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Diffusion, jumps, & Lévy processes

I A Lévy process is a continuous-time process that
generates stationary, independent increments ...

I Think of return innovations (ε) in discrete time:
Rt+1 = µt + σtεt+1.

I Normal return innovation — diffusion
I Non-normal return innovation — jumps

I Traditional Lévy specifications:
I either a Brownian motion (Black-Scholes)
I or a compound Poisson process with normal jump size

(Merton).

⇒ The return innovation distribution is either normal or
mixture of normals.
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Lévy processes and return innovations

I Lévy processes greatly expand our continuous-time
choices of iid return innovation distributions via the
Lévy triplet (µ, σ, π(x)). (π(x)–Lévy density).

I The Lévy-Khintchine Theorem:

φXt (u) ≡ E
[
e iuXt

]
= e−tψ(u),

ψ(u) = −iuµ+ 1
2u2σ2 +

∫
R0

(
1− e iux + iux1|x |<1

)
π(x)dx ,

Innovation distribution
↔ characteristic exponent ψ(u)
↔ Lévy triplet (µ, σ, π(x))

I Constraint:
∫ 1

0
x2π(x)dx <∞ (finite quadratic

variation).
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Tractable examples
I Brownian motion (µt + σWt): normal shocks.
I Merton’s compound Poisson jumps: Large but rare

events.

π(x) = λ
1√

2πvJ
exp

(
−(x − µJ)

2

2vJ

)
.

I Dampened power law (DPL):

π(x) =

{
λ exp (−β+x) x−α−1, x > 0,
λ exp (−β−|x |) |x |−α−1, x < 0,

λ, β± > 0,
α ∈ [−1, 2)

I Finite activity when α < 0:
∫

R0 π(x)dx <∞. Large and
rare events.

I Infinite activity when α ≥ 0: Both small and large
jumps. Jump frequency increase with declining jump
size, and approaches infinity as x → 0.

I Infinite variation when α ≥ 1: many small jumps.
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Analytical characteristic exponents

I Diffusion: ψ(u) = −iuµ+ 1
2u2σ2.

I Merton’s compound Poisson jumps:

ψ(u) = λ
(
1− e iuµJ− 1

2
u2vJ

)
.

I Dampened power law: ( for α 6= 0, 1)
ψ(u) = −λΓ(−α)

[
(β+ − iu)α − βα+ + (β− + iu)α − βα−

]
I When α→ 2, smooth transition to diffusion (quadratic

function of u).
I When α = 0 (Variance-gamma by Madan et al):

ψ(u) = λ ln (1− iu/β+) (1 + iu/β−) .

I When α = 1, exponentially dampened Cauchy, Wu (06):
ψ(u) = −λ ((β+ − iu) ln (β+ − iu) /β+ + λ (β− + iu) ln (β− + iu) /β−) .



Lévy Processes

Liuren Wu

Definition

Examples

Generation

Evidence

Jump design

Beyond Lévy
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Other Lévy examples

I The normal inverse Gaussian (NIG) process of
Barndorff-Nielsen (1998)

I The generalized hyperbolic process (Eberlein, Keller,
Prause (1998))

I The Meixner process (Schoutens (2003))

I All tractable in terms of the characteristic exponents
ψ(u).

I We can use FFT to generate the density function of the
innovation (for model estimation).

I We can also use FFT to compute option values.
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processes

Conclusion

Run Brownian motions on a business clock

I Clark (1973): If one runs a Brownian motion on a
business clock, the resulting process matches financial
time series better.

I The possibility that business clock may not move while
calendar time marches forward is important ...

I A standard Poisson process ⇒ the resulting process is a
compound Poisson process with normal jump sizes.

I A compound Poisson process with exponentially
distributed jump size ⇒ double-exponential compound
Poisson process. (DPL with α = −1)

I A gamma process ⇒ variance gamma (DPL with
α = 0).

I A continuous clock ⇒ a continuous process.
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General evidence on Lévy return innovations

I Credit risk: (compound) Poisson process
I The whole intensity-based credit modeling literature...

I Market risk: Infinite-activity jumps
I Evidence from stock returns (CGMY (2002)): The α

estimates for DPL on most stock return series are
greater than zero.

I Evidence from options: Models with infinite-activity
return innovations price equity index options better
(Carr and Wu (2003), Huang and Wu (2004))

I Li, Wells, and Yu (2006): Infinite-activity jumps cannot
be approximated by finite-activity jumps.
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Implied volatility smiles & skews on a stock
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Implied volatility skews on SPX
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Average implied volatility smiles on currencies

10 20 30 40 50 60 70 80 90
11

11.5

12

12.5

13

13.5

14

Put delta

A
ve

ra
g
e
 im

p
lie

d
 v

o
la

til
ity

JPYUSD

10 20 30 40 50 60 70 80 90
8.2

8.4

8.6

8.8

9

9.2

9.4

9.6

9.8

Put delta

A
ve

ra
ge

 im
pl

ie
d 

vo
la

til
ity

GBPUSD

Maturities: 1m (solid), 3m (dashed), 1y (dash-dotted)
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Implied volatility smiles at short maturities

I Implied volatility smiles/skews ↔
non-normality/asymmetry for the underlying asset
return risk-neutral distribution.

I Both jumps and stochastic volatility can generate return
normalities, through different mechanisms.
Rt+1 = µt + σtεt+1

I Jumps generate non-normality through the innovation
distribution (ε).

I Stochastic volatility generates non-normality through
mixing over multiple periods.

I Over short maturities (1 period), only jumps contribute
to return non-normalities.
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Time decay of short-term OTM options
I As option maturity ↓ zero, OTM option value ↓ zero.
I The speed of decay is exponential O(e−c/T ) under pure

diffusion, but linear O(T ) in the presence of jumps.
I Term decay plot (Carr&Wu,2003):

ln(T ) ∼ ln(OTM/T ):
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Central Limit Theorem (CLT) at long horizons
I CLT: As option maturity increases, the smile should

flatten.
I Evidence: The skew does not flatten, but steepens!
I FMLS: Maximum negatively skewed α-stable Lévy

process.
I Return variance is infinite. Hence, CLT does not apply.
I All price moments are finite. Option has finite value.

I But CLT seems to hold fine statistically:
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Reconcile P with Q via DPL

I Model return innovations under P by DPL:

π(x) =

{
λ exp (−β+x) x−α−1, x > 0,
λ exp (−β−|x |) |x |−α−1, x < 0.

All return moments are finite with β± > 0. CLT applies.

I Apply different market prices for up and down jumps:
dQ
dP

∣∣∣
t
= exp(−γ+J+ − γ−J− + convexity adjustment)

I The return innovation process remains DPL under Q:

π(x) =

{
λ exp (− (β+ + γ+) x) x−α−1, x > 0,
λ exp (− (β− − γ−) |x |) |x |−α−1, x < 0.

I To break CLT under Q, set γ− = β− so that βQ
− = 0.

I Reconciling P with Q: Investors charge maximum
allowed market price on down jumps.
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Default risk & long-term implied volatility skews
I When a company defaults, its stock value jumps to zero.
I It generates a steep skew in long-term stock options.

I Default is really a first-moment effect: The pre-default
risk-neutral drift is r − q + λt . CLT does not apply.

I Using the second moment (implied vol) to capture the
first-moment effect will generate large skews.
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Capture Implied volatility smiles & skews with
three (jump) components

I. Market risk (FMLS under Q, DPL under P)

II. Idiosyncratic risk (DPL under both P and Q)

III. Default risk (Poisson arrival, jumps to zero).
I Remarks:

I Long-term implied volatilities are more correlated
cross-sectionally than stock returns are.

I Market risk (I) is important. Identify (I) from SPX or
QQQQ options.

I Default risk (III) is important for companies with low
credit ratings (GM).

I Identify the credit risk component from the CDS
market.

I Currency: The difference of two market risks.
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Beyond Lévy processes

I Lévy processes can be used to generate different iid
return innovation distributions.

I Yet, return distribution is iid, but varies stochastically
over time.

I We need to go beyond Lévy processes to capture the
stochastic nature of the return distribution.
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processes

Conclusion

Stochastic volatility on stock indexes
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Stochastic volatility on currencies
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Lévy Processes

Liuren Wu

Definition

Examples

Generation

Evidence

Jump design

Beyond Lévy
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Stochastic skewness on stock indexes
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Stochastic skewness on currencies
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processes

Conclusion

Stochastically time-changed Lévy processes

I Discrete-time analog again: Rt+1 = µt + σtεt+1

I εt+1 is an iid return innovation ↔ Lévy process.
I (µt , σt) can be time-varying, stochastic...

I If we start with a Lévy process, (µ, σ, λν(x)),

φ(u) ≡ E
[
e iuXt

]
= e−tψ(u),

ψ(u) = = −iuµ+ 1
2u2σ2 + λ

∫
R0

(
1− e iux + iux1|x |<1

)
ν(x)dx ,

I The drift µ, the diffusion variance σ2, and the arrival
rate λ are all proportional to time t.

I We can randomize the time t → Tt instead of
randomizing (µ, σ2, λ), for the same result.

I We define Tt ≡
∫ t
0 vs−ds as the (stochastic) time

change, with vt being the instantaneous activity rate.
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Model financial security returns for option pricing

I Start with the risk-neutral (Q) process — That’s where
tractability is needed the most dearly.

I Identify the economic risk sources, model innovation on
each source with a Lévy process (X k

t for k = 1, · · · ,K )
I Apply separate time changes: X k

t → X k
Tt

to capture
stochastic responses of financial security returns to
economic shocks.

lnSt/S0 = (r − q)t +
K∑

k=1

(
bkX k

T k
t
− ϕxk (bk)T k

t

)
,

I The framework makes model design more intuitive,
parsimonious, and economically sensible.

I Each Lévy component captures shocks from one
economic source.

I Time change captures the time-varying intensity of its
impact.
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Economic implications of using jumps

I Black-Scholes (one-factor diffusion):
I The market is complete with a bond and a stock.
I If you can estimate the statistical dynamics of the

stock, you can price options on that stock.
I Utility-free option pricing. Option prices are redundant.

Options market reveals no extra information.

I Heston (two-factor diffusion): We can still complete the
market with one extra option.

I In the presence of jumps of random sizes,
I The market is inherently incomplete (with stocks alone).
I Need all options (+ model) to complete the market.
I Options market is informative/useful:

I Cross-sectional behavior of options (K , T ) ⇔ Q
dynamics.

I Time-series behavior of stocks/options (t) ⇔ P
dynamics.

I The difference Q/P ⇔ market prices of economic risks.
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Bottom line

I Different types of jumps affect option pricing at both
short and long maturities.

I Implied volatility smiles at very short maturities can
only be accommodated by a jump component.

I Implied volatility skews at very long maturities ask for a
jump process that generates infinite variance.

I Credit risk exposure may also help explain the long-term
skew on single name stock options.

I The choice of jump types depends on the modeled
events:

I Infinite-activity jumps ⇔ frequent market order arrival.
I Finite-activity Poisson jumps ⇔ rare events (credit).

I Applying stochastic time changes to the Lévy processes
I generates stochastic responses to each economic shock.
I generates stochastic volatility, skewness, ...

I The presence of jumps of random sizes have important
and practical applications for hedging...
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