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Tests of Conditional Factor Models

Abstract

We develop a methodology for estimating time-varying factor loadings and conditional al-
phas based on nonparametric techniques. We test whether long-run alphas, or averages of con-
ditional alphas, are equal to zero and derive test statistics for the constancy of factor loadings.
The tests can be performed for a single asset or jointly across portfolios. The traditional Gib-
bons, Ross and Shanken (1989) test arises as a special case when there is no time variation in
the factor loadings. As applications of the methodology, we estimate conditional CAPM and
Fama and French (1993) models on book-to-market and momentum decile portfolios. We reject
the null that long-run alphas are equal to zero even though there is substantial variation in the

conditional factor loadings of these portfolios.



1 Introduction

Under the null of a factor model, an asset’s expected excess return should be zero after con-
trolling for that asset’s systematic factor exposure. Consequently, a popular time-series speci-
fication test of a factor model consists of testing whether the intercept term, or alpha, is equal
to zero when the asset’s excess return is regressed onto tradeable factors. Traditional tests of
whether an alpha is equal to zero, like the widely used Gibbons, Ross and Shanken (1989) test,
crucially assume that the factor loadings are constant. However, there is overwhelming evidence
that factor loadings, especially for the standard CAPM and Fama and French (1993) models,
vary substantially over time even at the portfolio level (see, among others, Fama and French,
1997; Lewellen and Nagel, 2006; Ang and Chen, 2007). The time variation in factor loadings
distorts the standard factor model tests, which assume constant betas, for whether the alphas are
equal to zero and, thus, renders traditional statistical inference for the validity of a factor model
to be possibly misleading in the presence of time-varying factor loadings.

We introduce a methodology that tests for the significance of conditional alphas in the pres-
ence of time-varying betas. The tests can be run for an individual stock return, or jointly across
assets. We build on the insights of Merton (1980), Foster and Nelson (1996), and Lewellen and
Nagel (2006), among others, to use high frequency data to estimate factor loadings. We con-
sider a class of models where as data are sampled at higher frequencies, estimates of variances
and covariances, and hence betas, converge to their true values. Our insight is that, while high-
frequency data characterize the distribution of covariances and hence betas, high-frequency
data can also be used to characterize the distribution of conditional alphas. Unlike previous
approaches which separate inference of conditional alphas and betas, our methodology derives
their joint distribution, both at each moment in time and their long-run distributions across time.
The tests can be applied to single assets or jointly specified across a system of assets.

In our methodology, tests of conditional alphas take into account the sampling variation of
the conditional betas. These make our tests similar to the traditional maximum likelihood tests
of the original CAPM developed by Gibbons (1982) and Gibbons, Ross and Shanken (1989). In
the maximum likelihood set-up, the sampling variation of beta directly enters the standard error
of the alpha when both the alpha and beta are estimated simultaneously.! The influential work
by Gibbons, Ross and Shanken (1989) derives a statistic and distribution for testing whether the

alphas of a set of base assets are jointly equal to zero and their tests of alphas take into account

'In a case with just one asset this is exactly the same as the standard error of a regular OLS intercept term

depending on the mean and variance of the independent variable.



the sampling uncertainty of the factor loadings. Our tests can be viewed as the conditional
analogue of the Gibbons, Ross and Shanken tests when the betas are time varying.

Our tests are straight forward to apply, powerful, and are based on no more than standard
nonparametric estimates of OLS regression coefficients. We derive the asymptotic distribution
of conditional alphas and betas to take into account the efficiency gains both from increasing
the total length of the sample and from sampling at higher frequencies. With appropriate tech-
nical conditions, we derive a joint asymptotic distribution for the conditional alphas and betas
at every point in time. We then construct a test statistic that averages the conditional alphas or
factor loadings across time, both for a single portfolio and for the multi-asset case. We also
derive a test for constancy of the conditional alphas or factor loadings. Interestingly, while non-
parametric estimators generally converge at slower rates than maximum likelihood estimators,
we show that tests involving average or long-run conditional alphas converge at the same rate
as classical estimators. Consequently, in the special case where betas are constant and there is
no heteroskedasticity, our tests for whether the long-run alpha equals zero are asymptotically
equivalent to Gibbons, Ross and Shanken (1989).

We apply our tests to portfolios of stocks sorted on their book-to-market ratios and past
returns. It is still a disputed question whether time variation in factor loadings in a conditional
CAPM can explain the book-to-market effect. Petkova and Zhang (2005) and Ang and Chen
(2007) argue that risk from time-varying market betas is enough to account for a substantial
amount of the value premium. On the other hand, Lewellen and Nagel (2006) argue that the
book-to-market effect cannot be explained by a conditional CAPM. The momentum effect of
Jegadeesh and Titman (1993) is one of the most robust patterns of expected returns and so
far no widely accepted factor model can explain the momentum effect, including the Fama-
French (2003) model (see, e.g., Fama and French, 1996). Authors documenting significant time-
varying factor exposure of momentum returns include Ball, Kothari and Shanken (1995) and
Grundy and Martin (2001) and time-varying betas may account for a large part of momentum
profitability. We find for both decile portfolios sorted by book-to-market ratios and past returns,
long-run alphas are jointly significantly different from zero both for conditional versions of
the one-factor market model and the three-factor Fama and French (1993) model. We also
overwhelmingly reject the null that the conditional betas do not vary over time for both sets of
portfolios.

Our approach builds on a literature advocating the use of short windows to estimate time-

varying second moments or betas, such as French, Schwert and Stambaugh (1987) and Lewellen



and Nagel (2006). In particular, Lewellen and Nagel (1986) estimate time-varying factor load-
ings and infer conditional alphas. Our work extends this literature in several important ways.
First, by using a nonparametric kernel to estimate time-varying betas we are able to use all the
data efficiently. The nonparametric kernel allows us to estimate conditional betas at any mo-
ment in time. Naturally, our optimal kernels can be adjusted to use one-sided, equal-weighted
weighted filters which nest the approach of French, Schwert and Stambaugh (1987), Andersen
et al. (2006), Lewellen and Nagel (2006), and others, as a special case.

Second, Lewellen and Nagel’s (2006) procedure identifies the time variation of conditional
betas and provides period-by-period estimates of conditional alphas. Lewellen and Nagel use
only the time-series variation of these conditional alphas when conducting statistical tests of the
alphas. But, since the alphas are a function of conditional betas which are also estimated, any
inference on conditional alphas should take into account the sampling error of the time-varying
factor loadings. Our procedure does precisely that. Our estimates of the sampling variation of
conditional betas directly affect, and are simultaneously estimated with, the standard errors of
the implied conditional alphas.

Third, we derive both univariate and joint tests of conditional alphas in the presence of
time-varying betas. Similar to Gibbons, Ross and Shanken (1989) we are able to test for the
significance of long-run alphas jointly over a set of portfolios. This is important because port-
folios constructed by sorting over various characteristics are extensively used in finance to test
factor models and it is common to test the efficiency of various small sets of investable assets.
Following Fama and French (1993), and many others, a joint test over portfolios is useful for
investigating whether a relation between conditional alphas and firm characteristics strongly
exists across many portfolios.

Our work is most similar to tests of conditional factor models contemporaneously proposed
by Li and Yang (2009). Li and Yang also use nonparametric methods to estimate conditional
parameters and formulate a test statistic based on average conditional alphas. However, they do
not investigate conditional or long-run betas and do not develop tests of constancy of conditional
alphas or betas. They also do not derive specification tests jointly across assets as in Gibbons,
Ross and Shanken (1989), which we nest as a special case, or present a complete distribution
theory for their estimators.

The rest of this paper is organized as follows. Section 2 lays out our empirical methodology
of estimating time-varying alphas and betas of a conditional factor model. We develop tests of

long-run alphas and factor loadings and tests of constancy of the conditional alphas and betas.



We apply our methodology to investigate if conditional CAPM and Fama-French (1993) models
can price portfolios sorted on book-to-market ratios and past returns. Section 3 discusses our
data. In Sections 4 and 5 we investigate tests of conditional CAPM and Fama-French models on
the book-to-market and momentum portfolios, respectively. Section 6 concludes. We relegate

all technical proofs to the appendix.

2 Statistical Methodology

In Section 2.1, we lay out the conditional factor model. Section 2.2 develops general condi-
tional estimators and their distributions. We develop a test for long-run alphas and betas in
Section 2.3 and tests for constancy of the conditional alphas and factor loadings in Section 2.4.
Section 2.5 discusses the optimal bandwidth choice. We discuss other related finance literature

in Section 2.6.

2.1 The Model

Let I?; ; be the excess return of asset ¢ at time ¢, for7 = 1,...., NV assetsand ¢ = 1, ..., T' periods.
We wish to explain the returns through a set of ./ common tradeable factors, f; = (fi4,..., f. J7t),.

We consider the following empirical specification:

Riy = i+ Bapfie+ oo+ Bigefre + i
= s+ Bifi + e (1)

where «;; € R is the conditional alpha for stock i, 5;; = (Bi1s, ..., Bi ‘]’t)/ € R’ is the vector
of time-varying factor loadings for stock 7, and the vector of error terms ¢; = (€14, ..., N7t)’

satisfies
Eledf, 8] =0 and Eleicilfy, Bi] = Q,

where ©, € RV*N + = 1,...,T, is a sequence of covariance matrices. For convenience, we

express equation (1) in vector notation:
Ry = oy + Bifi + e, (2)

where R, = (Ry, ..., Ry,) is the vector of returns, oy = (..., an,) € RY is the vector
of conditional alphas across stocks i = 1,...,N, and 3; = (Buy, ..., Ovs) € RPN is the

corresponding matrix of conditional betas. We collect the alphas and betas in v, = (o, 3})" €
R(J +1)xN )



We are interested in the time series estimates of the conditional alphas, o;, and the condi-
tional factor loadings, (3;, along with their standard errors. Under the null of a factor model, the
conditional alphas are equal to zero, or o, = 0. In equations (1) and (2), the time-varying con-
ditional factor loadings can be random processes in their own right as long as they are weakly
independent of the factors.

The model in equation (1) is strictly a conditional factor model in which betas vary over
time but the factor premia do not exhibit time-varying expected returns. This setup has the
advantage of avoiding the bias of Boguth et al. (2007) when both factor loadings and risk premia
vary contemporaneously. However, the methodology we develop also applies to conditional
factor models with time-varying factor premia. Jagannathan and Wang (1996) show that a
conditional CAPM with time-varying factor premia is equivalent to an unconditional factor
model by suitably expanding the set of unconditional factors. The expanded set of factors can be
interpreted as managed returns (see Ferson and Harvey, 1991; Cochrane, 2001). Our framework
applies to these settings if we can place additional factors on the RHS of equation (1) to capture
the effect of time-varying risk premia.

In our empirical work, we consider two specifications of conditional factor models: a condi-
tional CAPM where there is a single factor which is the market excess return and a conditional
version of the Fama and French (1993) model where the three factors are the market excess
return, M K'T', and two zero-cost mimicking portfolios, which are a size factor SM B, and a
value factor M L.

We define the long-run alphas and betas for asset ¢ to be
1 < 1 &
f— ] — . P ] — . J
Qg = lim T tgl a; €R - and  frrg = Jim T ;1 Bir € R7, (3)

for: = 1,..., N. We use the terminology “long run” to distinguish the conditional alpha at a
point in time, «; ¢, from the conditional alpha averaged over the sample, arr ;. We are partic-
ularly interested in examining the hypothesis that the long-run alphas are jointly equal to zero
across [V assets:

Hy:apr; =0, i=1,...,]N. 4)

In a setting with constant factor loadings and constant alphas, Gibbons, Ross and Shanken
(1989) develop a test of the null /. Our methodology can be considered to be the conditional
version of the Gibbons-Ross-Shanken test in a setting where both conditional alphas and betas

vary over time.



An important comment is that the model does not have a direct interpretation as a continuous-
time model sampled at increasing frequency with an increasing sample length 7". A continuous-

time specification similar to equation (2) would be
ds; = pdt + BldX, + Q2 dW,,

where s, = log(.S;), S; is the vector of asset prices at time ¢, and X; are the factors. This
is the ANOVA model considered in Andersen et al. (2006) and Mykland and Zhang (2006).
A discrete-time approximation of this continuous-time model takes the form of equation (1)
where Ry = siA — S—1)a, Q¢ = fa — Hg—1)As ot = Xia — X(—1)a, and g, = Qzﬁl)A(Wm -
Wie-y A ), Where A is the discretization interval. However, an important difference between the
continuous-time model and the model in equation (2) is that in continuous time, the variance
of the rescaled errors, AW, = Wia — Wi_1)a = Q(_tl_/f) AEt» decreases as A — (0. Under
this assumption in continuous time, conditional alphas cannot be identified. In contrast, we
assume that the variance of the rescaled errors remains fixed as the sampling interval tends to
zero, which allows us to identify both conditional and long-run alphas.? Our model should
be viewed as a sequence of discrete-time models sampled at increasing frequency over a fixed
horizon T". Our asymptotics are derived when the sampling interval tends to zero. This is the
case in practice as an econometrician is given a sample of length 7" and can sample at monthly,
weekly, daily, or higher intra-day frequencies. In our empirical work, we sample at the daily

frequency.

2.2 Conditional Estimators

Suppose we have observed returns and factors observed over time t = 1, ..., 7. We propose the
following local least-squares estimators of «; » and (3; - in equation (1) at any point 7 in the time
interval 1 <7 < T~

T
(Gir, 3;,) = arg fnlﬂf;z Ky (t—7) (Riy — a; — B f,)?, &)
=1

2 Merton (1980) shows that for a fixed time span in a simple diffusion model, we cannot recover the drift term,
but can only identify the diffusion term, as we sample at increasing frequencies. Kristensen (2008a) extends this
result to show that we cannot nonparametrically identify the drift term at a given point in time without further
restrictions. Thus, in a diffusion setting, we cannot identify the short-run alphas. A continuous-time framework
allows estimation only of limp_. o % fOT pedt, which is continuous-time counterpart to our long-run alphas, under

the assumption of stationarity.



for each asset i = 1,..., N, where K;,1 (2) = K (2/ (h/T)) / (h;T) with K (-) being a kernel
and h; = hp; > 0 a sequence of bandwidths. The estimators are simply kernel-weighted least

squares, and it is easily seen that

T Irr
(OAéi,Ta Bz{,r)/ - Z KhiT (t - 7_) XtXt/] [Z KhiT (t - 7—) XtR;t 3 (6)
t=1 t=1

where X, = (1, f/)'.
The proposed estimator gives weights to the individual observations according to how close
in time they are to the time point of interest, 7. The shape of the kernel K determines how

the different observations are weighted. For most of our empirical work we will choose the

K(z) = \/12—7Texp (—%2) :

but also examine one-sided and uniform kernels that have been used in the literature by Ander-

Gaussian density as kernel,

sen et al. (2006) and Lewellen and Nagel (2006), among others. In common with other non-
parametric estimation methods, as long as the kernel is symmetric, the most important choice
is not so much the shape of the kernel that matters but the bandwidth interval.

The bandwidth h; > 0 controls the time window used in the estimation for the ¢th stock,
and as such effectively controls how many observations are used to compute the estimated
coefficients &; » and Bw at time 7. A small bandwidth means only observations close to 7 are
weighted and used in the estimation. Thus, the bandwidth controls the bias and variance of
the estimator, and it should in general be chosen differently from one sample to another. In
particular, as sample size grows, the bandwidth should shrink towards zero at a suitable rate in
order for any finite-sample biases and variances to vanish. We discuss the bandwidth choice in
further detail in Section 2.5.

We run the kernel regression (5) separately stock by stock for ¢ = 1,..., N. This is a gen-
eralization of the regular OLS estimators, which are also run stock by stock in the tests of
unconditional factor models like Gibbons, Ross and Shanken (1989). If the same bandwidth A
is used for all stocks, our estimator of alphas and betas across all stocks take the simple form of

a weighted multivariate OLS estimator,

T trr
(&, 0.) = [Z XKy, (t—7) Xt’] [Z XeKrn (t = 7) Ry
t=1 t=1

In practice, it is not advisable to use one common bandwidth across all assets. We use

different bandwidths for different stocks because the variation and curvature of the conditional



alphas and betas may differ widely across stocks and each stock may have a different level
of heteroskedasticity. We show below that for book-to-market and momentum test assets, the
patterns of conditional alphas and betas are very dissimilar across portfolios. Choosing stock-
specific bandwidths allows us to better adjust the estimators for these effects. However, in order
to avoid cumbersome notation, we will present the asymptotic results for the estimators &, and
BT assuming one common bandwidth, A, across all stocks. The asymptotic results are identical
in the case with bandwidths under the assumption that all the bandwidths converge at the same
rate as 1" — oo.

Our model falls into a large statistics literature on nonparametric estimation of regression
models with varying coefficients (see, for example, Fan and Zhang, 2008, for an overview).
However, this literature generally focuses on I.I.D. models where an independent regressor is
responsible for changes in the coefficients. In contrast to most of this literature, our regressor is
a function of time, rather than a function of another independent variable. We build on the work
of Robinson (1989), further extended by Robinson (1991), Orbe, Ferreira and Rodriguez-Poo
(2005), and Cai (2007), who originally proposed to use kernel methods to estimate varying-
coefficients models where the coefficients are functions of time. We utilize these results to
obtain the asymptotic properties of the estimator.

We first state a result regarding the asymptotic properties of the local least-squares estimator.

This is a direct consequence of Kristensen (2008b, Theorem 1).

Theorem 1 Assume that (A.1)-(A.4) given in the Appendix hold and the bandwidth is chosen

such that nh — oo and nh® — 0. Then, forany 1 < 7 < T, 4, = (G, 3.) satisfies
VTh(3, —7,) 5 N (0, kA © Q) (7)

where A, = E[X, X!], X, = (1, f1), and ko = [ K*(z) dz = 0.2821 for the normal kernel.

Furthermore, for any two 7, # 75,
Cov <\/1Th (/3/71 - /77'1) ) \/ﬁ (’3/72 - 7@)) = 0. (®)

The result in Theorem 1 says that our estimator is able to pin down the full trajectory of the
latent process v, as we sample more and more frequently. Due to the nonparametric nature of
the estimator, this result holds true for a wide range of data generating processes for .. That is,
we do not have to assume a specific parametric model for the dynamics of v, in order for our

estimator to work.



For the estimator to be consistent, we have to let the sequence of bandwidths shrink towards
zero as the sample size grows, h = hp — 0 as T" — oo. This is required in order to remove any
biases of the estimator.> At the same time, the bandwidth sequence cannot go to zero too fast,
otherwise the variance of the estimator will blow up. Thus, choosing the bandwidth should be
done with care, since the estimates may be sensitive to the bandwidth choice. Unfortunately, the
theorem is silent regarding how the bandwidth should be chosen for a given sample, which is a
problem shared by most other nonparametric estimators. There are however many data-driven
methods for choosing the bandwidths that work well in practice and we discuss our bandwidth
selection procedure in Section 2.5.

The rate of convergence is v/Th as is standard for a nonparametric estimator. This is slower
than the classical convergence rate of VT since h — 0. However, below, we show that a test for
an average alpha across the sample equal to zero converges at the /7" rate. A major advantage
of our procedure in contrast to most other nonparametric procedures is that our estimators do
not suffer from the curse of dimensionality. Since we only smooth over the time variable ¢, in-
creasing the number of regressors, .J, or the number of stocks, NV, do not affect the performance
of the estimator. A further advantage is that the point estimates ¢; , and Bm are estimated stock
by stock, making the procedure easy to implement. This is similar to the classical Gibbons,
Ross and Shanken (1989) test where the alphas and betas are also separately estimated asset by
asset.

To make the result in Theorem 1 operational, we need estimators of the asymptotic variance.

Simple estimators of the two terms appearing in the asymptotic variance are obtained as follows:

T T
1 5 1 ¥
Ao=Z) K (t—m)XX] and Q=23 K (t—7)&é, ©)

t=1 t=1
where é; = R; — &y — B{f +,t =1,...,T, are the fitted residuals. Due to the independence across

different values of 7, pointwise confidence bands can easily be computed.

3 For very finely sampled data, especially intra-day data, non-synchronous trading may induce bias. There is
a large literature on methods to handle non-synchronous trading going back to Scholes and Williams (1977) and
Dimson (1979). These methods can be employed in our setting. As an example, consider the one-factor model
where f; = R, is the market return. We can augment the one-factor regression to include the lagged market
return, Ry = oy + 01t Rt + B2, Rm t—1 + €+, and add the combined betas, Bt = ﬁALt + Bzyt. This is done by Li
and Yang (2009). More recently, there has been a growing literature on how to adjust for non-synchronous effects
in the estimation of realized volatility. Again, these can be carried over to our setting. For example, it is possible
to adapt the methods proposed in, for example, Hayashi and Yoshida (2005) or Barndorff-Nielsen et al. (2009) to
adjust for the biases due to non-synchronous observations. In our empirical work, we believe that non-synchronous

trading is not a major issue as we work with value-weighted portfolios at the daily frequency.
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It is possible to use Theorem 1 to test the hypothesis that o, = 0 for a given value of
1< r<T:

W (r) = a.V ka5 2, (10)

T T, T

where Vwa consist of the first V x /N components of VT = “2[\; ! ®Qt. Due to the independence
of the estimates at different values of 7, we can also test the hypothesis across any finite set of,

say, m > 1 time points, 71 < To < ... < Tyt

W= >"W(n) 52 (1)
k=1

However, this test is not able to detect all departures from the null, since we only test for
departures at a finite number of time points (which has to remain fixed as 7" — o0). To test the
conditional alphas being equal to zero uniformly over time, i.e. o, = O forall 1 <7 < T, we
advocate using the test for constancy of the conditional alphas which we present in Section 2.4.
This test is similar to Shanken (1990) without external state variables and does not have a direct
analogy with Gibbons, Ross and Shanken (1989), unlike the test for long-run alphas we present
in Section 2.3.

A closing comment is that bias at end points is a well-known issue for kernel estimators.
When a symmetric kernel is used, our proposed estimator suffers from excess bias when 7 is
close to either 0 or 7. In particular, the estimator is asymptotically biased when evaluated at the
end points,

1 1
E [fo) — 370 and E [yr] — 3T 3 h — 0.

This can be handled in a number of different ways. The first and easiest way, which is also the
procedure we follow in the empirical work, is that we simply refrain from reporting estimates
close to the two boundaries: All our theoretical results are established under the assumption
that our sample has been observed in the time interval [—a, T" + a] for some a > 0, and we then
only estimate v, for 7 € [0, T'|. In the empirical work, we do not report the time-varying alphas
and betas during the first and last year of our post-1963 sample. Second, adaptive estimators
which control for the boundary bias could be used. Two such estimators are boundary kernels
and locally linear estimators. The former involves exchanging the fixed kernel K for another
adaptive kernel which adjusts to how close we are to the boundary, while the latter uses a local
linear approximation of a, and 3, instead of a local constant one. Usage of these kernels does
not affect the asymptotic distributions we derive for long-run alphas and betas in Section 2.3.

We leave these technical extensions to future work.

10



2.3 Tests for Long-Run Alphas

To test the null of whether the long-run alphas are equal to zero (H, in equation (4)), we con-
struct an estimator of the long-run alphas in equation (3) from the estimators of the conditional
alphas, o, and the conditional betas, 3,, at any point in time 1 < 7 < 7. A natural way to
estimate the long-run alphas and betas would be to simply plug the pointwise kernel estimators

into the expressions found in equation (3):

T T
. 1 R A 1 N
OLR,; = T ; Q¢ and 5LR,¢ = T ; ﬁi,t- (12)

The proposed long-run alpha and beta estimators can be interpreted as two-step semipara-
metric estimators and as such share some features with other semiparametric estimators found
in the literature. Two particular estimators that are closely related are nonparametric estimators
of consumer surplus (Newey and McFadden, 1994, Section 8) and semiparametric estimation of
index coefficients (Powell, Stock and Stoker, 1989). These estimators can be written as integrals
over a ratio of two kernel estimators. Our long-run alpha and beta estimators fit into this class
of estimators since the first-step estimators ¥, = (&, B;)’ in equation (6) are ratios of kernel
functions and the long-run alpha and betas are integrals (averages) of these kernel estimators.

The following theorem states the joint distribution of 41r = (drg, Flg) € RUTD*N where

arr = (QLR1, -, Grry) € RY and BLr = (BLR,I) s BLR,N)I € R/*N:
Theorem 2 Assume that (A.1)-(A.6) given in the Appendix hold. Then,
VT (3ir — 1r) = N (0, Vig)., (13)
where
1 T
_ -1
Vir = Tlgx;oTZAt ® 0.

t=1

In particular,

VT (arr — arr) 2 N (0, Viraa) (14)
where ViR aq are the first N x N components of Vir:
1
Vikoo = Jim — ; Agay ® Q.

with
Moot =1—E[f] E[f S ELf].

11



The asymptotic variance can be consistently estimated by:

T
Vir = %ZA,} ® (15)
t=1
where AT and QT are given in equation (9).

An important observation is that the long-run estimators converge with standard parametric
rate /7 despite the fact that they are based on preliminary estimators 4, that converge at the
slower, nonparametric rate v/7'h. That is, inference of the long-run alphas and betas involves the
standard Central Limit Theorem (CLT) convergence properties even though the point estimates
of the conditional alphas and betas converge at slower rates. Intuitively, this is due to the
additional smoothing taking place when we average over the preliminary estimates in equation
(6), as is well-known from other studies of semiparametric estimators; see, for example, Newey
and McFadden (1994, Section 8) and Powell, Stock and Stoker (1989).

We can test Hy : a,g = 0 by the following Wald-type statistic:

WLR = OAéLR‘A/L_RI’aaOAéLR S R.H (16)

where ViR o« 18 an estimator of the variance of &,

Viroa =7 D A, @, (17)

1

with
Ape i =1=E[f) E[f S E[f),
and

T
ft]:%ZKhT<3_t)fs and E [fefi] = ZKhT (s —1t) fofe.
s=1

As a direct consequence of Theorem 2, we obtain
d 2
Wir = X (18)

This is the conditional analogue Gibbons, Ross and Shanken (1989) and tests if long-run alphas
are jointly equal to zero across all © = 1, ..., IV portfolios.

A special case of our model is when the factor loadings are constant with 3, = 3 € R/*V
for all ¢. Under the null that beta is indeed constant, 5; = (3, and with no heteroskedasticity,
Q, = Q for all ¢, the asymptotic distribution of ﬁ(&LR — apR) is identical to the standard
Gibbons, Ross and Shanken (1989) test. This is shown in Appendix C. Thus, we pay no price
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asymptotically for the added robustness of our estimator. Furthermore, only in a setting with
constant betas is the Gibbons-Ross-Shanken estimator of oy r consistent. This is not surprising
given the results of Jagannathan and Wang (1996) and others who show that in the presence of

time-varying betas, OLS alphas do not yield estimates of conditional alphas.

2.4 Tests for Constancy of the Alphas and Betas

In this section, we derive test statistics for the hypothesis that the conditional alphas or the betas,
or both, are constant over time. The test can be applied to a subset of the full set of conditional
alphas and betas. Since the proposed tests for constant alphas and betas are very similar, we
treat them in a unified framework.

Suppose we wish to test for constancy of a subset of the time-varying parameters of stock ¢,
Yig = (g, ﬁz{’t)/ € R/*1. We first split up the set of regressors, X; = (1, f/)’ and coefficients,
Vit » into two components (after possibly rearranging the regressors): 7,1, € R™, which is
the set of coefficients we wish to test for constancy with X, € R™ the associated regressors,
and v;o; € R/T1™™ the remaining coefficients with X,; € R7T'~™ the remaining regressors,

respectively. Using this notation we can rewrite our model as:
Ry = %{l,tXLt + ’71{27tX2,t + €it- (19)
We consider the following hypothesis:
Hy:vine=ynforall0 <t <T. (20)

Under the null hypothesis, m of the J + 1 coefficients are constant whereas under the alternative
hypothesis all J + 1 coefficients vary through time. Our hypothesis covers both the situation of

constant alphas,*

H{ toy =a; € R with Xl,t =1, X2,t = fi, Vit = i, Vit = ﬂi,ta
and constant betas,

H!: By =6 €R with X1, = fi, Xoy =1, Yire = Biss Yiow = Qig-

Under H,, we obtain an estimator of the constant parameter vector ~y; by using local profil-
ing. First, we treat y;; as known and estimate ;5 - by
T
~ . 2 ~ ~
Yiz,r = argmin Z K (8= 7) [Rig — v X + 72 Xoal™ = imy e — 1,77, (21)

12
Yi —1

4To test H; : o;+ = 0forall 0 <t <T simply set ;1 = Y31 = 0.
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where

-1 ~

T T
mRi,T = Z KhT (t — 7') X2,tX£,t Z KhT (t _ 7—) X27th7t c RJ+1—m
| t=1 ] =
[T -lrr
mi, = Z Kpr (t —171) ngtXé’t Z Knr (t—1) X27tX{,t c R(J-ﬁ-l—m)Xm’
| t=1 ] =
are estimators of
Mpr = E [X277'X§7T] - E [XQJ'R;,T} (22)

mi, = E[Xo,X5,] " E[Xe,X].].

In the second stage, we obtain an estimator of the constant component ~;;. We do this
by substituting the conditional estimator ¥,; , into the weighted least-squares criterion Q7 (7;1)

given by:

T T
. A ) T 2
Qr(yi) = > Q' [Ria — vh Xua + Vo Xoa]” =D Q' [Rz',t - 7£1X1,t] :

t=1 t=1

where X, ; = X, — 1), Xoy € R™and R;y = R;; — 1, Xo¢ € R. Our estimator minimizes

Q1 (7:1), which is again a simple least-squares problem with solution:

T “Lrr
N A—1v 1 A—1Y P
Yi1 = E Qii,tXl,tXLt E Qiz’,tXl,tRi,t
t=1 t=1

The above estimator is akin to the residual-based estimator of Robinson (1988). It is also similar

(23)

to the local linear profile estimator of Fan and Huang (2005) who demonstrate that in a cross-

sectional framework with homoskedastic errors, the estimator of 7;; is semiparametric efficient.

Substituting equation (23) back into equation (21), the following estimator of the nonparametric
component appears:

Yior = MR, — M1 (24)

Once the restricted estimators have been computed, we test f/; by comparing the unre-

stricted and restricted model with a Wald test. Introducing the rescaled errors under the full

model and under H; respectively as,
. A—1/2 4 . A—1/2 A
2y = Qii,t Eit and 21t = Qii,t Eil,ta

where

A ~/ A0
Eit = Ry — ’Yil,tXLt + %2,tX2,t
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are the residuals under the alternative and
éil,t = Ri,t - ’%1X1,t + ’%Z,tXZt

are the residuals under the null, we can compute the sums of (rescaled) squared residuals by:

T T
SSR = E 2,;7)52?1"15 and SSRlz E 2;171‘/21‘1715.
t=1

t=1

The Wald test then takes the following form:

TSSR, — SSR

Wi=5"—"%5sr

(25)

The proposed test statistic is related to the generalized likelihood-ratio test statistics advocated
in Fan, Zhang and Zhang (2001):

Theorem 3 Assume that (A.1)-(A.6) hold. Under H;:
VT (Fi1 — i) 4N (0,51), (26)

where, with V; = X, — m’17tX27t,

i = lim Z Qv 27)
The test statistic satisfies
Wi = X3./4 (28)
where
K (0) — 1/2ky 2m

‘- and 1= =" (K (0) = 1/2%3]

JIK ()~ 1/2(K « K) (=)F d=
For Gaussian kernels, ¢ = 2.5375 and n = 2mc/h where ¢ = 0.7737.

The above result is in accordance with the results of Fan, Zhang and Zhang (2001). They
demonstrate in a cross-sectional setting that test statistics of the form of W, are, in general, not
dependent on nuisance parameters under the null and asymptotically converge to y>-distributions
under the null. They further demonstrate that these statistics are asymptotically optimal and can
even be adaptively optimal. The above test procedure can easily be adapted to construct joint
tests of parameter constancy across multiple stocks. For example, to test for joint parameter

constancy jointly across all stocks, simply set ; ; = I?; in the above expressions.
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2.5 Choice of Kernel and Bandwidth

As is common to all nonparametric estimators, the choice of the kernel and the bandwidth
are important. Our theoretical results are based on using a kernel centered around zero and
our main empirical results use the Gaussian kernel. In comparison, previous authors using
high frequency data to estimate covariances or betas, such as Andersen et al. (2006) and
Lewellen and Nagel (2006), have used one-sided filters. For example, the rolling window esti-
mator employed by Lewellen and Nagel (2006) corresponds to a uniform kernel on [—1, 0] with
K (z)=1{-1<2z<0}.

We advocate using two-sided symmetric kernels because, in general, the bias from two-
sided symmetric kernels is lower than for one-sided filters. In our data where 7' is over 10,000
daily observations, the improvement in the integrated root mean squared error (RMSE) using
a Gaussian filter over a backward-looking uniform filter can be quite substantial. For the sym-
metric kernel the integrated RMSE is of order O (T —2/5 ) whereas the corresponding integrated
RMSE is at most of order O (T~'/%). We provide further details in Appendix D.

There are two bandwidth selection issues unique to our estimators that we now discuss:
Section 2.5.1 discusses bandwidth choices for the conditional estimates of alphas and betas
while Section 2.5.2 treats the problem of specifying the bandwidth for the long-run alpha and

beta estimators.

2.5.1 Bandwidth for Conditional Estimators

Our theoretical results establish rates at which the bandwidths should shrink to zero as the
sample size grows. These are however not very informative about how one should choose the
bandwidths for a given data set. We here propose data-driven rules for choosing the bandwidths
in practice. We conducted simulation studies showing that the proposed methods work well in
practice.

We choose one bandwidth for the point estimates of conditional alphas and betas and a
different bandwidth for the long-run alphas and betas. The two different bandwidths are nec-
essary because in our theoretical framework the conditional estimators and the long-run es-
timators converge at different rates. In particular, the asymptotic results suggest that for the
integrated long-run estimators we need to undersmooth relative to the point-wise conditional
estimates; that is, we should choose our long-run bandwidths to be smaller than the conditional
bandwidths. Our strategy is to determine optimal conditional bandwidths and then adjust the

conditional bandwidths for the long-run alpha and beta estimates.
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To estimate the conditional bandwidths, we employ a plug-in method. For a symmetric

kernel, the optimal bandwidth that minimizes the RMSE for stock i is

e (el NP s 29
NI | @)

where v; = T1 ZtT:1 vigand ¢ = T ZtT:l Gi+ are the integrated time-varying variance and

bias components given by
Vit = /£2At*1 ©Q, and (= A;l [At%(?t) X 2A§1)%(? ’

where Agk) and %»(ﬁ) for k = 1, 2 are the first and second order derivatives of A, and ~; ;, respec-

tively. Ideally, we would compute v; and ¢; in order to obtain the optimal bandwidth given in
equation (29). However, these depend on unknown components, A, 7;+, and (. In order to
implement this bandwidth choice we therefore propose to obtain preliminary estimates of these

through the following two-step method:?

1. Assume that A, = A and Q, = (2 are constant, and v, = ag + a;t + ... + q,t? is a
polynomial. We then obtain parametric least-squares estimates A, Q and Nit = Qp; +

ap it + ... + a, ;t7. Compute for each stock (i = 1, ..., N)

T
~ Ja I~ 1
t=1

where ’yﬁ) = 2a9,; + 6az;t + ... + p(p—1)a,,tP~2. Then, using these estimates we

compute the first-pass bandwidth

1/5

iL‘ Hle % T_1/5. (30)

ERICED

2. Given h; 1, compute the kernel estimators 7, ; = A; ! Zthl Kir (t —7) Xy R}, A, and O,

as giVCIl in Section 2.2. We use these to obtain for each stock (Z = 1, ey N)
1 1
R N A ~ ~ ~ (2 ~ 1) A (1
Uy = HQT ; 1 At ! ® Qt and Cl = — tg 1 _/\t 1 [/\t%(,t) ‘ZATE )’Yz(,t)] )

These are in turn used to obtain a second-pass bandwidth:
1/5

hip = | AL s 31)

(4161

3 Ruppert, Sheather and Wand (1995) discuss in detail how this can done in a standard kernel regression frame-

work.
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Our motivation for using a plug-in bandwidth is as follows. We believe that the betas for
our portfolios vary slowly and smoothly over time as argued both in economic models such
as Gomes, Kogan and Zhang (2003) and from previous empirical estimates such as Petkova
and Zhang (2005), Lewellen and Nagel (2006), and Ang and Chen (2007), and others. The
plug-in bandwidth accommodates this prior information by allowing us to specify a low-level
polynomial order. In our empirical work we choose a polynomial of degree p = 6, and find
little difference in the choice of bandwidths when p is below ten.’

One could alternatively use (generalized) cross-validation (GCV) procedures to choose the
bandwidth. These procedures are completely data driven and, in general, yield consistent es-
timates of the optimal bandwidth. However, we find that in our data these can produce band-
widths that are extremely small, corresponding to a time window as narrow as 3-5 days with
corresponding huge time variation in the estimated factor loadings. We believe these bandwidth
choices are not economically sensible. The poor performance of the GCV procedures is likely
due to a number of factors. First, it is well-known that cross-validated bandwidths may ex-
hibit very inferior asymptotic and practical performance even in a cross-sectional setting (see,
for example, Hérdle, Hall, and Marron, 1988). This problem is further enhanced when GCV

procedures are used on time series data as found in various studies.

2.5.2 Bandwidth for Long-Run Estimators

To estimate the long-run alphas and betas we re-estimate the conditional coefficients by under-
smoothing relative to the bandwidth in equation (31). The reason for this is that the long-run
estimates are themselves integrals and the integration imparts additional smoothing. Using the
same bandwidth as the conditional alphas and betas will result in over-smoothing.

Ideally, we would choose an optimal long-run bandwidth to minimize the mean-squared
error E [||91r: — YLr.||?], which we derive in Appendix E. As demonstrated there, the band-
width used for the long-run estimators should be chosen to be of order hyr; = O (T~2/1+2),
where r is the number of derivatives required for the alpha and beta functions (or the degree
of required smoothness). Thus, the optimal bandwidth for the long-run estimates is required
to shrink at a faster rate than the one used for pointwise estimates where the optimal rate is
T-1/(142r)

In our empirical work, we select the bandwidth for the long-run alphas and betas by first

® The order of the polynomial is an initial belief on the underlying smoothness of the process; it does not imply

that a polynomial of this order fits the estimated conditional parameters.
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computing the optimal second-pass conditional bandwidth ili72 in equation (31) and then scaling
this down by setting
humi = hip x T7V/0527, (32)

with a choice of r = 1.

2.6 Other Related Finance Literature

By taking advantage of nonparametric techniques to estimate latent quantities, we follow sev-
eral papers in finance also using nonparametric estimators. Stanton (1997), Ait-Sahalia (1996),
and Johannes (2004), among others, estimate drift and diffusion functions of the short rate
using nonparametric estimators. Bansal and Viswanathan (1993), Ait-Sahalia and Lo (1998),
and Wang (2003), among others, characterize the pricing kernel by nonparametric estimation.
Brandt (1999) and Brandt and Ait-Sahalia (2007) present applications of nonparametric esti-
mators to portfolio choice and consumption problems. Our work is the first, to our knowledge,
to use nonparametric techniques to jointly estimate conditional alphas and betas in conditional
factor models and, most importantly, to derive distributions of long-run alphas and factor load-
ings.

Our work is most motivated by Lewellen and Nagel (2006). Like Lewellen and Nagel
our estimators of conditional alphas and betas use only information from high frequency data
and ignore conditioning information from other instrumental variables. Alternative approaches
taken by Shanken (1990) and Ferson and Harvey (1991, 1993), among many others, estimate
time-varying factor loadings by instrumenting the factor loadings with macroeconomic and
firm-specific variables. As Ghysels (1998) and Harvey (2001) note, the estimates of the factor
loadings obtained using instrumental variables are very sensitive to the variables included in the
information set. Furthermore, many conditioning variables, especially macro and accounting
variables, are only available at coarse frequencies. Instead, only high frequency return data is
used to obtain consistent estimates of alphas and betas. Thus, our estimator is in the same spirit
of Lewellen and Nagel and uses local high frequency information, but we exploit a nonpara-
metric structure.

A similar nonparametric approach is taken by Li and Yang (2009). Li and Yang also use
nonparametric regressions to estimate conditional alphas and derive a similar test for average
conditional alphas. However, they do not focus on conditional or long-run betas, or derive tests
of constancy for conditional alphas or betas. One important issue is the bandwidth selection

procedure, which requires different bandwidths for conditional or long-run estimates. Li and
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Yang do not provide an optimal bandwidth selection procedure. Finally, we show our test of
long-run alphas across a set of base assets is a direct conditional analogue of Gibbons, Ross and
Shanken (1989).

Our kernel specification used to estimate the time-varying betas nests several special cases
in the literature. For example, French, Schwert and Stambaugh (1987) use daily data over the
past month to estimate market variance. Lewellen and Nagel (2005) use daily returns over the
past quarter or six months to estimate betas. Both of these studies use only truncated, backward-
looking windows to estimate second moments. Foster and Nelson (1996) derive optimal two-
sided filters to estimate covariance matrices under the null of a GARCH data generating process.
Foster and Nelson’s exponentially declining weights can be replicated by special choice kernel
weights. An advantage of using a nonparametric procedure is that we obtain efficient estimates
of betas without having to specify a particular data generating process, whether this is GARCH
(see for example, Bekaert and Wu, 2000) or a stochastic volatility model (see for example,
Jostova and Philipov, 2005; Ang and Chen, 2007).

Because we use high frequency data to estimate second moments at lower frequencies, our
estimator is also related to the realized volatility literature (see the summary by Andersen et
al., 2003). These studies have concentrated on estimating variances, but recently Andersen
et al. (2006) estimate realized quarterly-frequency betas of 25 Dow Jones stocks from daily
data. Andersen et al.’s estimator is similar to Lewellen and Nagel (2006) and uses only a
backward-looking filter with constant weights. Within our framework, Andersen et al. (2006)

and Lewellen and Nagel (2006) are estimating integrated or averaged betas,

t
6A,t = / BSdS,
t—A

where A > 0 is the window over which they compute their OLS estimators, say a month.
Integrated betas implicitly ignore the variation of beta within each window as they are the
average beta across the time period of the window. Our estimators accommodate integrated

betas as a special case by choosing a flat kernel and a fixed bandwidth.

3 Data

We apply our methodology to decile portfolios sorted by book-to-market ratios and decile port-

folios sorted on past returns constructed by Kenneth French.” The book-to-market portfolios

7 These are available at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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are rebalanced annually at the end of June while the momentum portfolios are rebalanced every
month sorting on prior returns from over the past two to twelve months. We use the Fama and
French (1993) factors, M K'T', SM B, and H M L as explanatory factors. All our data is at the
daily frequency from July 1963 to December 2007. We use this whole span of data to compute
optimal bandwidths. However, in reporting estimates of conditional factor models we truncate
the first and last years of daily observations to avoid end-point bias, so our conditional estimates
of alphas and factor loadings and our estimates of long-run alphas and betas span July 1964 to
December 2006. Our summary statistics in Table 1 cover this sample, as do all of our results in
the next sections.

Panel A of Table 1 reports summary statistics of our factors. We report annualized means
and standard deviations. The market premium is 5.32% compared to a small size premium for
SM B at 1.84% and a value premium for H M L at 5.24%. Both SM B and H M L are negatively
correlated with the market portfolio with correlations of -23% and -58%, respectively, but have
a low correlation with each other of only -6%. In Panel B, we list summary statistics of the
book-to-market and momentum decile portfolios. We also report OLS estimates of a constant
alpha and constant beta in the last two columns using the market excess return factor. The book-
to-market portfolios have average excess returns of 3.84% for growth stocks (decile 1) to 9.97%
for value stocks (decile 10). We refer to the zero-cost strategy 10-1 that goes long value stocks
and shorts growth stocks as the “book-to-market strategy.” The book-to-market strategy has an
average return of 6.13%, an OLS alpha of 7.73% and a negative OLS beta of -0.301. Similarly,
for the momentum portfolios we refer to a 10-1 strategy that goes long past winners (decile 10)
and goes short past losers (decile 1) as the “momentum strategy.” The momentum strategy’s
returns are particularly impressive with a mean of 17.07% and an OLS alpha of 16.69%. The
momentum strategy has an OLS beta close to zero of 0.072.

We first examine the conditional and long-run alphas and betas of the book-to-market port-
folios and the book-to-market strategy in Section 4. Then, we test the conditional Fama and

French (1993) model on the momentum portfolios in Section 5.

4 Portfolios Sorted on Book-to-Market Ratios

4.1 Tests of the Conditional CAPM

We report estimates of bandwidths, conditional alphas and betas, and long-run alphas and betas

in Table 2 for the decile book-to-market portfolios. The last row reports results for the 10-
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1 book-to-market strategy. The columns labeled “Bandwidth” list the second-pass bandwidth
fzm in equation (31). The column headed “Fraction” reports the bandwidths as a fraction of
the entire sample, which is equal to one. In the column titled “Months” we transform the
bandwidth to a monthly equivalent unit. For the normal distribution, 95% of the mass lies
between (—1.96, 1.96). If we were to use a flat uniform distribution, 95% of the mass would
lie between (—0.975, 0.975). Thus, to transform to a monthly equivalent unit we multiply by
533x1.96/0.975, where there are 533 months in the sample. We annualize the alphas in Table 2
by multiplying the daily estimates by 252.

For the decile 8-10 portfolios, which contain predominantly value stocks, and the value-
growth strategy 10-1, the optimal bandwidth is around 20 months. For these portfolios there is
significant time variation in beta and the relatively tighter windows allow this variation to be
picked up with greater precision. In contrast, growth stocks in deciles 1-2 have optimal windows
of 51 and 106 months, respectively. Growth portfolios do not exhibit much variation in beta
so the window estimation procedure picks a much longer bandwidth. Overall, our estimated
bandwidths are somewhat longer than the commonly used 12-month horizon to compute betas
using daily data (see, for example, Ang, Chen and Xing, 2006). At the same time, our 20-month
window is shorter than the standard 60-month window often used at the monthly frequency (see,
for example, Fama and French, 1993, 1997).

We estimate conditional alphas and betas at the end of each month, and for these monthly
estimates compute their standard deviations over the sample in the columns labeled “Stdev of
Conditional Estimates.” Below, we further characterize the time variation of these monthly
conditional estimates. The standard deviation of book-to-market conditional alphas is small,
at 0.035. In contrast, conditional betas of the book-to-market strategy have much larger time
variation with a standard deviation of 0.206. The majority of this time variation comes from
value stocks, as decile 1 betas have a standard deviation of only 0.056 while decile 10 betas
have a standard deviation of 0.191.

Lewellen and Nagel (2006) argue that the magnitude of the time variation of conditional
betas is too small for a conditional CAPM to explain the value premium. The estimates in
Table 2 overwhelmingly confirm this. Lewellen and Nagel suggest that an approximate upper
bound for the unconditional OLS alpha of the book-to-market strategy, which Table 1 reports
as 0.644% per month or 7.73% per annum, is given by o3 X 0g,[r,, ,,,]» Where o is the standard

deviation of conditional betas and oy,  is the standard deviation of the conditional market

[T'm,t+l

risk premium. Conservatively assuming that oy, 1 is 0.5% per month following Campbell

[rm,t+1
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and Cochrane (1999), we can explain at most 0.206 x 0.5 = 0.103% per month or 1.24% per
annum of the annual 7.73% book-to-market OLS alpha. We now formally test for this result by
computing long-run alphas and betas.

In the last two columns of Table 2, we report estimates of long-run annualized alphas and
betas, along with standard errors in parentheses. The long-run alpha of the growth portfolio is
—2.19% with a standard error of 0.008 and the long-run alpha of the value portfolio is 4.64%
with a standard error of 0.011. Both growth and value portfolios reject the conditional CAPM
with p-values of their long-run alphas of 0.000. The long-run alpha of the book-to-market port-
folio is 6.74% with a standard error of 0.015. Clearly, there is a significant long-run alpha after
controlling for time-varying market betas. The long-run alpha of the book-to-market strategy is
very similar to, but not precisely equal to, the difference in long-run alphas between the value
and growth deciles because of the different smoothing parameters applied to each portfolio.
There is no monotonic pattern for the long-run betas of the book-to-market portfolios, but the
book-to-market strategy has a significantly negative long-run beta of -0.217 with a standard
error of 0.008.

We test if the long-run alphas across all 10 book-to-market portfolios are equal to zero using
the Wald test of equation (16). The Wald test statistic is 32.95 with a p-value of 0.0003. Thus,
the book-to-market portfolios overwhelmingly reject the null of the conditional CAPM with
time-varying betas.

Figure 1 compares the long-run alphas with OLS alphas. We plot the long-run alphas using
squares with 95% confidence intervals displayed in the solid error bars. The point estimates of
the OLS alphas are plotted as circles with 95% confidence intervals in dashed lines. Portfolios
1-10 on the z-axis represent the growth to value decile portfolios. Portfolio 11 is the book-
to-market strategy. The spread in OLS alphas is greater than the spread in long-run alphas,
but the standard error bands are very similar for both the long-run and OLS estimates, despite
our procedure being nonparametric. For the book-to-market strategy, the OLS alpha is 7.73%
compared to a long-run alpha of 6.74%. Thus accounting for time-varying betas has reduced

the OLS alpha by approximately only 1%.

4.2 Time Variation of Conditional Alphas and Betas

In this section we characterize the time variation of conditional alphas and betas from the one-
factor market model. We begin by testing for constant conditional alphas or betas using the

Wald test of Theorem 3. Table 3 shows that for all book-to-market portfolios, we fail to reject
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the hypothesis that the conditional alphas are constant, with Wald statistics that are far below the
95% critical values. Note that this does not mean that the conditional alphas are equal to zero,
as we estimate a highly significant long-run alpha of the book-to-market strategy and reject that
the long-run alphas are jointly equal to zero across book-to-market portfolios. In contrast, we
reject the null that the conditional betas are constant with p-values that are effectively zero.

Figure 2 charts the annualized estimates of conditional alphas and betas for the growth
(decile 1) and value (decile 10) portfolios at a monthly frequency. We plot 95% confidence
bands in dashed lines. In Panel A the conditional alphas of both growth and value stocks have
fairly wide standard errors, which often encompass zero. These results are similar to Ang and
Chen (2007) who cannot reject that conditional alphas of value stocks is equal to zero over
the post-1926 sample. Conditional alphas of growth stocks are significantly negative during
1975-1985 and reach a low of -7.09% in 1984. Growth stock conditional alphas are again
significantly negative from 2003 to the end of our sample. The conditional alphas of value
stocks are much more variable than the conditional alphas of growth stocks, but their standard
errors are wider and so we cannot reject that the conditional alphas of value stocks are equal to
zero except for the mid-1970s, the early 1980s, and the early 1990s. During the mid-1970s and
the early 1980s, estimates of the conditional alphas of value stocks reach approximately 15%.
During 1991, value stock conditional alphas decline to below -10%. Interestingly, the poor
performance of value stocks during the late 1990s does not correspond to negative conditional
alphas for value stocks during this time.

The contrast between the wide standard errors for the conditional alphas in Panel A of Fig-
ure 2 compared to the tight confidence bands for the long-run alphas in Table 2 is due to the
following reason. Conditional alphas at a point in time are hard to estimate as only observations
close to that point in time provide useful information. In our framework, the conditional esti-
mators converge at the nonparametric rate v/7'h, which is less than the classical rate v/T and
thus the conditional standard error bands are quite wide. This is exactly what Figure 2 shows
and what Ang and Chen (2007) pick up in an alternative parametric procedure.

In comparison, the long-run estimators converge at the standard rate /7" causing the long-
run alphas to have much tighter standard error bounds than the conditional alphas. The tests
for constancy of the conditional estimators also converge at rate /7. Intuitively, the long-run
estimators exploit the information in the full conditional time series: while the standard errors
for a given time point 7 are wide, the long-run and constancy tests recognize and exploit the

information from all 7. Note that Theorem 1 shows that the conditional alphas at different
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points in time are asymptotically uncorrelated. Intuitively, as averaging occurs over the whole
sample, the uncorrelated errors in individual point estimates diversify away as the sample size
increases.

Panel B of Figure 2 plots conditional betas of the growth and value deciles. Conditional
factor loadings are estimated relatively precisely with tight 95% confidence bands. Growth
betas are largely constant around 1.2, except after 2000 where growth betas decline to around
one. In contrast, conditional betas of value stocks are much more variable, ranging from close
to 1.3 in 1965 and around 0.45 in 2000. From this low, value stock betas increase to around one
at the end of the sample. We attribute the low relative returns of value stocks in the late 1990s
to the low betas of value stocks at this time.

In Figure 3, we plot conditional alphas and betas of the book-to-market strategy. Since the
conditional alphas and betas of growth stocks are fairly flat, almost all of the time variation
of the conditional alphas and betas of the book-to-market strategy is driven by the conditional
alphas and betas of the decile 10 value stocks. Figure 3 also overlays estimates of conditional
alphas and betas from a backward-looking, flat 12-month filter. Similar filters are employed by
Andersen et al. (2006) and Lewellen and Nagel (2006). Not surprisingly, the 12-month uniform
filter produces estimates with larger conditional variation. Some of this conditional variation
is smoothed away by using the longer bandwidths of our optimal estimators.® However, the
unconditional variation over the whole sample of the uniform filter estimates and the optimal
estimates are similar. For example, the standard deviation of end-of-month conditional beta esti-
mates from the uniform filter is 0.276, compared to 0.206 for the optimal two-sided conditional
beta estimates. This implies that Lewellen and Nagel’s (2007) analysis using backward-looking
uniform filters is conservative. Using our optimal estimators reduces the overall volatility of
the conditional betas making it even more unlikely that the value premium can be explained by
time-varying market factor loadings.

Several authors like Jagannathan and Wang (1996) and Lettau and Ludvigson (2001b) argue
that value stock betas increase during times when risk premia are high causing value stocks to
carry a premium to compensate investors for bearing this risk. Theoretical models of risk predict
that betas on value stocks should vary over time and be highest during times when marginal
utility is high (see for example, Gomes, Kogan and Zhang, 2003; Zhang, 2005). We investigate

how betas move over the business cycle in Table 4 where we regress conditional betas of the

8 The standard error bands of the uniform filters (not shown) are much larger than the standard error bands of

the optimal estimates.
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value-growth strategy onto various macro factors.

In Table 4, we find only weak evidence that the book-to-market strategy betas increase
during bad times. Regressions I-IX examine the covariation of conditional betas with individual
macro factors known to predict market excess returns. When dividend yields are high, the
market risk premium is high, and regression I shows that conditional betas covary positively
with dividend yields. However, this is the only variable that has a significant coefficient with
the correct sign. When bad times are proxied by high default spreads, high short rates, or high
market volatility, conditional betas of the book-to-market strategy tend to be lower. During
NBER recessions conditional betas also go the wrong way and tend to be lower. The industrial
production, term spread, Lettau and Ludvigson’s (2001a) cay, and inflation regressions have
insignificant coefficients. The industrial production coefficient also has the wrong predicted
sign.

In regression X, we find that book-to-market strategy betas do have significant covariation
with many macro factors. This regression has an impressive adjusted R? of 55%. Except for
the positive and significant coefficient on the dividend yield, the coefficients on the other macro
variables: the default spread, industrial production, short rate, term spread, market volatility,
and cay are either insignificant or have the wrong sign, or both. In regression XI, we perform
a similar exercise to Petkova and Zhang (2005). We first estimate the market risk premium
by running a first-stage regression of excess market returns over the next quarter onto the in-
struments in regression X measured at the beginning of the quarter. We define the market risk
premium as the fitted value of this regression at the beginning of each quarter. We find that
in regression XI, there is small positive covariation of conditional betas of value stocks with
these fitted market risk premia with a coefficient of 0.37 and a standard error of 0.18. But, the
adjusted R? of this regression is only 0.06. This is smaller than the covariation that Petkova
and Zhang (2005) find because they specify betas as linear functions of the same state variables
that drive the time variation of market risk premia. In summary, although conditional betas do
covary with macro variables, there is little evidence that betas of value stocks are higher during

times when the market risk premium is high.

4.3 Tests of the Conditional Fama-French (1993) Model

In this section, we examine alphas and factor loadings of a conditional version of the Fama and
French (1993) model estimated on the book-to-market portfolios and the book-to-market strat-

egy. Table 5 reports long-run alphas and factor loadings. After controlling for the Fama-French
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factors with time-varying factor loadings, the long-run alphas of the book-to-market portfolios
are still significantly different from zero and are positive for growth stocks and negative for
value stocks. The long-run alphas monotonically decline from 2.03% for decile 1 to -1.67% for
decile 10. The book-to-market strategy has a long-run alpha of -3.75% with a standard error of
0.010. The joint test across all ten book-to-market portfolios for the long-run alphas equal to
zero decisively rejects with a p-value of zero. Thus, the conditional Fama and French (1993)
model is overwhelmingly rejected.

Table 5 shows that long-run market factor loadings have only a small spread across growth
to value deciles, with the book-to-market strategy having a small long-run market loading of
0.192. In contrast, the long-run S M B loading is relatively large at 0.450, and would be zero if
the value effect were uniform across stocks of all sizes. Value stocks have a small size bias (see
Loughran, 1997) and this is reflected in the large long-run SM B loading. We expect, and find,
that long-run A M L loadings increase from -0.670 for growth stocks to 0.804 for value stocks,
with the book-to-market strategy having a long-run H M L loading of 1.476. The previously
positive long-run alphas for value stocks under the conditional CAPM become negative under
the conditional Fama-French model. The conditional Fama-French model over-compensates
for the high returns for value stocks by producing SM B and H M L factor loadings that are
relatively too large, leading to a negative long-run alpha for value stocks.

In Table 6, we conduct constancy tests of the conditional alphas and factor loadings. We fail
to reject for all book-to-market portfolios that the conditional alphas are constant. Whereas the
conditional betas exhibited large time variation in the conditional CAPM, we now cannot reject
that the conditional market factor loadings are constant. Table 6 reports rejections at the 99%
level that the S M B loadings and H M L loadings are constant for the extreme growth and value
deciles. For the book-to-market strategy, there is strong evidence that the SM B and HM L
loadings vary over time. Consequently, the time variation of conditional betas in the one-factor
model is now absorbed by time-varying SM B and H M L loadings in the conditional Fama-
French model.

We plot the conditional factor loadings in Figure 4. Market factor loadings range between
zero and 0.5. The SM B loadings generally remain above 0.5 until the mid-1970s and then
decline to approximately 0.2 in the mid-1980s. During the 1990s the SM B loadings strongly
trended upwards, particularly during the late 1990s bull market. This is a period where value
stocks performed poorly and the high SM B loadings translate into larger negative conditional

Fama-French alphas during this time. After 2000, the S M B loadings decrease to end the sample
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around 0.25.

Figure 4 shows that the H M L loadings are well above one for the whole sample and reach
a high of 1.91 in 1993 and end the sample at 1.25. Value strategies performed well coming
out of the early 1990s recession and the early 2000s recession, and H M L loadings during
these periods actually decrease for the book-to-market strategy. One may expect that the H M L
loadings should be constant because H M L is constructed by Fama and French (1993) as a zero-
cost mimicking portfolio to go long value stocks and short growth stocks, which is precisely
what the book-to-market strategy does. However, the breakpoints of the H M L factor are quite
different, at approximately thirds, compared to the first and last deciles of firms in the book-to-
market strategy. The fact that the H M L loadings vary so much over time indicates that growth
and value stocks in the 10% extremes covary quite differently with average growth and value
stocks in the middle of the distribution. Put another way, the 10% tail value stocks are not

simply levered versions of value stocks with lower and more typical book-to-market ratios.

5 Portfolios Sorted on Past Returns

In this section we test the conditional Fama and French (1993) model on decile portfolios sorted
by past returns. These portfolios are well known to strongly reject the null of the standard Fama
and French model with constant alphas and factor loadings. In Table 7, we report long-run
estimates of alphas and Fama-French factor loadings for each portfolio and the 10-1 momentum
strategy. The long-run alphas range from -6.50% with a standard error of 0.014 for the first loser
decile to 3.85% with a standard error of 0.010 to the tenth loser decile. The momentum strategy
has a long-run alpha of 11.0% with a standard error of 0.018. A joint test that the long-run alphas
are equal to zero rejects with a p-value of zero. Thus, a conditional version of the Fama-French
model cannot price the momentum portfolios.

Table 7 shows that there is no pattern in the long-run market factor loading across the mo-
mentum deciles and the momentum strategy is close to market neutral in the long run with a
long-run beta of 0.065. The long-run SM B loadings are small, except for the loser and win-
ner deciles at 0.391 and 0.357, respectively. These effectively cancel in the momentum strategy,
which is effectively S M B neutral. Finally, the long-run H M L loadings are noticeably negative
at -0.171 for the winner portfolio. The momentum strategy long-run H M L loading is -0.113
and the negative sign means that controlling for a conditional A M L loading exacerbates the

momentum effect, as firms with negative H M L exposures have low returns on average.

28



We can judge the impact of allowing for conditional Fama-French loadings in Figure 5
which graphs the long-run alphas of the momentum portfolios 1-10 and the long-run alpha of
the momentum strategy (portfolio 11 on the graph). We overlay the OLS alpha estimates which
assume constant factor loadings. The momentum strategy has a Fama-French OLS alpha of
16.7% with a standard error of 0.026. Table 7 reports that the long-run alpha controlling for
time-varying factor loadings is 11.0%. Thus, the conditional factor loadings have lowered the
momentum strategy alpha by almost 7% but this still leaves a large amount of the momentum
effect unexplained. Figure 5 shows that the reduction of the absolute values of OLS alphas
compared to the long-run conditional alphas is particularly large for both the extreme loser and
winner deciles.

In Table 8 we test for constancy of the Fama-French conditional alphas and factor loadings.
Like the book-to-market portfolios, we cannot reject that conditional alphas are constant. How-
ever, for the momentum strategy all conditional factor loadings vary significantly through time.
Table 8 shows that it is generally the loser and winner extreme quintiles that exhibit signifi-
cant time-varying factor loadings and the middle quintiles generally fail to reject the null that
the M KT, SM B, and H M L loadings vary through time. We plot the time variation of these
factor loadings for the momentum strategy in Figure 6.

Figure 6 shows that all the Fama-French conditional factor loadings vary significantly over
time and their variation is larger than the case of the book-to-market portfolios. Whereas the
standard deviation of the conditional betas is around 0.2 for the book-to-market strategy (see
Table 2), the standard deviations of the conditional Fama-French betas are 0.386, 0.584, and
0.658 for M KT, SM B, and HM L, respectively. Figure 6 also shows a marked common co-
variation of these factor loadings, with a correlation of 0.61 between conditional M KT' and
S M B loadings and a correlation of 0.43 between conditional SM B and H M L loadings. Dur-
ing the early 1970s all factor loadings generally increased and all factor loadings also generally
decrease during the late 1970s and through the 1980s. Beginning in 1990, all factor loadings
experience a sharp run up and also generally trend downwards over the mid- to late 1990s. At
the end of the sample the conditional A M L loading is still particularly high at over 1.5. De-
spite this very pronounced time variation, conditional Fama-French factor loadings still cannot

completely price the momentum portfolios.
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6 Conclusion

We develop a new nonparametric methodology for estimating conditional factor models. We
derive asymptotic distributions for conditional alphas and factor loadings at any point in time
and also for long-run alphas and factor loadings averaged over time. We also develop a test
for the null hypothesis that the conditional alphas and factor loadings are constant over time.
The tests can be run for single assets and also jointly for a system of assets. Like the classical
time-series factor model tests which assume constant betas, the distributions of conditional
alphas depend on, and are simultaneously estimated with, the distributions of conditional factor
loadings. In the special case where there is no time variation in the factor loadings, our tests
reduce to the well-known Gibbons, Ross and Shanken (1989) statistics.

We apply our tests to decile portfolios sorted by book-to-market ratios and past returns.
We find significant variation in factor loadings, but overwhelming evidence that a conditional
CAPM and a conditional version of the Fama and French (1993) model cannot account for the
value premium or the momentum effect. Joint tests for whether long-run alphas are equal to zero
in the presence of time-varying factor loadings decisively reject for both the conditional CAPM
and Fama-French models. We also find that conditional market betas for a book-to-market
strategy exhibit little covariation with market risk premia. Consistent with the book-to-market
and momentum portfolios rejecting the conditional models, accounting for time-varying factor
loadings only slightly reduces the OLS alphas from the unconditional CAPM and Fama-French
regressions which assume constant betas.

Our tests are easy to implement, powerful, and can be estimated asset-by-asset, just as in
the traditional classical tests like Gibbons, Ross and Shanken (1989). There are many further
empirical applications of the tests to other conditional factor models and other sets of portfolios.
Theoretically, the tests can also be extended to incorporate adaptive estimators to take account
the bias at the endpoints of the sample. While our empirical work refrained from reporting
conditional estimates close to the beginning and end of the sample and so did not suffer from
this bias, boundary kernels and locally linear estimators can be used to provide conditional
estimates at the endpoints. Such estimators can also be adapted to yield estimates of future

conditional alphas or factor loadings that do not use forward-looking information.
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Appendix

A Technical Assumptions

Our theoretical results are derived by specifying the following sequence of (vector) models:
Rry =% Xr, + Qi/QZT,t,

where v; = (ay, 3/)" and Xrt = (17 f’T’t)'. We assume that we have observed data in the interval [—a, T + a] for

some fixed a > 0 to avoid any boundary issues and keep the notation simple. Let C" [0, 1] denote the space of r
times continuously differentiable functions on the unit interval, [0, 1]. We impose the following assumptions:

A.1 The kernel K satisfies:
There exists B, L < oo such that either (i) K (u) = 0 for ||u|| > L and |K (u) — K (v')| < B|lu — /|,
or (ii) K (u) is differentiable with |0K (u) /Ou| < B and, for some v > 1, |0K (u) /Ou| < B ||ul|~" for
ull > L. Also, |K (u)] < B ||ul|”" for ||u|]| > L. For some r > 2: [, K (2)dz = 1, [ 2'K (z) dz = 0,
i=1,...,r—1and [;|2]" K () dz < oc.

A.2 The sequence { Ry, X7, 27} is B-mixing where the mixing coefficients are bounded, Sr (t) < 3 (t), with
the bounding sequence §3 (¢) satisfying 8 (£) = O (¢t~) for some b > 2 (s — 1) / (s — 2). The following
moment conditions hold: supys, sup,< E [[| X1, [|°] < co and sup,< E [||21,¢]|”] < oo for some 5 > 8.

A3 Elzr|Xre =0and B [zTytzénH_MXT,t} = Iy if k = 0 and zero otherwise forall 1 <t < T,T > 1.

A.3 The sequence 7; is given by 7; = v (t/T) + o (1) for some function 7y : [0, 1] +— RUFUXN which lies in
cm0,1].

A.4 The matrix sequences A, = E [X, X]] and , satisfy A, = A (¢/T) + o(1) and Q; = Q(¢/T) + o(1) for
functions A : [0,1] +— RUFDXU+D) and Q : [0,1] = RY*N which are positive definite and with their
individual elements lying in C" [0, 1].

A.5 The covariance matrix ¥ defined in equation (27) is non-singular.

A.6 The bandwidth satisfies Th?" — 0, log” (T) / (Th?) — O and 1/ (T*~¢h7/*) — 0 for some € > 0.

The assumption (A.1) imposed on the kernel K are satisfied by most kernels including the Gaussian and the
uniform kernel. For r» > 2, the requirement that the first » — 1 moments does however not hold for these two
standard kernels. This condition is only needed for the semiparametric estimation and in practice the impact of
using such so-called higher-order kernels is negligible. The mixing and moment conditions in (A.2) are satisfied by
most standard time-series models allowing, for example, f; to solve an ARMA model. The requirement that eighth
moments exist can be weakened to fourth moments in Theorem 1, but for simplicity we maintain this assumption
throughout. The smoothness conditions in (A.3)-(A.4) rule out jumps in the coefficients; Theorem 1 remains valid
at all points where no jumps has occurred, and we conjecture that Theorems 2 and 3 remain valid with a finite jump
activity since this will have a minor impact as we smooth over the whole time interval. The requirement in (A.5)
that > > 0 is an identification condition used to identify the constant component in ; under Hy; this is similar to
the condition imposed in Robinson (1988). The conditions on the bandwidth is only needed for the semiparametric
estimators and entails undersmoothing in the kernel estimation.

B Proofs

Proof of Theorem 1. The proof follows along the exact same lines as in Kristensen (2008b, Proof of Theorem 1),
except that the response variable here is multivariate. This does not change any of the steps though. m

Proof of Theorem 2. We write K,; = K}, (s — t) /T") with similar notation for other variables. Define A, =
Ty KaX. X, and iy =T~ > K, ; X; R} such that:

A — e = A g — A Py, (B-1)
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where m; = E [X:R;] = A47:. By a second-order Taylor expansion of the right hand side,

B =y o= AT [ —me] = A7 [At_At] Ve
+0 (|[rine — my?) +O<|\[\t—At||2>. (B-2)
By Kristensen (2009, Theorem 1), we obtain that uniformly over 1 <¢ < 7T,
My = my+Op(h")+Op ( log () / (Th))
A = A +0p(h)+0p ( log (T) / (Th)) , (B-3)

such that the two remainder terms are both op(1/ V/T) given the conditions imposed on h.
Using this result,

ALR — LR =

{At_l [y —my] — A {[\t - At} %} +op(1/VT)

N[ =
N

o~
Il
o

(A7 Ko XoRL —my] — A [K g X X, — A v} + op(1/VT)

[

3 -
M=
M=

w
Il
—
~~
Il
—

a(Zs, Zi) + op(1/VT), (B-4)

Il
3=
B
B

w0
I
—
~~
Il

1
where Z; = (&4, X4, t) and
a(Zs, Zy) = AV[KagXR,—my] — A7 [Ke X X — Ay
= K A 'X,[R. — Xy
= stAilX [X/'YS +es — X;%]

= KyA ' Xl + KgA X X [ys — v
Defining
0 (Zs, Zy) = a(Zs, Z4) + a(Zy, Zs) (B-5)
we may write
T T T_1 1 I
TQZZa Za ) = ——Ur+ 5 > 6 (2. 21), (B-6)
s=1t=1 t=1

where Ur = > 1 ¢ (Z57 Zy) / [T (T —1)]. Here, ZtT 10 (Zy, Zy) J/T? = Op (1/T), while, by the Hoeffding
decomposition, Uy = 2 Zt 16 (Z;) /T + Ar. The projection function ¢ (2), z = (e, x, 7), is given by

¢(2) =E[¢(2,Z)] = Ela(z,Z)] + E[a(Zs,2)], (B-7)

where

T
Ela(z,Z)] = K (t—t) At (t) wedt

—|—/ K (1t —t) A (8) 2z’ [y (s) — v (t)] dt

= A7'ze + AT za' 4 x BT 40 (R7),

T
Ela(Zs,2)] /0 Kn (s — 1) A~ () E[X.e] ds

+ / K (s — ) AL (7) B [X. X1 [y (3) — 7 ()] ds
0

= W xh +o(h),
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and wt(T) = (") (t/T) with v(") (-) denoting the rth order derivative of y (-). In total,

G(Z) = A x Xueh + AT XX ) T+ x BT 4o (hT). (B-8)

By Denker and Keller (1983, Proposition 2), the remainder term of the decomposition, A, satisfies Ap =

1/(2496)
Op (T~'*/2s1,5) for any € > 0, where s7,5 = sup, , E {|¢ (Zs, Zt)|2+5} Thus,
= swpB|lo (2. 2] (B-9)
< 25w E ||a(Zs, Z0)
s,t
ot 243 || A —1 2+96 2+6 2+6
< 2 [ [ RGO AT )P B (I B e ()] dsde
T T
5 — 2+6 § é
2 [ [ 1= 0P A @ B [ 1 (0 = (0 dsa
C
<

< /OT “A‘l (t)HHéE [HXtHQM} E {Hﬁ”zﬂ} dt + 0 (1)

- 0 (h—<1+5>) . (B-10)

Choosing § = 6, we obtain VTAr =Op (T(*He)/zh”/s). In total,

\/T(’AVLR - ’YLR) = ﬁiA;lXﬁt + Op (\/Thr)
+Op (log (T)/ (\/Th)) +O0p (1/ (T“*)/?h”s)) , (B-11)

where, applying standard CLT results for heterogenous mixing sequences, see for example Wooldridge and White
(1988),

T
\/TZ A Xe, =4 N (0, Vig). (B-12)
t=1

Proof of Theorem 3. This follows from Kristensen (2008b, Theorem 2). m

C Gibbons, Ross and Shanken (1989) as a Special Case

First, we derive the asymptotic distribution of the Gibbons, Igoss and Shanken (1989) [GRS] estimators within our
setting. The GRS estimator which we denote 4.r = (LR, OLR) is a standard least squares estimator of the form

[i thg] : [Z X

YLR

I
M~
ke
gl
|
M=
<
gl
2
+

= YR +U, (D

where



and
-1

. T Lo T
VTUp S N O,(/O A(s)ds) (/0 A(S)@Q(s)ds) (/0 A(s)ds)

To separately investigate the performance of arr, we note that yr.r = (@LR, BLR)/ can be written as

Bun = /Var 12)d ] /COV o R
Gin = /0 (E[RJ)ds — BuE[f.]) ds, (C-2)

while y.r = (arr, fLr) can be written as

T
Bir / [Var (f,) ds] ™ Cov (f., R,) ds

on = / (B[R] - B.F[.]) ds. (©3)

From these two sets of expressions, we see that in general the GRS estimator will be inconsistent since it is
centered around Jrr # YLr. However, in the case where 3, = ( is constant, f,g = [pr Which in turn implies
that @r,g = ar,r- Thus, when the betas exhibit no time variation, g is a consistent estimator of Y.

Finally, we note that in the case of constant alphas and betas and homoskedastic errors, 25 = €2, the variance
of our proposed estimator of v,r is identical to the one of the GRS estimator.

D Two-Sided versus One-Sided Filters

One can show that with a two-sided symmetric kernel where p; = [ K (2) 2dz = 0and po = [ K (2) 2%dz < oo,
the finite-sample variance is

1
var (9i4) = 77, Vit +0(1/(Th)) with w;; = kaA; Qs s, (D-1)
while the bias is given by
Bias (3i,0) = R3¢ + 0 (k%) with ¢ = pA;! A A+ AN (D-2)

where we have assumed that A; and ; ; are twice differentiable with first and second order derivatives Agk) and

%, t), k = 1,2. In this case the bias is of order O (h2) When a one-sided kernel is used, the variance remains

unchanged, but since ;1 # 0 the bias now takes the form
Bias (9,1) = h(P +o(h)  with % = ALY D-3
1as (%,t) Cz,t +o(h) wi Cz,t pidy Yit - (D-3)

The bias is in this case of order O (h) and is therefore larger compared to when a two-sided kernel is employed.
As a consequence, for the symmetric kernel the optimal bandwidth is

B — < [|vi]] >1/5 T-1/5 (D-4)
S\ ’
where (" = T! Zt G and v = T Zthl v; ¢ are the integrated versions of the time-varying bias and

variance components. With th1s bandwidth choice, the integrated RMSE is of order O (T*Q/ 5), where the inte-
grated RMSE is defined as
N 2 2
(f Bl = 2erlr
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If on the other hand a one-sided kernel is used, the optimal bandwidth is

e (el N D5
+ = el | 0=

with the corresponding integrated RMSE being of order O (T -1/ 3). Thus, the symmetric kernel integrated RMSE
is generally smaller and substantially smaller if 7" is large.’

E Bandwidth Choice for Long-Run Estimators

We here follow the arguments of Hérdle, Hall and Marron (1992), Stoker (1993) and Powell and Stoker (1996) to
derive an optimal bandwidth for estimating the integrated or long-run gammas. We first note that, c.f. Proof of
Theorem 2,

T
1
Ak =YLk = gy 90 O 0(Ze Z) +op (1VT)), (E-1)
T(T-1) t=1 s<t
where Z; = (e, X4, 1), & (Zs, Zy) = a(Zs, Zy) + a (Zs, Z), and
a(Zs, Zy) = Kp (s —t) Ay ' Xyey + K, (s — ) A7 "X X[ [vs — v -

Thus, our estimator is approximately on the form of a U-statistic and the general result of Powell and Stoker (1996,
Proposition 3.1) [PS] can be applied if we can verify their Assumptions 1 and 2. Their Assumptions 1-2 state that
the function a (Zs, Z;) has to satisfy (PS.i) E'[¢ (2, Z;)] = s(z) h® + o(h®') and (PS.ii) E [||¢ (2, Z,-)||2} =
q(2) h=® + o (h=22) for some ay,as > 0 and some functions s (z) and ¢ (z).'°
First, we verify (PS.i): Define

¢(2)=Ed (2, %)) = Ela(z,2Z))| + Ela(Z,2)]. (E-2)
With z = (e, x, 7), it follows from the proof of Theorem 2 that
Ela(z,2)] = A Y(r)aze + A (r)xa'y") (1) x B" + o (R")
Ela(Zs,2)] = A" (1) xh"+o(h"), (E-3)

where (") (¢) is the 7th order derivative of ~ (t). In total,
B(Z) = A7 Xoeh + AT X XA x b 44 < BT 4o (BT (E-4)

Thus, (PS.i) holds with a; = r and
s(Z) = AT X X+
To verify (PS.ii), note that

E¢(Zs,2)$(Zs,2)] = Ela(Zs,2)a(Zs,2) | +Ea(z,Z)a(z Z)]
= /K,QL (s — 1) dsA2za’ee’ + /K,QL (s — 1) A2 wa’|\2 s — ’)/THQdS
+/K,21 (7' — t) At_QE [XtXt] E [c"‘:té‘;] dt

4 [ Ko=) A7 (16X I =l e

= h7'ky x [APzalee’ + AT'Q ] +o(RTT). (E-5)

° The two exceptions are if one wishes to estimate alphas and betas at time ¢t = 0 and t = T'. In these cases, the
symmetric kernel suffers from boundary bias while a forward- and backward-looking kernel estimator, respectively,
remain asymptotically unbiased. We avoid this case in our empirical work by omitting the first and last years in
our sample when estimating conditional alphas and betas.

10 Their results are derived under the assumption of LI.D. observations, but can be extended to hold under our
assumptions (A.1)-(A.5).
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Thus, (PS.ii) holds with a; = 1 and
q (Zt) = HQA;Z [XtX,gEtE; + AtQt] .

It now follows from Powell and Stoker (1996, Proposition 3.1) that an approximation of the optimal bandwidth
is given by

1/(1+2r 2/(142r
b R i
where r > 1 is the number of derivatives (or the degree of smoothness of the alphas and betas) and
1 & 1 &
Elqi (2)] = 252 x lim = Z A Qs and Elsi ()] =2 lim ;mﬁ?.
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Table 1: Summary Statistics of Factors and Portfolios

Panel A: Factors

Correlations
Mean Stdev MKT SMB HML
MKT 0.0532 0.1414 1.0000 -0.2264 -0.5821
SMB 0.0184 0.0787 -0.2264 1.0000 -0.0631
HML 0.0524 0.0721 -0.5812 -0.0631 1.0000

Panel B: Portfolios

OLS Estimates

Mean  Stdev aors BO LS

Book-to-Market Portfolios

1 Growth 0.0384 0.1729 -0.0235 1.1641
2 0.0525 0.1554 -0.0033 1.0486
3 0.0551 0.1465 0.0032 0.9764
4 0.0581 0.1433 0.0082 0.9386
5 0.0589 0.1369 0.0121 0.8782
6 0.0697 0.1331 0.0243 0.8534
7 0.0795 0.1315 0.0355 0.8271
8 0.0799 0.1264 0.0380 0.7878
9 0.0908 0.1367 0.0462 0.8367
10 Value 0.0997 0.1470 0.0537 0.8633
10-1 Book-to-Market Strategy  0.0613  0.1193  0.0773  -0.3007
Momentum Portfolios

1 Losers -0.0393 0.2027 -0.1015 1.1686
2 0.0226 0.1687 -0.0320 1.0261
3 0.0515 0.1494 0.0016  0.9375
4 0.0492 0.1449 -0.0001 0.9258
5 0.0355 0.1394 -0.0120 0.8934
6 0.0521 0.1385 0.0044 0.8962
7 0.0492 0.1407 0.0005 0.9158
8 0.0808 0.1461  0.0304 0.9480
9 0.0798 0.1571  0.0256 1.0195
10 Winners 0.1314 0.1984 0.0654 1.2404
10-1 Momentum Strategy 0.1707 0.1694  0.1669 0.0718
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Note to Table 1

We report summary statistics of Fama and French (1993) factors in Panel A and book-to-market and momen-
tum portfolios in Panel B. Data is at a daily frequency and spans July 1964 to December 2006 and are from
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. We annualize means and standard
deviations by multiplying the daily estimates by 252 and /252, respectively. The portfolio returns are in ex-
cess of the daily Ibbotson risk-free rate except for the 10-1 book-to-market and momentum strategies which
are simply differences between portfolio 10 and portfolio 1. The last two columns in Panel B report OLS
estimates of constant alphas (o g) and betas (Bors). These are obtained by regressing the daily portfolio
excess returns onto daily market excess returns.
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Table 2: Alphas and Betas of Book-to-Market Portfolios

Stdev of
Bandwidth Conditional Estimates Long-Run Estimates
Fraction Months Alpha Beta Alpha Beta
1 Growth 0.0474 50.8 0.0121 0.0558 -0.0219 1.1721
(0.0077)  (0.0040)
2 0.0989 105.9 0.0028 0.0410 -0.0046 1.0563
(0.0067)  (0.0034)
3 0.0349 37.4 0.0070 0.0701 0.0001 0.9938
(0.0071)  (0.0035)
4 0.0294 31.5 0.0136 0.0727 0.0031 0.9456
(0.0076)  (0.0035)
5 0.0379 40.6 0.0113 0.0842 0.0084 0.8990
(0.0082)  (0.0039)
6 0.0213 22.8 0.0131 0.0871 0.0185 0.8865
(0.0079)  (0.0038)
7 0.0188 20.1 0.0148 0.1144 0.0270 0.8777
(0.0083)  (0.0039)
8 0.0213 22.8 0.0163 0.1316 0.0313 0.8444
(0.0081)  (0.0039)
9 0.0160 17.2 0.0184 0.1497 0.0374 0.8966
(0.0092)  (0.0046)
10 Value 0.0182 19.5 0.0232 0.1911 0.0464 0.9568
(0.0110)  (0.0055)
10-1 Book-to-Market Strategy ~ 0.0217 23.3 0.0346 0.2059 0.0674 -0.2170

(0.0153)  (0.0077)

Joint test for ap,p; = 0,7 =1,...,10
Wald statistic Wy = 32.95, p-value = 0.0003

The table reports conditional bandwidths (h; 2 in equation (31)) and various statistics of conditional and
long-run alphas and betas from a conditional CAPM of the book-to-market portfolios. The bandwidths are
reported in fractions of the entire sample, which corresponds to 1, and in monthly equivalent units. We
transform the fraction to a monthly equivalent unit by multiplying by 533 x 1.96/0.975, where there are
533 months in the sample, and the intervals (—1.96, 1.96) and (—0.975, 0.975) correspond to cumulative
probabilities of 95% for the unscaled normal and uniform kernel, respectively. The conditional alphas and
betas are computed at the end of each calendar month, and we report the standard deviations of the monthly
conditional estimates in the columns labeled “Stdev of Conditional Estimates” following Theorem 1 using the
conditional bandwidths in the columns labeled “Bandwidth.” The long-run estimates, with standard errors
in parentheses, are computed following Theorem 2 and average daily estimates of conditional alphas and
betas. The long-run bandwidths apply the transformation in equation (32) with 7' = 11202 days. Both the
conditional and the long-run alphas are annualized by multiplying by 252. The joint test for long-run alphas
equal to zero is given by the Wald test statistic Wy in equation (16). The full data sample is from July 1963
to December 2007, but the conditional and long-run estimates span July 1964 to December 2006 to avoid the
bias at the endpoints.
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Table 3: Tests of Constant Conditional Alphas and Betas of Book-to-Market Portfolios

Alpha Beta

Critical Values Critical Values

Wi 95% 99% Wi 95% 99%

1 Growth 82 232 242 515 232 242
2 17 116 123 512*% 116 123
3 46 311 322 476** 311 322
4 83 367 378 496** 367 378
5 55 287 298 630** 287 298
6 96 501 515 695** 501 515
7 131 566 581 769** 566 581
8 136 502 516 850** 502 516
9 156 659 675 1047** 659 675
10 Value 209 583 598 1162** 583 598
10-1 Book-to-Market Strategy 212 491 505 951** 491 505

We test for constancy of the conditional alphas and betas in a conditional CAPM using the Wald test of
Theorem 3. In the columns labeled “Alpha” (“Beta”) we test the null that the conditional alphas (betas)
are constant. We report the test statistic W; given in equation (25) and 95% and 99% critical values of the
asymptotic distribution. We mark rejections at the 99% level with **.
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Table 5: Long-Run Fama-French (1993) Alphas and Factor Loadings of Book-to-Market Port-
folios

Alpha MKT SMB HML

1 Growth 0.0203 09781 -0.1781  -0.6701
(0.0055)  (0.0042) (0.0061) (0.0075)
2 00118 09693  -0.0650 -0.2776
(0.0060) (0.0044) (0.0065) (0.0080)
3 0.0056 09698  -0.0202 -0.1136
(0.0067)  (0.0050) (0.0074)  (0.0089)
4 0.0054 09976 00178  0.1535
(0.0072)  (0.0052) (0.0076) (0.0095)
5 0.0014 09671  0.0021  0.2599
(0.0075)  (0.0055) (0.0082) (0.0101)
6 0.0014 09827 00637  0.299
(0.0072)  (0.0053) (0.0079)  (0.0096)
7 0.0119 10053 00871 04252
(0.0071)  (0.0051) (0.0077) (0.0093)
8 0.0132  1.0361  0.1057  0.7108
(0.0057)  (0.0041) (0.0062) (0.0076)
9 0.0163  1.1021  0.1369  0.7738
(0.0068)  (0.0050) (0.0077) (0.0092)
10 Value 0.0167 1.1699 02717  0.8040

(0.0090) (0.0066) (0.0098) (0.0121)

10-1 Book-to-Market Strategy ~ -0.0375  0.1924 0.4501 1.4756
(0.0102) (0.0075) (0.0111) (0.0136)

Joint test for arr; = 0,7 =1,...,10
Wald statistic Wy = 78.92, p-value = 0.0000

The table reports long-run estimates of alphas and factor loadings from a conditional Fama and French (1993)
model applied to decile book-to-market portfolios and the 10-1 book-to-market strategy. The long-run esti-
mates, with standard errors in parentheses, are computed following Theorem 2 and average daily estimates
of conditional alphas and betas. The long-run alphas are annualized by multiplying by 252. The joint test for
long-run alphas equal to zero is given by the Wald test statistic W in equation (16). The full data sample is
from July 1963 to December 2007, but the long-run estimates span July 1964 to December 2006 to avoid the
bias at the endpoints.
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Table 6: Tests of Constant Conditional Fama-French (1993) Alphas and Factor Loadings of
Book-to-Market Portfolios

Alpha MKT SMB HML

Wi 95% Wi 95% W 95% Wi 95%
1 Growth 102 518 499 518 782** 518 3285 518
2 117 635 431 635 478 635 1090** 635
3 71 516 230 516 256 516 491 516
4 68 429 254 429 263 429 451 429
5 55 391 245 391 230 391 713** 391
6 67 436 243 436 357 436 831** 436
7 92 644 256 644 483 644 1220** 644
8 119 673 278 673 547 673 3485 673
9 74 492 234 492 548 492 3173** 492
10 Value 79 440 420 440 649** 440 2237** 440

10-1 Book-to-Market Strategy 85 467 338 467 1089** 467 4313** 467

The table reports W test statistics from equation (25) of tests of constancy of conditional alphas and factor
loadings from a conditional Fama and French (1993) model applied to decile book-to-market portfolios and
the 10-1 book-to-market strategy. Constancy tests are done separately for each alpha or factor loading on
each portfolio. We report the test statistic W7 and 95% critical values of the asymptotic distribution. We
mark rejections at the 99% level with **. The full data sample is from July 1963 to December 2007, but the
conditional estimates span July 1964 to December 2006 to avoid the bias at the endpoints.
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Table 7: Long-Run Fama-French (1993) Alphas and Factor Loadings of Momentum Portfolios

Alpha MKT SMB HML

1 Losers 0.0650 1.1836 03913  -0.0560
(0.0135) (0.0093) (0.0134) (0.0164)
2 0.0061  1.0442  0.0944  0.0292
(0.0100) (0.0073) (0.0103) (0.0128)
3 0.0118 09754 -0.0266  0.0495
(0.0086)  (0.0062) (0.0090) (0.0111)
4 0.1284 09622 -0.0525 0.0778
(0.0082) (0.0060) (0.0087) (0.0106)
5 0.0054 09360 -0.0564  0.0575
(0.0081) (0.0058) (0.0084) (0.0103)
6 20.0045 09579  -0.0344  0.1081
(0.0076)  (0.0055) (0.0081)  (0.0099)
7 0.0171 09831 -0.0255  0.0960
(0.0074)  (0.0054) (0.0079)  (0.0096)
8 0.0131  1.0228  -0.0270  0.0944
(0.0073)  (0.0053) (0.0079) (0.0096)
9 0.0018  1.0868  0.0758  0.0331
(0.0076)  (0.0056) (0.0083) (0.0102)
10 Winners 0.0385  1.2501 03572  -0.1705

(0.0100) (0.0075) (0.0107) (0.0134)

10-1 Momentum Strategy ~ 0.1101 0.0653 -0.0341  -0.1127
(0.0184) (0.0128) (0.0184) (0.0228)

Joint test for arp; = 0,7 =1,...,10
Wald statistic Wy = 159.7, p-value = 0.0000

The table reports long-run estimates of alphas and factor loadings from a conditional Fama and French (1993)
model applied to decile momentum portfolios and the 10-1 momentum strategy. The long-run estimates, with
standard errors in parentheses, are computed following Theorem 2 and average daily estimates of conditional
alphas and betas. The long-run alphas are annualized by multiplying by 252. The joint test for long-run
alphas equal to zero is given by the Wald test statistic W in equation (16). The full data sample is from July
1963 to December 2007, but the long-run estimates span July 1964 to December 2006 to avoid the bias at the
endpoints.
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Table 8: Tests of Constant Conditional Fama-French (1993) Alphas and Factor Loadings of
Momentum Portfolios

Alpha MKT SMB HML

Wi 95% Wi 95% Wy 95% Wy 95%
1 Losers 195 677 743 677 1178** 677 611" 677
2 165 734 776** 734 603 734 730* 734
3 134 620 586 620 460 620 473 620
4 85 476 340 476 356 476 429 476
5 52 321 224 321 263 321 340 321
6 60 324 141 324 224 324 277 324
7 77 399 187 399 287 399 270 399
8 129 707 389 707 512 707 466 707
9 142 786 655 786 689 786 657 786
10 Winners 157 631 848** 631 1090** 631 897** 631
10-1 Momentum Strategy 245 748 1000** 748 945** 748 906** 748

The table reports W test statistics in equation (25) of tests of constancy of conditional alphas and factor
loadings from a conditional Fama and French (1993) model applied to decile book-to-market portfolios and
the 10-1 book-to-market strategy. Constancy tests are done separately for each alpha or factor loading on
each portfolio. We report the test statistic W and 95% critical values of the asymptotic distribution. We
mark rejections at the 95% and 99% level with * and **, respectively. The full data sample is from July 1963
to December 2007, but the conditional estimates span July 1964 to December 2006 to avoid the bias at the
endpoints.
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Figure 1: Long-Run Conditional CAPM Alphas versus OLS Alphas for the Book-to-Market
Portfolios
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We plot long-run alphas implied by a conditional CAPM and OLS alphas for the book-to-market portfolios.
We plot the long-run alphas using squares with 95% confidence intervals displayed by the solid error bars.
The point estimates of the OLS alphas are plotted as circles with 95% confidence intervals in dashed lines.
Portfolios 1-10 on the x-axis represent the growth to value decile portfolios. Portfolio 11 is the book-to-
market strategy, which goes long portfolio 10 and short portfolio 1. The long-run conditional and OLS alphas
are annualized by multiplying by 252.
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Figure 2: Conditional Alphas and Betas of Growth and Value Portfolios
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The figure shows monthly estimates of conditional alphas (Panel A) and conditional betas (Panel B) from a
conditional CAPM of the first and tenth decile book-to-market portfolios (growth and value, respectively).
We plot 95% confidence bands in dashed lines. The conditional alphas are annualized by multiplying by 252.
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Figure 3: Conditional Alphas and Betas of the Book-to-Market Strategy
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The figure shows monthly estimates of conditional alphas (top panel) and conditional betas (bottom panel)
of the book-to-market strategy. We plot the optimal estimates in bold solid lines along with 95% confidence
bands in regular solid lines. We also overlay the backward one-year uniform estimates in dashed lines. NBER
recession periods are shaded in horizontal bars.
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Figure 4: Conditional Fama-French (1993) Loadings of the Book-to-Market Strategy
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The figure shows monthly estimates of conditional Fama-French (1993) factor loadings of the book-to-market
strategy, which goes long the 10th book-to-market decile portfolio and short the 1st book-to-market decile
portfolio. We plot the optimal estimates in bold lines along with 95% confidence bands in regular lines.
NBER recession periods are shaded in horizontal bars.

52



Figure 5: Long-Run Fama-French (1993) Alphas versus OLS Alphas for the Momentum Port-
folios
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We plot long-run alphas from a conditional Fama and French (1993) model and OLS Fama-French alphas for
the momentum portfolios. We plot the long-run alphas using squares with 95% confidence intervals displayed
in the error bars. The point estimates of the OLS alphas are plotted as circles with 95% confidence intervals
in dashed lines. Portfolios 1-10 on the x-axis represent the loser to winner decile portfolios. Portfolio 11 is
the momentum strategy, which goes long portfolio 10 and short portfolio 1. The long-run conditional and
OLS alphas are annualized by multiplying by 252.
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Figure 6: Conditional Fama-French (1993) Loadings of the Momentum Strategy
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The figure shows monthly estimates of conditional Fama-French (1993) factor loadings of the momentum
strategy, which goes long the 10th past return decile portfolio and short the 1st past return decile portfolio.
NBER recession periods are shaded in horizontal bars.
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