Lévy Processes

Liuren Wu

Definition Examples Generation Evidence Jump design Beyond Lévy processes

Conclusion

Lévy Processes and Option Pricing

Liuren Wu

Zicklin School of Business, Baruch College

Derivatives 2007: New Ideas, New Instruments, New Markets

May 18, 2007

NYU Stern School of Business

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Outline

Definition

Examples

Generation

Evidence

Jump design

Beyond Lévy processes

Conclusion

Lévy Processes

Liuren Wu

Definitior

Examples

Generation

Evidence

Jump design

Beyond Lévy processes

Conclusion

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Diffusion, jumps, & Lévy processes

- A Lévy process is a continuous-time process that generates stationary, independent increments ...
- Think of return innovations (ε) in discrete time: $R_{t+1} = \mu_t + \sigma_t \varepsilon_{t+1}$.
 - Normal return innovation diffusion
 - Non-normal return innovation jumps
- Traditional Lévy specifications:
 - either a Brownian motion (Black-Scholes)
 - or a compound Poisson process with normal jump size (Merton).
 - \Rightarrow The return innovation distribution is either normal or mixture of normals.

Liuren Wu

Definition

Examples

Generation

Evidence

Jump design

Beyond Lévy processes

Lévy processes and return innovations

- Lévy processes greatly expand our continuous-time choices of iid return innovation distributions via the Lévy triplet $(\mu, \sigma, \pi(x))$. $(\pi(x)$ -Lévy density).
- The Lévy-Khintchine Theorem:

$$\begin{array}{lll} \phi_{X_t}(u) &\equiv & \mathbb{E}\left[e^{iuX_t}\right] = e^{-t\psi(u)}, & & \text{Conclusion} \\ \psi(u) &= & -iu\mu + \frac{1}{2}u^2\sigma^2 + \int_{\mathbb{R}_0} \left(1 - e^{iux} + iux\mathbf{1}_{|x|<1}\right)\pi(x)dx, \end{array}$$

Innovation distribution

- \leftrightarrow characteristic exponent $\psi(u)$
- \leftrightarrow Lévy triplet $(\mu, \sigma, \pi(\mathbf{x}))$
 - Constraint: $\int_0^1 x^2 \pi(x) dx < \infty$ (finite quadratic variation).

Lévy Processes

Liuren Wu

Definition

Tractable examples

- Brownian motion $(\mu t + \sigma W_t)$: normal shocks.
- Merton's compound Poisson jumps: Large but rare events.

$$\pi(x) = \lambda \frac{1}{\sqrt{2\pi v_J}} \exp\left(-\frac{(x-\mu_J)^2}{2v_J}\right).$$

Dampened power law (DPL):

$$\pi(x) = \left\{ egin{array}{ll} \lambda \exp\left(-eta_\pm x
ight) x^{-lpha-1}, & x>0, & \lambda, eta_\pm>0, \ \lambda \exp\left(-eta_\pm |x|
ight) |x|^{-lpha-1}, & x<0, & lpha\in [-1,2) \end{array}
ight.$$

- Finite activity when α < 0: ∫_{ℝ⁰} π(x)dx < ∞. Large and rare events.</p>
- Infinite activity when α ≥ 0: Both small and large jumps. Jump frequency increase with declining jump size, and approaches infinity as x → 0.
- Infinite variation when $\alpha \ge 1$: many small jumps.

Lévy Processes

Liuren Wu

Definition

Examples

Generation

Evidence

Jump design

Beyond Lévy processes

Analytical characteristic exponents

• Diffusion:
$$\psi(u) = -iu\mu + \frac{1}{2}u^2\sigma^2$$

Merton's compound Poisson jumps:

$$\psi(u) = \lambda \left(1 - e^{iu\mu_J - \frac{1}{2}u^2 v_J} \right)$$

► Dampened power law: (for
$$\alpha \neq 0, 1$$
)
 $\psi(u) = -\lambda \Gamma(-\alpha) \left[(\beta_+ - iu)^{\alpha} - \beta_+^{\alpha} + (\beta_- + iu)^{\alpha} - \beta_-^{\alpha} \right]$

- When α → 2, smooth transition to diffusion (quadratic function of u).
- When $\alpha = 0$ (Variance-gamma by Madan et al):

$$\psi(u) = \lambda \ln \left(1 - iu/\beta_+\right) \left(1 + iu/\beta_-\right).$$

▶ When $\alpha = 1$, exponentially dampened Cauchy, Wu (06): $\psi(u) = -\lambda \left(\left(\beta_+ - iu\right) \ln \left(\beta_+ - iu\right) / \beta_+ + \lambda \left(\beta_- + iu\right) \ln \left(\beta_- + iu\right) / \beta_- \right).$

Lévy Processes

Liuren Wu

Definition

Examples

Generation

Evidence

Jump design

Beyond Lévy processes

Conclusion

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶ ▲□▶

Other Lévy examples

- The normal inverse Gaussian (NIG) process of Barndorff-Nielsen (1998)
- The generalized hyperbolic process (Eberlein, Keller, Prause (1998))
- The Meixner process (Schoutens (2003))
- All tractable in terms of the characteristic exponents ψ(u).
- We can use FFT to generate the density function of the innovation (for model estimation).
- We can also use FFT to compute option values.

▲ロト ▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ の Q @ ●

Lévy Processes

Liuren Wu

Definition

Examples

Generation

Evidence

Jump design

Beyond Lévy processes

Run Brownian motions on a business clock

- Clark (1973): If one runs a Brownian motion on a business clock, the resulting process matches financial time series better.
- The possibility that business clock may not move while calendar time marches forward is important ...
 - ► A standard Poisson process ⇒ the resulting process is a compound Poisson process with normal jump sizes.
 - A compound Poisson process with exponentially distributed jump size \Rightarrow double-exponential compound Poisson process. (DPL with $\alpha = -1$)
 - A gamma process \Rightarrow variance gamma (DPL with $\alpha = 0$).
 - A continuous clock \Rightarrow a continuous process.

Lévy Processes

Liuren Wu

Definition

Examples

Generation

Evidence

Jump design

Beyond Lévy processes

General evidence on Lévy return innovations

Credit risk: (compound) Poisson process

- The whole intensity-based credit modeling literature...
- Market risk: Infinite-activity jumps
 - Evidence from stock returns (CGMY (2002)): The α estimates for DPL on most stock return series are greater than zero.
 - Evidence from options: Models with infinite-activity return innovations price equity index options better (Carr and Wu (2003), Huang and Wu (2004))
 - Li, Wells, and Yu (2006): Infinite-activity jumps cannot be approximated by finite-activity jumps.

Lévy Processes

Liuren Wu

Definition

Examples

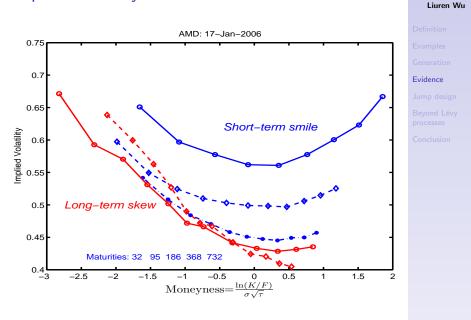
Generation

Evidence

Jump design

Beyond Lévy processes

Implied volatility smiles & skews on a stock



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Lévy Processes

Implied volatility skews on SPX

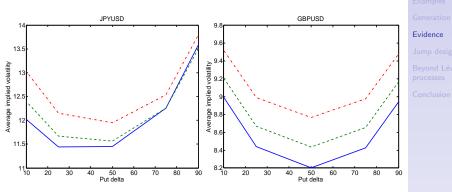
SPX: 17-Jan-2006 0.22 0.2 Evidence More skews than smiles 0.18 Implied Volatility 0.16 0.14 0.12 0.1 Maturities: 32 60 151 242 333 704 0.08L -2.5 -2 -1.5 -0.5 0.5 1.5 -1 0 1 2 Moneyness= $\frac{\ln(K/F)}{\sigma\sqrt{\tau}}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Lévy Processes

Average implied volatility smiles on currencies

Lévy Processes



Maturities: 1m (solid), 3m (dashed), 1y (dash-dotted)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Implied volatility smiles at short maturities

- ► Implied volatility smiles/skews ↔ non-normality/asymmetry for the underlying asset return risk-neutral distribution.
- Both jumps and stochastic volatility can generate return normalities, through different mechanisms.

 $R_{t+1} = \mu_t + \sigma_t \varepsilon_{t+1}$

- Jumps generate non-normality through the innovation distribution (ε).
- Stochastic volatility generates non-normality through mixing over multiple periods.
- Over short maturities (1 period), only jumps contribute to return non-normalities.

Lévy Processes

Liuren Wu

Definition

Examples

Generation

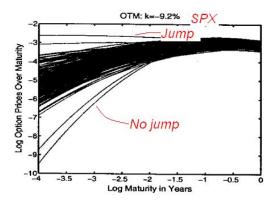
Evidence

Jump design

Beyond Lévy Processes

Time decay of short-term OTM options

- As option maturity \downarrow zero, OTM option value \downarrow zero.
- ► The speed of decay is exponential O(e^{-c/T}) under pure diffusion, but linear O(T) in the presence of jumps.
- Term decay plot (Carr&Wu,2003): $\ln(T) \sim \ln(OTM/T)$:



Lévy Processes

Liuren Wu

Examples Generation Evidence

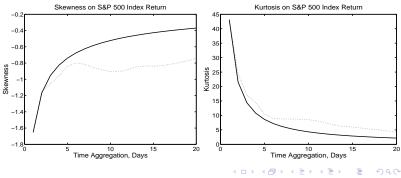
Jump design

Beyond Lévy processes

Conclusion

Central Limit Theorem (CLT) at long horizons

- CLT: As option maturity increases, the smile should flatten.
- Evidence: The skew does not flatten, but steepens!
- FMLS: Maximum negatively skewed α-stable Lévy process.
 - Return variance is infinite. Hence, CLT does not apply.
 - All price moments are finite. Option has finite value.
- But CLT seems to hold fine statistically:



Lévy Processes

Liuren Wu

Definitior

Examples

Generatior

Evidence

Jump design

Beyond Lévy processes

Reconcile $\mathbb P$ with $\mathbb Q$ via DPL

• Model return innovations under \mathbb{P} by DPL:

$$\pi(x) = \begin{cases} \lambda \exp\left(-\beta_+ x\right) x^{-\alpha-1}, & x > 0, \\ \lambda \exp\left(-\beta_- |x|\right) |x|^{-\alpha-1}, & x < 0. \end{cases}$$

All return moments are finite with $\beta_{\pm} > 0$. *CLT applies*.

► Apply different market prices for up and down jumps: $\frac{d\mathbb{Q}}{d\mathbb{P}}\Big|_{t} = \exp(-\gamma^{+}J^{+} - \gamma^{-}J^{-} + \text{convexity adjustment})$

The return innovation process remains DPL under Q:

$$\pi(x) = \begin{cases} \lambda \exp\left(-\left(\beta_{+} + \gamma^{+}\right)x\right)x^{-\alpha-1}, & x > 0, \\ \lambda \exp\left(-\left(\beta_{-} - \gamma^{-}\right)|x|\right)|x|^{-\alpha-1}, & x < 0. \end{cases}$$

▶ To break CLT under \mathbb{Q} , set $\gamma^- = \beta_-$ so that $\beta_-^{\mathbb{Q}} = \mathbf{0}$.

► Reconciling P with Q: Investors charge maximum allowed market price on down jumps.

Lévy Processes

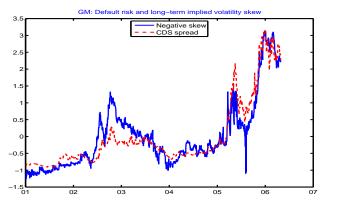
Liuren Wu

Examples Generation Evidence Jump design

> leyond Lévy rocesses

Default risk & long-term implied volatility skews

- When a company defaults, its stock value jumps to zero.
- It generates a steep skew in long-term stock options.
 - ▶ Default is really a first-moment effect: The pre-default risk-neutral drift is r − q + λ_t. CLT does not apply.
 - Using the second moment (implied vol) to capture the first-moment effect will generate large skews.



Lévy Processes

Liuren Wu

Examples Generation Evidence

Jump design

Beyond Lévy processes

Conclusion

・ロト・西ト・ヨト・ヨー うへぐ

Capture Implied volatility smiles & skews with three (jump) components

- I. Market risk (FMLS under \mathbb{Q} , DPL under \mathbb{P})
- II. Idiosyncratic risk (DPL under both \mathbb{P} and \mathbb{Q})
- III. Default risk (Poisson arrival, jumps to zero).
 - Remarks:
 - Long-term implied volatilities are more correlated cross-sectionally than stock returns are.
 - Market risk (I) is important. Identify (I) from SPX or QQQQ options.
 - Default risk (III) is important for companies with low credit ratings (GM).
 - Identify the credit risk component from the CDS market.
 - Currency: The difference of two market risks.

Lévy Processes

Liuren Wu

Definition

Examples

Generation

Evidence

Jump design

Beyond Lévy processes

Beyond Lévy processes

- Lévy processes can be used to generate different iid return innovation distributions.
- Yet, return distribution is iid, but varies stochastically over time.
- We need to go beyond Lévy processes to capture the stochastic nature of the return distribution.

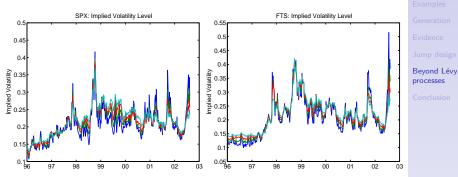
Lévy Processes

Liuren Wu

Definition Examples Generation Evidence Jump design

Beyond Lévy processes

Stochastic volatility on stock indexes

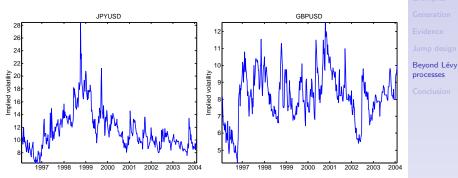


At-the-money implied volatilities at fixed time-to-maturities from 1 month to 5 years.

Lévy Processes

Liuren Wu

Stochastic volatility on currencies

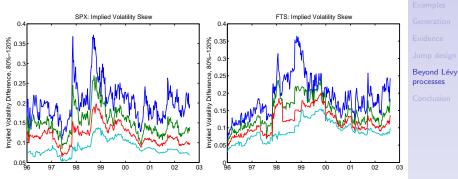


Three-month delta-neutral straddle implied volatility.

Lévy Processes

Liuren Wu

Stochastic skewness on stock indexes

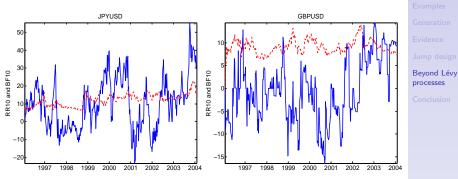


Implied volatility spread between 80% and 120% strikes at fixed time-to-maturities from 1 month to 5 years.

Liuren Wu

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

Stochastic skewness on currencies



Three-month 10-delta risk reversal (blue lines) and butterfly spread (red lines).

Lévy Processes

Liuren Wu

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへで

Stochastically time-changed Lévy processes

- Discrete-time analog again: $R_{t+1} = \mu_t + \sigma_t \varepsilon_{t+1}$
 - ▶ ε_{t+1} is an iid return innovation \leftrightarrow Lévy process.
 - (μ_t, σ_t) can be time-varying, stochastic...
- If we start with a Lévy process, $(\mu, \sigma, \lambda \nu(x))$,

$$\begin{aligned} \phi(u) &\equiv \mathbb{E}\left[e^{iuX_t}\right] = e^{-t\psi(u)}, \\ \psi(u) &= -iu\mu + \frac{1}{2}u^2\sigma^2 + \lambda \int_{\mathbb{R}_0} \left(1 - e^{iux} + iux\mathbf{1}_{|x|<1}\right)^{\operatorname{proce}} \nu(x) \end{aligned}$$

- The drift μ, the diffusion variance σ², and the arrival rate λ are all proportional to time t.
- We can randomize the time t → T_t instead of randomizing (μ, σ², λ), for the same result.
- ▶ We define $T_t \equiv \int_0^t v_{s_-} ds$ as the (stochastic) time change, with v_t being the instantaneous activity rate.

Lévy Processes

Liuren Wu

Definition

Examples

Generation

Evidence

Jump design

Beyond Lévy processes

dx.

Model financial security returns for option pricing

- Start with the risk-neutral (Q) process That's where tractability is needed the most dearly.
 - ► Identify the economic risk sources, model innovation on each source with a Lévy process (X^k_t for k = 1, · · · , K)
 - Apply separate time changes: X^k_t → X^k_{T_t} to capture stochastic responses of financial security returns to economic shocks.

$$\ln S_t/S_0 = (r-q)t + \sum_{k=1}^K \left(b^k X^k_{\mathcal{T}^k_t} - \varphi_{x^k}(b^k) \mathcal{T}^k_t \right),$$

- The framework makes model design more intuitive, parsimonious, and economically sensible.
 - Each Lévy component captures shocks from one economic source.
 - Time change captures the time-varying intensity of its impact.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Lévy Processes

Liuren Wu

Examples Generation Evidence

Beyond Lévy processes

Economic implications of using jumps

- Black-Scholes (one-factor diffusion):
 - The market is complete with a bond and a stock.
 - If you can estimate the statistical dynamics of the stock, you can price options on that stock.
 - Utility-free option pricing. Option prices are redundant. Options market reveals no extra information.
- Heston (two-factor diffusion): We can still complete the market with one extra option.
- In the presence of jumps of random sizes,
 - The market is inherently incomplete (with stocks alone).
 - Need all options (+ model) to complete the market.
 - Options market is informative/useful:
 - Cross-sectional behavior of options (K, T) ⇔ Q dynamics.
 - ► Time-series behavior of stocks/options (t) ⇔ P dynamics.
 - The difference $\mathbb{Q}/\mathbb{P} \Leftrightarrow$ market prices of economic risks.

Lévy Processes

Liuren Wu

Definition

Examples

Generation

Evidence

Jump design

Beyond Lévy processes

Bottom line

- Different types of jumps affect option pricing at both short and long maturities.
 - Implied volatility smiles at very short maturities can only be accommodated by a jump component.
 - Implied volatility skews at very long maturities ask for a jump process that generates infinite variance.
 - Credit risk exposure may also help explain the long-term skew on single name stock options.
- The choice of jump types depends on the modeled events:
 - ► Infinite-activity jumps ⇔ frequent market order arrival.
 - ► Finite-activity Poisson jumps ⇔ rare events (credit).
- Applying stochastic time changes to the Lévy processes
 - generates stochastic responses to each economic shock.
 - generates stochastic volatility, skewness, …
- The presence of jumps of random sizes have important and practical applications for hedging...

Liuren Wu

Definition Examples Generation Evidence Jump design Beyond Lévy processes