where γ1 and c1 are given in (48) and (55), respectively. The solution to (62) is then

n(gt) = b1g
γ1
t + b2g

γ2
t , (63)

where

b1 =
φβc1

φ + δ − µγ1 − σ2

2
γ1(γ1 − 1)

γ2 =
1

σ2

⎡⎣√(
µ − 1

2
σ2

)2

+ 2 (δ + φ)σ2 −
(
µ − 1

2
σ2

)⎤⎦ > 0,

and where b2 is determined below.

In the liquidation region, gt ε (g∗∗,∞), we have

n(gt) = (1 − k)gt(1 + n(1)) − 1.

By the usual argument, g∗∗ ≥ 1, so that, from (63), n(1) = b1 + b2. At the liquidation point

g∗∗, n(·) must be continuous and smooth. This implies

b1g
γ1∗∗ + b2g

γ2∗∗ = (1 − k)g∗∗(1 + b1 + b2) − 1

b1γ1g
γ1−1
∗∗ + b2γ2g

γ2−1
∗∗ = (1 − k)(1 + b1 + b2).

Proof of Proposition 5: Let τ denote the first time at which the process gt passes the

upper barrier g∗. Since gt follows a geometric Brownian motion, its logarithm follows a

Brownian motion:

d ln (gt) =

(
µ − σ2

2

)
dt + σdZt.

Then, τ is also the first time at which the process ln (gt) passes the level ln (g∗). Let G(τ ; g0)

denote the distribution of τ conditional on g0. Following Ingersoll (1988, pp. 353), but in

our notation,

G (τ ; g0) = N

(
ln (g0/g∗) + (µ − σ2/2) τ

σ
√

τ

)

+ exp

[
−2 (µ − σ2/2) ln (g0/g∗)

σ2

]
N

(
ln (g0/g∗) − (µ − σ2/2) τ

σ
√

τ

)
.
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Figure 1. The graphs show, for an investor who derives utility from realized gains and
losses, the range of values of a stock’s expected return µ and standard deviation σ for
which the investor is willing to buy the stock. The top-left graph corresponds to a model
which allows for a transaction cost (TC); the top-right graph to a model which also allows
for a search interval between the sale of one stock and the purchase of another stock (SI);
the middle-left graph to a model which further allows for an exogeneous liquidity shock
(LS); and the middle-right graph to a model which also allows for loss aversion (LA).
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Figure 2. The graphs show, for an investor who cares about utility from realized gains and
losses, how the liquidation point at which he sells a stock and the initial utility from buying
it depend on the stock’s expected return µ, its standard deviation σ, and the investor’s
discount rate δ. The solid lines correspond to a model that allows for a transaction cost.
The dotted lines correspond to a model that allows for both a transaction cost and a search
interval between the sale of one stock and the purchase of another.
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Figure 3. The graphs show, for an investor who derives utility from realized gains and
losses, how the liquidation point at which he sells a stock and the initial utility from
buying it depend on the transaction cost k, the length of the search interval T between
the sale of one stock and the purchase of another, and the arrival rate of an exogeneous
liquidity shock ρ.

41



−0.05 0 0.05
1.2

1.3

1.4

1.5

1.6
Liquidation point

µ
−0.05 0 0.05

0

0.5

1
Initial utility

µ

0.2 0.4 0.6 0.8
1

1.2

1.4

1.6

1.8

σ
0.2 0.4 0.6 0.8

0

0.5

1

σ

0.04 0.06 0.08 0.1
1

2

3

4

δ
0.04 0.06 0.08 0.1

0

0.2

0.4

0.6

0.8

δ

Figure 4. The graphs show, for an investor who derives utility from realized gains and
losses, how the liquidation point at which he sells a stock and the initial utility from buy-
ing it depend on the stock’s expected return µ, its standard deviation σ, and the investor’s
discount rate δ. The solid lines correspond to a model that allows for a transaction cost, a
search interval between the sale of one stock and the purchase of another, and an exoge-
neous liquidity shock. The dotted lines correspond to a model which also includes these
features, but in which the functional form of realization utility is piecewise linear, rather
than linear.
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Figure 5. The graphs show, for an investor who derives utility from realized gains and
losses, how the liquidation point at which he sells a stock and the initial utility from
buying it depend on the investor’s degree of loss aversion λ. The solid lines correspond
to a model with liquidity shocks, and the dotted lines to a model with no liquidity shock.
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Figure 6. The solid lines in the graphs show, for an investor who derives utility from
realized gains and losses and exhibits hyperbolic time discounting, how the liquidation
point at which he sells a stock and the initial utility from buying it depend on the hyper-
bolic discounting parameter β, the stock’s expected return µ, and its standard deviation
σ. The dotted lines in the middle and bottom panels correspond to a model with standard
exponential time discounting.
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Figure 7. The graphs show, for an investor who derives utility from realized gains and
losses, how the probability that the investor will sell a specific stock within a year of buy-
ing it depends on the stock’s expected return µ, its standard deviation σ, the exponential
time discount rate δ, the transaction cost k, and the hyperbolic time discount rate β.
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Figure 8. The top-left graph shows, for an economy populated by investors who derive
utility from realized gains and losses, the equilibrium relationship between expected re-
turn and standard deviation in a cross-section of stocks. The top-right graph shows, for
the same cross-section, the equilibrium relationship between expected return and trading
intensity.
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