
Federal Reserve Bank of New York

Staff Reports

CoVaR

Tobias Adrian

Markus K. Brunnermeier

Staff Report no. 348

September 2008

Revised August 2009

This paper presents preliminary findings and is being distributed to economists

and other interested readers solely to stimulate discussion and elicit comments.

The views expressed in the paper are those of the authors and are not necessarily

reflective of views at the Federal Reserve Bank of New York or the Federal

Reserve System. Any errors or omissions are the responsibility of the authors.



CoVaR

Tobias Adrian and Markus K. Brunnermeier

Federal Reserve Bank of New York Staff Reports, no. 348

September 2008; revised August 2009

JEL classification: G10, G18, G20

Abstract

We propose a measure for systemic risk: CoVaR, the value at risk (VaR) of financial

institutions conditional on other institutions being in distress. We define an institution’s

(marginal) contribution to systemic risk as the difference between CoVaR and the

financial system’s VaR. From our estimates of CoVaR for characteristic-sorted portfolios

of publicly traded financial institutions, we quantify the extent to which characteristics

such as leverage, size, and maturity mismatch predict systemic risk contribution. We

argue for macro-prudential regulation based on the degree to which such characteristics

forecast systemic risk contribution.

Key words: value at risk, systemic risk, adverse feedback loop, endogenous risk, risk

spillovers, financial architecture

Adrian: Federal Reserve Bank of New York (e-mail: tobias.adrian@ny.frb.org). Brunnermeier:

Princeton University, NBER, CEPR, and CESifo (e-mail: markus@princeton.edu). Special thanks

to Hoai-Luu Nguyen for outstanding research assistance. The authors would also like to thank

René Carmona, Stephen Brown, Xavier Gabaix, Paul Glasserman, Beverly Hirtle, Jon Danielson,

John Kambhu, Arvind Krishnamurthy, Burton Malkiel, Maureen O’Hara, Matt Pritsker, 

Jean-Charles Rochet, José Scheinkman, Jeremy Stein, and Kevin Stiroh for feedback. The authors

have benefited from comments by seminar participants at many universities, central banks, and

conferences and are grateful for support from the Institute for Quantitative Investment Research

Europe (INQUIRE award). Brunnermeier also acknowledges financial support from the Alfred P.

Sloan Foundation. Early versions of the paper were presented at the Federal Reserve Bank of

New York in March 2007 and July 2007 and Princeton University in March 2007. The views

expressed in this paper are those of the author and do not necessarily reflect the position of 

the Federal Reserve Bank of New York or the Federal Reserve System.



1 Introduction

During times of �nancial crisis, losses tend to spread across �nancial institutions,

threatening the �nancial system as a whole.1 While comovement of �nancial insti-

tutions� assets and liabilities is primarily driven by fundamentals in normal times,

comovement tends to increase during times of crisis. Such increases of comovement

give rise to systemic risk� the risk that institutional distress spreads widely and dis-

torts the supply of credit and capital to the real economy. Measures of systemic risk

that capture the increase in tail comovement during �nancial crisis should become

supervisory tools and form the basis of any macroprudential regulation.

The most common measure of risk used by �nancial institutions� the value at risk

(VaR)� focuses on the risk of an individual institution in isolation. The q%-VaR is

the maximum dollar loss within the q%-con�dence interval; see, e.g., Jorion (2006).

However, a single institution�s risk measure does not necessarily re�ect systemic risk �

the risk that the stability of the �nancial system as a whole is threatened. Following

the classi�cation in Brunnermeier, Crocket, Goodhart, Perssaud, and Shin (2009), a

systemic risk measure should identify the risk on the system by �individually systemic�

institutions, which are so interconnected and large that they can cause negative risk

spillover e¤ects on others, as well as by institutions which are �systemic as part of

a herd.�A group of 100 institutions that act like identical clones can be as precari-

ous/dangerous to the system as the large merged identity.

The objective of this paper is twofold: First, we propose a measure for systemic

risk. Second, we outline a method that allows for a countercyclical implementation

1Examples include the 1987 equity market crash which started by portfolio hedging of pension
funds and led to substantial losses of investment banks; the 1998 crisis started with losses of hedge
funds and spilled over to the trading �oors of commercial and investment banks; and the 2007/08
crisis spread from SIVs to commercial banks and on to investment banks and hedge funds, see Brady
(1988), Rubin, Greenspan, Levitt, and Born (1999), and Brunnermeier (2009).
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of macroprudential regulation by predicting future systemic risk using past variables

such as size, leverage, and maturity mismatch. To emphasize the systemic nature of

our risk measure, we add to existing risk measures the pre�x �Co�, which stands for

conditional, comovement, contagion, or contributing. We focus primarily on CoVaR,

where institution i�s CoVaR relative to the system is de�ned as the VaR of the whole �-

nancial sector conditional on institution i being in distress.2 The di¤erence between the

CoVaR and the unconditional �nancial system VaR, �CoVaR, captures the marginal

contribution of a particular institution (in a non-causal sense) to the overall systemic

risk.

There are several advantages to our �CoVaR measure. First, while �CoVaR fo-

cuses on the contribution of each institution to overall system risk, current prudential

regulation focuses on the risk of individual institutions. This leads, in the aggregate, to

excessive risk-taking along systemic risk. To see this more explicitly, consider two insti-

tutions, A and B, which report the same VaR, but for institution A the �CoVaR= 0,

while for institution B the �CoVaR is large (in absolute value). Based on their VaRs,

both institutions appear to be equally risky. However, the high �CoVaR of institution

B indicates that it contributes more to system risk. Since system risk might carry a

higher risk premium, institution B might outshine institution A in terms of generating

returns, so that competitive pressure might force institution A to follow suit. Imposing

stricter regulatory requirements on institution B would break this tendency to generate

systemic risk.

One might argue that regulating institutions�VaR might be su¢ cient as long as

2Just as VaR sounds like variance, CoVaR sounds like covariance. This analogy is no coincidence.
In fact, under many distributional assumptions (such as the assumption that shocks as conditionally
Gaussian), the VaR of an institution is indeed proportional to the variance of the institution, and the
CoVaR of an institution is proportional to the covariance of the �nancial system and the individual
institution.
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each institution�s �CoVaR goes hand in hand with its VaR. However, this is not the

case, as (i) it is not desirable that institution A should increase its contribution to

systemic risk by following a strategy similar to institution B and (ii) there is no one-to-

one connection between an institution�s �CoVaR (y-axis) and VaR (x-axis) as Figure 1

shows. Overall, Figure 1 questions the usefulness of current bank regulation, such as

Basel II, which relies primarily on VaR.
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Figure 1: The scatter plot shows the weak link between institutions�risk in isolation,
measured by VaRi (x-axis), and institutions�contribution to system risk, measured by
�CoVaRi (y-axis). The VaRi and �CoVaRi are measured in 2006Q4 and are reported
in billions of dollars. A list with the names of the institutions corresponding to the
tickers in this plot is given in Appendix C.

Another advantage of our co-risk measure is that it is general enough to study

the risk spillover e¤ects across the whole �nancial network. For example, �CoVaRjji

captures the increase in risk of individual institution j when institution i falls into

distress. To the extent that it is causal, it captures the risk spillover e¤ects that
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institution i causes on institution j. Of course, it can be that institution i�s distress

causes a large risk increase in institution j, while institution j causes almost no risk

spillovers onto institution i. That is, there is no reason why �CoVaRjji should equal

�CoVaRijj. Figure 2 shows the directional e¤ects for �ve U.S. banks with large broker-

dealers subsidiaries.
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Figure 2: CoVaR network structure. The top number represents the CoVaR of the
pointed institution conditional to the event that the institute at the origin of the arrow
is in distress. The bottom number represents the CoVaR in the opposite direction.

Another advantage of CoVaR is that it is readily extendable from a value at risk

measure to other tail risk measures. Several authors have pointed out short-comings

of VaR and argued in favor of alternative risk measures. One of these measures is the

expected short-fall (ES), which captures the expected loss conditional on being in the

q% quantile. It is straightforward to extend our approach to other risk measures, e.g.

the Co-Expected Shortfall (Co-ES). Just as ES is a sum of VaRs, Co-ES is the sum of

CoVaRs. The advantage of Co-ES relative to CoVaR is that it provides less incentive
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to load on to tail risk below the percentile that de�nes the VaR or CoVaR. In summary,

the economic arguments of this paper are readily translatable to expected shortfall.

So far, we have deliberately not speci�ed how to estimate our CoVaR measure, since

there are many possible ways. In this paper, we primarily use quantile regressions which

are appealing for their simplicity and e¢ cient use of data. Since we want to capture all

forms of risk, including not only the risk of adverse asset price movements, but�equally

important�also funding liquidity risk, our estimates of �CoVaR are based on (weekly)

changes in the market valued assets of public �nancial institutions. Since the asset

and liability composition of any particular �nancial institution may change over time

(e.g., due to mergers, demergers, or ventures into new businesses), we estimate our risk

measures over quintile portfolios of �nancial intermediaries sorted based on leverage,

maturity mismatch, size, market-to-book, and volatility.

Our paper also addresses the problem that (empirical) risk measures su¤er from

the fact that �tail observations�are� by de�nition� rare. After a string of good news,

risk seems tamed, but, when a new tail event occurs, the estimated risk measure may

sharply increase. This problem is most pronounced if the data samples are short.

Hence, regulatory requirements that are based on estimated risk measures would be

stringent during a crisis and lax during a boom. This introduces procyclicality �exactly

the opposite of the goal of e¤ective regulation.

In order to construct a countercyclical risk measure, we derive unconditional and

conditional measures of �CoVaR using the full length of available data (we use weekly

data from the beginning of 1986 to the end of 2008 for all publicly traded commercial

banks, broker-dealers, insurance companies, and real estate companies). While the

unconditional �CoVaR estimates are constant over time, the conditional ones model

time variation of �CoVaR as a function of state variables that model the evolution
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of tail risk dependence over time. These state variables include the slope of the yield

curve, aggregate credit spread, and implied equity market volatility from VIX. To

estimate which characteristics of �nancial institutions contribute to systemic risk, we

�rst estimate CoVaR conditional on the state variables. Using panel regressions, we

then relate these time-varying �CoVaR � in a predictive, Granger causal sense� to

measures of each portfolio�s average maturity mismatch, leverage, market-to-book, and

size. These predictive regressions allow preemptive macroprudential policy and ex-ante

regulation of systemic risk contribution. The regression coe¢ cients indicate how one

should weigh the di¤erent funding liquidity measures in determining the capital charge

or Pigouvian tax imposed on various �nancial institutions.

In practice, we argue for a change of the supervisory and regulatory framework that

aims at internalizing externalities that an institution�s risk taking imposes on the �nan-

cial system rather than focusing on a bank�s risk in isolation. More speci�cally, the de-

gree to which an institution increases systemic risk� as measured by �CoVaR� should

determine the macroprudential regulation and capital surcharges of that institution.

Related Literature. Our co-risk measure is motivated by theoretical research on

externalities across �nancial institutions that give rise to liquidity spirals. CoVaR mea-

sures such externalities, together with fundamental comovement. CoVaR also relates

to econometric work on contagion and spillover e¤ects.

A ��re-sale externality�gives rise to excessive risk taking and leverage. The exter-

nality arises since each individual institution takes potential �re-sale prices as given,

while, as a group, they cause the �re sale prices. In an incomplete market setting this

precuniary externality leads to an outcome that is not even constrained Pareto e¢ -

cient. This result was derived in a banking context in Bhattacharya and Gale (1987),
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applied to international �nance in Caballero and Krishnamurthy (2004) and most re-

cently shown in Lorenzoni (2008). Stiglitz (1982) and Geanakoplos and Polemarchakis

(1986) show it generically in a general equilibrium incomplete market setting. Runs on

�nancial institutions are dynamic co-opetition games and lead to externalities, as does

banks�hoarding. While hoarding might be microprudent from a single bank�s perspec-

tive it need not be macroprudent (fallacy of the commons). Network e¤ects can also

lead to externalities, as hiding one�s own contractual commitments increases the risk of

one�s counterparties and the counterparties of one�s counterparties etc, Brunnermeier

(2009). In Acharya (2009) banks do not fully take into account that they contribute

to systematic risk.

Procyclicality occurs because risk measures tend to be low in booms and high

in crises. The margin/haircut spiral outlined in Brunnermeier and Pedersen (2009)

then forces �nancial institutions to delever at �re-sale prices. Adrian and Shin (2009)

provide empirical evidence for the margin/haircut spiral for the investment banking

sector. Borio (2004) is an early contribution that discusses a policy framework to

address margin/haircut spirals and procyclicality.

Outline. The remainder of the paper is organized in four sections. In Section 2,

we outline the methodology and de�ne �CoVaR and its properties. In Section 3, we

outline the estimation method via quantile regressions. We also introduce time-varying

�CoVaR conditional on state variables and present estimates of these conditional

�CoVaR. Section 4 shows how to use �CoVaR to implement preemptive macropru-

dential supervision and regulation by demonstrating that institutional characteristics

such as size, leverage, maturity mismatch, and market-to-book predict future systemic

risk contribution. We conclude in Section 5.
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2 CoVaR Methodology

In this section, we introduce and de�ne our systemic co-risk measure, CoVaR. Sub-

sequently, in Section 3, we introduce time-varying CoVaRs by linking our CoVaR

estimates to state variables. In Section 4, we outline how countercyclical �nancial

regulation can be achieved.

2.1 De�nition of CoVaR

Recall that VaRiq is implicitly de�ned as the q quantile, i.e.

Pr
�
X i � VaRiq

�
= q,

where X i is the variable of institution (or portfolio) i for which the VaRiq is de�ned.

Note that VaRiq is typically a negative number. In practice, the sign is often switched,

a sign convention we will not follow.

De�nition 1 We denote by CoVaRjjiq the VaR of institution j (or the �nancial system)

conditional on X i = VaRiq of institution i. That is, CoVaR
jji
q is implicitly de�ned by

the q-quantile of the conditional probability distribution:

Pr
�
X j � CoVaRjjiq jX i = VaRiq

�
= q.

We denote institution i�s contribution to j by:

�CoVaRjjiq = CoVaRjjiq �VaRjq.
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Most of the paper focuses on the case j = system, i.e. when the portfolio of all

�nancial institutions is at its VaR level. In this case, we drop the superscript j. Hence,

�CoVaRi denotes the di¤erence between the VaR of the �nancial system conditional

on the distress of a particular �nancial institution i, CoVaRi, and the unconditional

VaR of the �nancial system, VaRsystem . It measures how much an institution adds

to overall systemic risk. The measure captures externalities that arise because an

institution is �too big to fail�, or �too interconnected to fail�, or takes on positions or

relies on funding that can lead to crowded trades. Of course, ideally, one would like to

have a co-risk measure that satis�es a set of axioms as, for example, the Shapley value

does (recall that the Shapley value measures the marginal contribution of a player to

a grand coalition).

The more general de�nition of CoVaRjji, i.e. the VaR of institution (portfolio) j

conditional on institution (or portfolio) i being at its VaR level, allows us to study

spillover e¤ects across a whole �nancial network as illustrated in Figure 2. Moreover,

we can also derive CoVaRjjsystem which answers the question which institutions are

most at risk should a �nancial crisis occur. �CoVaRjjsystem reports institution j�s

increase in value-at-risk in the case of a �nancial crisis. One could argue that focusing

on the states of the world in which the �nancial system is in distress can provide the

basis for more focused and e¢ cient regulation.

2.2 Properties of CoVaR

Cloning Property. Our CoVaR de�nition satis�es the desired property that, after

splitting one large �individually systemic�institution into n identical clones, the Co-

VaR of the large institution is exactly the same as the CoVaRs of the n clones. Put

di¤erently, conditioning on the distress of a large systemic institution is the same as
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conditioning on one of the n identical clones.

Causality. Note that the �CoVaR measure does not distinguish whether the contri-

bution is causal or simply driven by a common factor. We view this as a virtue rather

than as a disadvantage. To see this, suppose a large number of small hedge funds hold

similar positions and are funded in a similar way. That is, they are exposed to the

same factors. Now, if only one of the small hedge funds falls into distress, this will not

necessarily cause any systemic crisis. However, if this is due to a common factor, then

all of the hedge funds, all of which are �systemic as part of a herd�, will be in distress.

Hence, each individual hedge fund�s co-risk measure should capture this even though

there is no direct causal link, and the �CoVaR measure does so. Moreover, when we

estimate �CoVaR, we control for lagged state variables that capture variation in tail

risk not directly related to the �nancial system risk exposure.

Tail Distribution. CoVaR focuses on the tail distribution and is more extreme than

the unconditional VaR as CoVaR conditions on a �bad event�, a conditioning which

typically shifts the mean downwards and increases the variance in an environment with

heteroscedasticity. The CoVaR, unlike the covariance, re�ects both shifts.

Conditioning. Note that CoVaR conditions on the event that institution i is at its

VaR level, which occurs with probability q. That is, the likelihood of the conditioning

event is independent of the riskiness of i�s strategy. If we were to condition on an

absolute return level of institution i, then more conservative institutions could have

a higher CoVaR since the conditioning event would be a more extreme event for less

risky institutions.
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Directionality. CoVaR is directional. That is, the CoVaR of the system conditional

on institution i does not equal the CoVaR of institution i conditional on the system.

Endogeneity of Systemic Risk. Note that each institution�s CoVaR is endogenous

and depends on other institutions�risk taking. Hence, imposing a regulatory framework

that internalizes externalities alters the CoVaRmeasures. We view the fact that CoVaR

is an equilibrium measure as a strength, since it adapts to changing environments

and provides an incentive for each institution to reduce its exposure to risk if other

institutions load excessively on it.

CoES. Another attractive feature of CoVaR is that it can be easily adopted for other

�corisk-measures�. One of them is the co-expected-shortfall, Co-ES. Expected shortfall

has a number of advantages relative to VaR and can be calculated as a sum of VaRs.

We denote the CoESiq, the Expected Shortfall of the �nancial system conditional on

X i � VaRiq of institution i. That is, CoES
i
q is de�ned by the expectation over the

q-tail of the conditional probability distribution:

E
�
Xsystem jXsystem � CoVaRiq

�
Institution i�s contribution to CoESiq is simply denoted by:

�CoESiq = E
�
Xsystem jXsystem � CoVaRiq

�
� E

�
Xsystem jXsystem � VaRsystemq

�
.

Acharya, Pedersen, Philippon, and Richardson (2009) modify our approach by

proposing the marginal expected shortfall as a measure of systemic risk.

2.3 Market Valued Total Financial Assets

Our analysis focuses on the VaRiq and �CoVaR
i
q of growth rates of market valued total

�nancial assets. More formally, denote by MEit the market value of an intermediary
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i�s total equity, and by LEV i
t the ratio of total assets to book equity. We de�ne the

normalized change in market value of total �nancial assets, X i
t , by:

X i
t =

MEit � LEV i
t �MEit�1 � LEV i

t�1
MEit�1 � LEV i

t�1
=
Ait � Ait�1
Ait�1

, (1)

where Ait =MEit �LEV i
t . Note that A

i
t =MEit �LEV i

t = BAit �(MEit=BE
i
t), where BA

i
t

are book valued total assets of institution i. We thus apply the market-to-book equity

ratio to transform book-valued total assets into market valued total assets. Note that

the total market value weighted sum of the X i
t across all institutions gives back the

growth rate of market valued total assets for the �nancial system as a whole:

P
i

Ait�1P
j

Ajt�1
X i
t =

Asystemt � Asystemt�1

Asystemt�1
= Xsystem

t (2)

Our analysis is constrained by using publicly available data. In principle, a sys-

temic risk supervisor could compute the VaRiq and �CoVaR
i
q from a broader de�nition

of total assets which includes o¤ balance sheet items as well as derivative contracts. A

more complete description of the assets and exposures of institutions would potentially

improve the measurement of systemic risk and systemic risk contribution. Conceptu-

ally, it is straightforward to extend the analysis to such a broader de�nition of total

assets.

We focus on the VaRiq and �CoVaR
i
q of total assets as they are most closely related

to the supply of credit to the real economy. Ultimately, policy makers are concerned

about systemic risk as it has the potential to ine¢ ciently lower the supply of credit to

the non-�nancial sector. However, supervisors and regulators might also be interested

in VaRiq and �CoVaR
i
q measures for equities or liabilities as well. For example, the
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�CoVaRiq for liabilities captures the extent to which �nancial institutions rely on debt

funding� such as repos or commercial paper� that can collapse during systemic risk

events. Equity is the residual between assets and liabilities, so the �CoVaRiq measure

can give additional information about the systemic risk embedded in the asset liability

mismatch. The estimation of �CoVaRiq for other items of intermediary balance sheets

is left to future research.

2.4 Financial Institution Data

We focus on publicly traded �nancial institutions, consisting of four �nancial sectors:

commercial banks, investment banks and other security broker-dealers, insurance com-

panies, and real estate companies. We start our sample in the beginning of 1986 and

end in 2008. We obtain the daily market equity data from CRSP and quarterly balance

sheet data from COMPUSTAT. We limit the portfolios to institutions that belong to

four industries, as identi�ed by their two digit SIC codes (SIC code 60-61: commercial

banks; SIC code 63-64: insurance companies; SIC code 65-66: real estate companies;

SIC code 62: broker-dealers; we exclude industry code 67). We have a total of 1340

institutions in our sample.

Portfolio Sorts. While we are interested in estimating the evolution of the risk mea-

sures VaR and CoVaR for individual �nancial institutions, the nature of any particular

institution might have changed drastically over the 1986-2008 sample period. In addi-

tion, many banks either merged with other organizations, or went out of business. One

way to control for the changing nature of each individual institution is to form portfolios

on balance sheet characteristics that are identi�ed by theories of the margin spiral as

being determinants of systemic risk. In particular, for each of the four �nancial sector
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industries, we form the following sets of quintile portfolios: maturity mismatch, lever-

age, market-to-book, size, and equity return volatility. We thus obtain 100 industry

/ characteristic sorted portfolios. Maturity mismatch is measured as short-term debt

relative to total assets. Leverage is the ratio of total book assets to book equity. Equity

volatility is calculated each quarter from daily return data. The portfolios are sorted

at the beginning of each quarter, based on the characteristics of the previous quarter.

The quintile cut-o¤s are value-weighted so that, within industries, each portfolio has

(approximately) the same size.

3 CoVaR Estimation

In this section we outline one simple and e¢ cient way to estimate CoVaR using quan-

tile regressions. In Section 3.1, we describe the basic time invariant regressions that

are used to generate Figures (1) and (2). In Section 3.2, we describe estimation of

the time-varying, conditional CoVaR. Details on the return generating model and the

econometrics of quantile regression are given in Appendix A and B. Section 3.3 provides

estimates of CoVaR and discusses properties of the estimates.

3.1 Estimation Method: Quantile Regression

The CoVaR measure can be computed in various ways. Using quantile regressions is a

particularly e¢ cient way to estimate CoVaR but, by no means, the only one. Alterna-

tively, CoVaR can be computed from models with time-varying second moments, from

measures of extreme events, or by bootstrapping past returns.

To see the attractiveness of quantile regressions, consider the predicted value of

a quantile regression of the �nancial sector X̂system;i
q on a particular institution or
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portfolio i for the q � th quantile:

X̂system;i
q = �̂iq + �̂

i

qX
i, (3)

where X̂system;i
q denotes the predicted value for a particular quantile conditional on

institution i.3 In principle, this regression could be extended to allow for nonlinearities

by introducing higher order dependence of the system return as a function of returns

to institution i. From the de�nition of value at risk, it follows directly that:

VaRsystemq jX i = X̂system;i
q . (4)

That is, the predicted value from the quantile regression of the system on portfolio i

gives the value at risk of the �nancial system conditional on i since the VaRq given

X i is just the conditional quantile. Using a particular predicted value of X i =VaRi

yields our CoVaRiq measure. More formally, within the quantile regression framework

our CoVaR measure is simply given by:

CoVaRiq := VaR
system
q jVaRiq = �̂iq + �̂

i

qVaR
i
q. (5)

The unconditional VaRiq and �CoVaR
i
q estimates for Figure 1 are based on equations

(4) and (5). In the remainder of the paper, we use conditional VaR and �CoVaR

estimates which explicitly model the time variation of the joint distribution of asset

3Note that a median regression is the special case of a quantile regression where q = 50%.We
provide a short synopsis of quantile regressions in the context of linear factor models in Appendix B.
Koenker (2005) provides a more detailed overview of many econometric issues.
While quantile regressions are regularly used in many applied �elds of economics, their applications

to �nancial economics are limited. Notable exceptions are econometric papers like Bassett and Chen
(2001), Chernozhukov and Umantsev (2001), and Engle and Manganelli (2004) as well as the working
papers by Barnes and Hughes (2002) and Ma and Pohlman (2005).
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returns as a function of lagged systematic state variables. The methodology is explained

in the next section and the econometric background is given in Appendix A.

3.2 Time-Variation Associated With Systematic State Vari-

ables

The previous section presents a methodology for estimating CoVaR that is constant

over time. To capture time variation in the joint distribution of X i and Xsystem, we

estimate the conditional distribution as a function of state variables. A derivation of

our estimated equations from a risk factor model of the underlying asset returns, as

well as the analytics of quantile regressions for the purpos of this paper, are given in

Appendix A and B.

We indicate time-varying CoVaRt and VaRt with a subscript t. We estimate the

time variation of CoVaRt and VaRt conditional on a vector of state variables Mt. The

one week lag of the state variables is denoted by Mt�1. We run the following quantile

regressions in the weekly data (where i is a portfolio or the whole �nancial system):

X i
t = �i + �iMt�1 + "it, (6a)

Xsystem
t = �system + �systemMt�1 + "systemt , (6b)

Xsystem
t = �systemji + �systemjiMt�1 + 
systemjiX i

t + "
systemji
t . (6c)
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We then generate the predicted values from these regressions to obtain:

V aRit = �i + �iMt�1, (7a)

V aRsystemt = �system + �systemMt�1, (7b)

CoV aRit = �systemji + �systemjiMt�1 + 
systemjiV aRit. (7c)

Finally, we compute �CoV aRit for each institutions:

�CoV aRit = CoV aRit � V aRsystemt (8)

From these regressions, we obtain a panel of weekly �CoVaRit. For the forecasting re-

gressions in section 4, we generate a quarterly time series by summing the risk measures

within each quarter.

The systematic state variables are lagged. They should not be interpreted as sys-

tematic risk factors, but rather as conditioning variables that are shifting the condi-

tional mean and the conditional volatility of the risk measures. Note that di¤erent

portfolios can load on these risk factors in di¤erent directions, so that any correlation

of risk measures across portfolios � or correlations of the di¤erent risk measures for

the same portfolio are not imposed by construction.

State variables: To estimate the time-varying CoVaRt and VaRt, we include a set

of state variables Mt that are (i) well known to capture time variation in conditional

means and volatilities of asset returns, and (ii) that are also liquid and easily tradable.

We restrict ourselves to a small set of risk factors to avoid over�tting the data. Our

factors are:

(i) VIX, which captures the implied volatility in the stock market. This implied
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volatility index is available on the Chicago Board Options Exchange�s website.

(ii) A short term �liquidity spread�, de�ned as the di¤erence between the 3-month

repo rate and the 3-month bill rate measures the short-term counterparty liquidity risk.

We use the 3-month general collateral repo rate that is available on Bloomberg, and

obtain the 3-month Treasury rate from the Federal Reserve Bank of New York.

(iii) The change in the 3-month term Treasury bill rate.

In addition, we consider the following two �xed-income factors that are known to

be indicators in forecasting the business cycle and also predict excess stock returns:

(iv) The change in the slope of the yield curve, measured by the yield-spread between

the 10-year Treasury rate and the 3-month bill rate from the Federal Reserve Board�s

H.15 release.

(v) The change in the credit spread between BAA rated bonds and the Treasury

rate (with same maturity of 10 years) from the Federal Reserve Board�s H.15 release.

We also control for the following equity market returns:

(vi) The weekly equity market return from CRSP.

(vii) The one year cumulative real estate sector return.

3.3 CoVaR Summary Statistics

Table 1 provides the estimates of our weekly conditional 1%-CoVaR measures that we

obtain from using quantile regressions. Each of the summary statistics comprises the

100 portfolios generated by forming quintiles along �ve dimensions: leverage, maturity

mismatch, market-to-book, size, and equity volatility for each of the four �nancial

industry portfolios (commercial banks, broker-dealers, insurance companies, and real

estate).
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Table 1: Summary Statistics. The table reports summary statistics for the asset
returns and 1% risk measures of the I = 100 characteristic sorted portfolios for weekly
data from 1986-2008 (T=52�23=1196). The portfolios are formed quarterly based on
�ve characteristics of the previous quarter (leverage, maturity mismatch, size, market-
to-book, and equity volatility) for each of four industries (commercial banking, insur-
ance, security broker dealers, real estate companies). X i denotes the weekly market
valued asset returns for the 100 portfolios. The portfolio risk measure V aRi and the
system risk measure V aRsystem are obtained by running 1-% quantile regressions of re-
turns on the one week lag of the state variables and by computing the predicted value
of the regression. �CoV aRi is the di¤erence between CoV aRi and V aRsystem, where
CoV aRi is the predicted value from a 1-% quantile regression of the �nancial system
asset returns on the portfolio asset returns and on the lagged state variables. The
1%-Stress �CoV aRi is the �CoV aRi computed with the worst 1% of state variable
realization and the worst 1% �nancial system return replaced in the quantile regression.

Variable Mean Std. Dev. Observations
(1) X i overall 0.210 3.806 N = 116976
(2) between 0.129 I = 100
(3) within 3.804 T = 1170
(4) V aRi overall -7.953 4.524 N = 116976
(5) between 2.283 I = 100
(6) within 3.908 T = 1170
(7) �CoV aRi overall -1.615 1.351 N = 116976
(8) between 0.777 I = 100
(9) within 1.110 T = 1170
(10) 1% Stress-�CoV aRi overall -2.672 3.403 T = 1196
(11) V aRsystem overall -6.178 3.161 T = 1195

The �rst three lines of Table 1 give the summary statistics for the market valued

total asset growth rates; lines four to six give the summary statistics for the time-

series/cross-section of VaRit for each of the portfolios; lines seven to nine give the

summary statistics for �CoVaRit; line 10 is the 1% stress level of �CoVaRit; and line

11 gives the summary statistics for the �nancial system value at risk, VaRsystemt . The

stress �CoVaRit is estimated by substituting the worst 1% of state variable realizations

into the�CoVaRit estimates. Recall that�CoVaR
i
t measures the marginal contribution
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of portfolio i to overall systemic risk and re�ects the di¤erence between two value at

risks of the portfolio of the ��nancial universe�.

We report the mean, standard deviation, and number of observations for each of the

items in Table 1. All of the numbers are weekly percent returns. The data is a panel,

so we report the summary statistics for the overall data set, as well as the between

and within summary statistics. The between standard deviations are obtained by �rst

taking the time series average of each series and then computing the cross sectional

standard deviation. Per construction, the number of cross sectional observations, I;

is always 100. The within standard deviations are obtained by �rst taking the cross

sectional average, and then computing the time series standard deviation. There are a

total of 1196 weeks in the sample: 23 years � 52 weeks. The portfolio sorts use lagged

data, so the e¤ective number of time periods is somewhat smaller.

We obtain time-variation of the risk measures by running quantile regressions of

asset returns on the lagged state variables. We report average t�stats of these regres-

sions in Table 2. A higher VIX, higher repo spread, and lower market return tend to

be associated with more negative risk measures. In addition, increases in the 3-month

yield, the term spread, and the credit spread tends to be associated with larger risk.

The housing variable is not signi�cant on average, though it is signi�cant for some

portfolios (not reported).

3.4 CoVaR versus VaR

Figure 1 in the introduction shows that, across institutions, there is only a very loose

link between an institution�s VaRi and its contribution to systemic risk as measured by

�CoVaRi. Hence, imposing �nancial regulation that is solely based on the individual
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Table 2: Average t-Statistics of State Variable Exposures. The table reports
average t-statistics from 1%-quantile regressions. For the portfolio risk measures V aRi

and the system risk measure V aRsystem, 1-% quantile regressions are run on the state
variables. For CoV aRi, 1-% quantile regressions of the �nancial system returns are run
on the state variables and the portfolio asset returns. There are I = 100 characteristic
sorted portfolios for weekly data from 1986-2008 (52�23=1196 weeks). The portfolios
are formed quarterly based on �ve characteristics of the previous quarter (leverage, ma-
turity mismatch, size, market-to-book, and equity volatility) for each of four industries
(commercial banking, insurance, security broker dealers, real estate companies).

Variable VaRsystem VaRi CoVaRi

VIX (lag) (-11.11) (-0.98) (-5.83)
Repo spread (lag) (-9.43) (-1.91) (-3.91)
3 Month yield change (lag) (-2.46) (-0.25) (-1.94)
Term spread change (lag) (-1.84) (-0.73) (-0.80)
Credit spread change (lag) (-1.64) (-0.94) (-1.12)
Market return (lag) (8.86) (8.17) (4.49)
Housing (lag) (0.99) (0.20) (1.53)
Portfolio asset return X i (4.24)

risk of an institution in isolation might not be very useful. Figure 3 repeats the scatter

plot of �CoVaRi against VaRi for the 100 portfolios, grouped by 25 portfolios for

each of the four �nancial industries. While �CoVaRi and VaRi have only a weak

relationship in the cross section, they have a strong relationship in the time series. This

can be seen in Figure 4, which plots the cross sectional average of �CoVaRi against the

cross sectional average of VaRi. Figures 5 and 6, respectively, plot the �CoVaRi and

VaRsystem for the portfolios of large investment banks and high maturity mismatched

commercial banks over time.
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Figure 3: The scatter plot shows the weak cross sectional link between the time series
average of a portfolio�s risk in isolation, measured by VaRi (x-axis), and the time series
average of a portfolio�s contribution to system risk, measured by �CoVaRi (y-axis).
The VaRi and �CoVaRi are in units of weekly returns to total market valued �nancial
assets.

4 �CoVaR Forecasts and Regulation

From a regulatory or macroprudential policy perspective, the potential for systemic

risk builds up before an actual �nancial crisis occurs. For example, the securities that

were at the core of the 2007-2009 crisis were bought by �nancial institutions between

2005 and 2007, years before the actual crisis occurred. While the estimates of section

3 provide contemporaneous measures of systemic risk contribution, policy should take

the potential for future systemic risk into account. Consequently, we provide systemic

risk contribution forecasts in this section.

We sum the weekly risk measure estimates of the previous section by quarter and
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Figure 4: The scatter plot shows the strong time series link between the cross sectional
average of VaRi (x-axis) and the cross sectional average of contribution to system
risk, measured by �CoVaRi (y-axis). The weekly risk measures are time-aggregated
by averaging within each quarter, so that VaRi and �CoVaRi are in units of weekly
returns to total market valued �nancial assets.

use �rm characteristics to predict future systemic risk contribution. We show that

more leverage, more maturity mismatch, and larger size all forecast larger systemic

risk contribution. We propose to base macroprudential policy on such estimates of

systemic risk contribution. In particular, we are able to calculate a weighting scheme

for the characteristics which allows for the ex-ante taxation of characteristics which are

likely to cause systemic risk problems in the future.

The forecast of systemic risk contribution several quarters into the future addresses

the procyclical nature of current regulation. Currently, capital requirements as well

as margin and haircut setting are based on contemporaneous risk calculations. When

volatility is low, capital requirements are low, which allows the build up of aggregate
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Figure 5: This �gure shows the market valued asset returns (blue), the 1%-VaR (gray),
and the 1%-�CoVaR (red) for the portfolio of the 20% of largest investment banks.
The 1%-stress �CoVaR is also plotted. All risk measures are in weekly returns to total
market valued assets.

risk. By basing regulatory requirements on the characteristics that predict future

systemic risk contribution, institutions have to hold higher capital ratios in anticipation

of future risk contribution, even if the contemporaneous level of measured risk is low.

Such a capital regulation scheme is thus forward looking.

4.1 Forecasting �CoVaR from Institutional Characteristics

Countercyclical regulation should tighten in booms, in advance of increases of risk. In

Table 3, we ask whether systemic risk contributions can be forecasted, portfolio by

portfolio, by the lagged characteristics at di¤erent time horizons.

Table 3 shows that portfolios with higher leverage, more maturity mismatch, larger
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Figure 6: This �gure shows the market valued asset returns (blue), the 1%-VaR (gray),
and the 1%-�CoVaR (red) for the portfolio of the 20% commercial banks with the
largest maturity mismatch. The 1%-stress �CoVaR is also plotted. All risk measures
are in weekly returns to total market valued assets.

size, and higher market-to-book tend to be associated with larger systemic risk contri-

butions two years later. These�CoVaR regressions are run with risk measures that are

time-aggregated by summing the weekly measures within each quarter. As a result, the

coe¢ cients in Table 3 are sensitivities of �CoVaR with respect to the characteristics

expressed in units of quarterly returns. For example, the coe¢ cient of -0.083 for the

leverage forecast at the one year horizon implies that an increase in leverage (say from

15 to 16) of an institution is associated with an increase in systemic risk of 8.3 basis

points of quarterly asset returns. For an institution that has $1 trillion of total market

valued assets, that translates into $83 billion of systemic risk contribution.

Table 3 can be understood as a "term structure" of systemic risk contribution by
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Table 3: �CoVaRi Forecasts by Characteristics at the Quarterly, One Year,
and Two Year Horizons for the 1% Quantile. This table reports the coe¢ cients
from forecasting regressions of the 1% �CoVaRi on the quarterly, one year, and two
year lag of portfolio characteristics. Each regression has a cross section of 100 portfolios.
The methodology for computing the risk measures VaRi and �CoVaRi is given in the
captions of Tables 1 and 2. Risk measures are summed to a quarterly frequency. All
regressions include industry �xed e¤ects and time e¤ects. The foreign dummy is the
fraction of foreign �rms in each portfolio. *** denotes signi�cance at the 1% level,
** denotes signi�cance at the 5% level, and * denotes signi�cance at the 10% level.
Signi�cance is computed from robust standard errors.

Variable 2 Years 1 Year 1 Quarter
�CoVaRi (lagged) 0.623*** 0.706*** 0.876***
VaRi (lagged) -0.044*** -0.033*** -0.016***
Leverage (lagged) -0.093*** -0.083*** -0.049***
Maturity mismatch (lagged) -2.799*** -1.948*** -1.146***
Relative size (lagged) -0.731 -1.002*** -0.520**
Market-to-book (lagged) -0.002* -0.001** -0.001
Foreign dummy 0.121 0.035 0.632
Commercial Bank FE 3.051*** 2.322*** 1.290***
Investment Bank FE -1.103*** -0.732** -0.109
Insurance Company FE -2.562*** -2.411*** -0.961***
Constant -10.168*** -7.568*** -3.325***

Observations 8102 8497 8798
R2 0.597 0.650 0.800

reading from right to left. It should be noted that we include lagged variables of the

�CoVaRi and VaRi in the regression so as to control for the persistence of systemic risk

contribution. Table 4 reports the "tailness" of systemic risk. The forecasting horizon

is �xed at the one year level and columns (1), (2), and (3) correspond to the forecasts

of �CoVaRi at the 1%, 5%, and 10% level. Column (2) of Table 3 and Column

(1) of Table 4 are identical, per construction. Table 4 indicates that the systemic

risk contribution of higher leverage, more maturity mismatch, larger size, and larger
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Table 4: �CoVaRi Forecasts by Characteristics at the One Year Horizon for
the 1%, 5%, and 10% Quantiles. This table reports the coe¢ cients from quarterly
forecasting regressions of the q%-� CoVaRi on the one year lag of portfolio character-
istics for q = 1%, 5%, and 10%. Each regression has a cross section of 100 portfolios.
The methodology for computing the risk measures VaRi and �CoVaRi is given in the
caption of Tables 1 and 2. Risk measures are summed to a quarterly frequency. All
regressions include industry �xed e¤ects and time e¤ects. The foreign dummy is the
fraction of foreign �rms in each portfolio. *** denotes signi�cance at the 1% level,
** denotes signi�cance at the 5% level, and * denotes signi�cance at the 10% level.
Signi�cance is computed from robust standard errors.

Variable 1% 5% 10%
�CoVaRi (lagged) 0.706*** 0.665*** 0.629***
VaRi (lagged) -0.033*** -0.031*** -0.046***
Leverage (lagged) -0.083*** -0.005*** -0.003***
Maturity mismatch (lagged) -1.948*** -0.022 -0.049***
Relative size (lagged) -1.002*** -0.043*** -0.019**
Market-to-book (lagged) -0.001** -0.000*** -0.000
Foreign 0.035 -0.020 -0.028
Commercial Bank FE 2.322*** 0.031** 0.026**
Investment Bank FE -0.732** -0.109*** -0.102***
Insurance Company FE -2.411*** -0.113*** -0.091***
Constant -7.568*** -0.309*** -0.402***

Observations 8497 8490 8490
R2 0.650 0.573 0.642

market-to-book tends to increase as we inspect quantiles further out in the left tail of

the return distribution.

4.2 Macroprudential Policy

Instead of tying �nancial regulation directly to �CoVaR, we propose to link it to the

�nancial institution characteristics that predict �CoVaR. This ensures that �nancial

regulation is implemented in a forward looking way that counteracts the procyclicality
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of current regulation. Like any tail risk measure, �CoVaR estimates rely on relatively

few data points. Hence, adverse movements, especially following periods of stability,

can lead to sizable increases in tail risk measures. Any regulation that relies on con-

temporaneous VaR and �CoVaR estimates would be unnecessarily tight after adverse

events and unnecessarily loose in periods of stability. Thus, capital regulation based

on current risk measures would amplify the adverse impacts after bad shocks, while

also amplifying balance sheet expansions in good times (see Estrella (2004) and Gordy

and Howells (2006)).

To overcome this procyclicality of capital regulation, we have shown that the

�CoVaR measure is forecasted by institutions�characteristics such as maturity mis-

match, leverage, market-to-book, relative size, and industry. Data limitations restrict

our analysis, but a systemic risk supervisor can make use of a wider set of institution

speci�c characteristics. We especially emphasize the predictive relationship between

�CoVaR and these characteristics since they allow supervisors to act before excessive

�nancial sector leverage and maturity mismatch builds up. The coe¢ cients for each

of these characteristic variables determine how systemic risk capital charges should be

imposed.

Macroprudential policy tools to mitigate the likelihood of systemic �nancial crisis

include capital regulation, taxation, reverse convertible debt, and insurance schemes.

For each of these policies, the forecasting regressions can be used to determine mag-

nitudes. For example, capital requirements can be based on the estimates of relative

systemic risk contribution of maturity mismatch, size, and industry dummies. (Capital

ratios cannot directly be based on the leverage estimates, as leverage itself is pinned

down by the capital requirement.) In a Pigouvian taxation scheme, tax rates would be

pinned down by weights from the forecasting regressions. In reverse convertible debt
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schemes, the requirement for how much reverse convertibles need to be held would

be determined by the forecasting coe¢ cients. In insurance schemes, the insurance

premium would be based on the relative magnitude of the coe¢ cients.

5 Conclusion

During �nancial crises or periods of �nancial intermediary distress, tail events tend to

spill over across �nancial institutions. Such risk spillovers are important to understand

for supervisors of �nancial institutions.

The �nancial market crisis of 2007-2009 has underscored fundamental problems in

the current regulatory set-up. When regulatory capital and margins are set relative

to VaRs, forced unwinding of one institution tends to increase market volatility, thus

making it more likely that other institutions are forced to unwind and delever as well. In

equilibrium, such unwinding gives rise to a margin/haircut spiral, triggering an adverse

feedback loop. An economic theory of such an ampli�cation mechanism is provided by

Brunnermeier and Pedersen (2009). These �adverse feedback loops�were discussed by

the Federal Open Market Committee in March 2008 and motivated Federal Reserve

Chairman Ben Bernanke to call for regulatory reform.4 Our�CoVaR measure provides

a potential remedy for the margin spiral, as the measure takes the risk spillovers which

give rise to adverse feedback loops explicitly into account.

We propose to require institutions to hold capital not only against their VaR, but

also against the characteristics that forecast future �CoVaR. By not relying on sys-

temic risk surcharges that are based on contemporaneous risk measurement, but rather

on the characteristics that are shown to forecast future systemic risk contribution, the

4See http://www.federalreserve.gov/monetarypolicy/fomcminutes20080318.htm.
and http://www.federalreserve.gov/newsevents/speech/bernanke20080822a.htm.
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proposal addresses the procyclicality of current capital regulation. Capital charges are

forward looking, per construction.

For risk monitoring purposes, �CoVaR is a parsimonious measure for the potential

of systemic �nancial risk. Supervisors that monitor systemic risk have traditionally

followed the evolution of VaRs of individual �nancial institutions. �CoVaR allows

supervisors to complement the individual institution risk estimates with systemic risk

contribution estimates. This shifts the focus of supervision to overall �nancial sector

risk and to the potential externalities that actions of individual institutions might

impose on the �nancial system as a whole.
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A Asset Return Generating Model

The purpose of this appendix is to show that the asset return speci�cations of equations

(6a)-(6c) that we use to estimate CoVaR can be derived from a standard factor model

for asset returns. Consider the following model for the returns Rjt of assets j:

Rjt = �jMt�1 +  jXsystem
t + �jvt + ejt (9)

where

vt = Systematic risk

�j = Systematic risk sensitivity

ejt = Idiosyncratic risk

Xsystem
t = Financial system return

 j = Exposure to system return

�jMt�1 = Time-varying expected returns

Balance sheet returns are the returns to some portfolio of assets �i such that:

X i
t = �iRt = �i

�
�Mt�1 +  Xsystem

t + �vt + et
�

(10)

where � are the stacked �j and et and the stacked eit shocks. We can sum across all

institutions and solve (10) to obtain the returns of the system:

Xsystem
t = ~�

system
�| {z }

�system

Mt�1 + ~�
system

�vt + ~�
system

et| {z }
"systemt

(11)
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where ~�
system

=
��
1� �system 

�0 �
1� �system 

���1 �
1� �system 

�0
�system.

Equation (10) can also be solved for the system as a function of individual asset

returns:

Xsystem
t =

��
�i 
�0 �

�i 
���1 �

�i 
�0| {z }


i

X i
t +�

��
�i 
�0 �

�i 
���1 �

�i 
�0
�i�| {z }

�i

Mt�1 (12)

+�
��
�i 
�0 �

�i 
���1 �

�i 
�0
�i (�vt + et)| {z }

"it

= 
systemjiX i
t + �systemjiMt�1 + "

systemji
t

Note that Xsystem
t = �systemMt�1 + "systemt from (11). Replacing into (12) gives:

X i
t =

�
�i�+ �i �system

�| {z }
�i

Mt�1 + �ivt + "systemt + et| {z }
"it

(13)

In summary, we obtain equations (6a)� (6c):

X i
t = �iMt�1 + "it (14a)

Xsystem
t = �systemMt�1 + "systemt (14b)

Xsystem = 
systemjiX i
t + �systemjiMt�1 + "

systemji
t (14c)
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B CoVaR Estimation via Quantile Regressions

This appendix explains how to use quantile regressions to estimate VaR and CoVaR.

Suppose that returns X i
t have the following linear factor structure:

Xj
t = �0 +Mt�1�1 +X i

t�2 +
�
�3 +Mt�1�4 +X i

t�5
�
"jt (15)

whereMt�1 is a vector of state variables. The error term "t is assumed to be i.i.d. with

zero mean and unit variance and is independent of Mt�1 so that E
�
"jt jMt�1; X

i
t

�
= 0.

Returns are generated by a process of the �location-scale" family, so that both the

conditional expected return E
�
Xj
t jMt�1; X

i
t

�
= �0 +Mt�1�1 + X i

t�2 and the condi-

tional volatility V olt�1
�
Xj
t jMt�1; X

i
t

�
= (�3 +Mt�1�4 +X i

t�5) depend on the set of

state variables Mt�1 and on X i
t . The coe¢ cients �0; �1, and �3 could be estimated

consistently via OLS of X i
t on Mt�1 and X i

t . The predicted value of such an OLS

regression would be the mean of Xj
t conditional on Mt�1 and X i

t . In order to compute

the VaR and CoVaR from OLS regressions, one would have to also estimate �3, �4;

and �5, and then make distributional assumptions about "
j
t .
5 The quantile regressions

incorporate estimates of the conditional mean and the conditional volatility to produce

conditional quantiles, without the distributional assumptions that would be needed for

estimation via OLS.

Instead of using OLS regressions, we use quantile regressions to estimate model (15)

for di¤erent percentiles. We denote the cumulative distribution function (cdf) of "j by

F"j ("
j), and its inverse cdf by F�1

"j
(q) for percentile q. It follows immediately that the

5The model (15) could otherwise be estimated via maximum likelihood using a stochastic volatility
or GARCH model if distributional assumptions about " are made. The quantile regression approach
does not require speci�c distributional assumptions for ".
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inverse cdf of Xj
t is

F�1
Xj
t

�
qjMt�1; X

i
t

�
= �q +Mt�1�q +X i

t
q, (16)

where �q = �0+�3F
�1
"j
(q), �q = �1+�4F

�1
"j
(q), and 
q = �2+�5F

�1
"j
(q) for quantiles

q 2 (0; 1). We call F�1
Xj
t

(qjMt�1; X
i
t) the conditional quantile function. From the

de�nition of VaR:

VaRjq = inf
VaRq

�
Pr
�
Xt � VaRqjMt�1; X

i
t

�
� q

	
= F�1

Xj
t

�
qjMt�1; X

i
t

�
.

The the conditional quantile function F�1
Xj
t

(qjMt�1; X
i
t) is the VaR

j
q conditional on

Mt�1 and X i
t is . By conditioning on X

i
t =VaR

i
q, we obtain the CoVaR

jji
q from the

quantile function:

CoVaRjjiq = inf
VaRq

�
Pr
�
Xt � VaRqjMt�1; X

i
t = VaR

i
q

�
� q

	
= F�1

Xj
t

�
qjMt�1;VaR

i
q

�
.

(17)

We estimate the quantile function as the predicted value of the q�quantile regres-

sion of X i
t on Mt�1 and X

j
t by solving:

min
�q ;�q ;
q

P
t

8><>: q
��Xj

t � �q �Mt�1�q �X i
t
q
��

(1� q)
��Xj

t � �q �Mt�1�q �X i
t
q
�� if

�
Xj
t � �q �Mt�1�q �X i

t
q
�
� 0

if
�
Xj
t � �q �Mt�1�q �X i

t
q
�
< 0

.

See Bassett and Koenker (1978), and Koenker and Bassett (1978) for �nite sample

and asymptotic properties of quantile regressions. Chernozhukov and Umantsev (2001)

discuss VaR applications of quantile regressions.6

6Note that our sample size is chosen such that we do not need extreme value adjustments to our
estimators. See Chernozhukov and Du (2008) for an overview of extremal quantile regressions, with
for VaR applications.
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C List of Financial Institutions for Figure 1

PANEL A: BANK HOLDING COMPANIES PERMCO TIC

BANK OF AMERICA CORP 3151 BAC
CITIGROUP INC 20483 C

COUNTRYWIDE FINANCIAL CORP 796 CFC
JPMORGAN CHASE & CO 20436 JPM

WACHOVIA CORP 1869 WB
WELLS FARGO & CO 21305 WFC

PANEL B: INVESTMENT BANKS PERMCO TIC

BEAR STEARNS COMPANIES INC 20282 BSC
GOLDMAN SACHS GROUP INC 35048 GS

LEHMAN BROTHERS HOLDINGS INC 21606 LEH
MERRILL LYNCH & CO INC 21190 MER

MORGAN STANLEY 21224 MS

PANEL C: GSEs PERMCO TIC

FANNIE MAE 20695 FNM
FREDDIE MAC 22096 FRE

PANEL D: INSURANCE COMPANIES PERMCO TIC
AMERICAN INTERNATIONAL GROUP 137 AIG

BERKSHIRE HATHAWAY 540 BRK
METLIFE 37138 MET
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